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Exploration on Continuous Gaussian Process Frontier Maps

Maani Ghaffari Jadidi, Jaime Valls Miró, Rafael Valencia and Juan Andrade-Cetto

Abstract— An information-driven autonomous robotic explo-
ration method on a continuous representation of unknown envi-
ronments is proposed in this paper. The approach conveniently
handles sparse sensor measurements to build a continuous
model of the environment that exploits structural dependencies
without the need to resort to a fixed resolution grid map. A
gradient field of occupancy probability distribution is regressed
from sensor data as a Gaussian process providing frontier
boundaries for further exploration. The resulting continuous
global frontier surface completely describes unexplored regions
and, inherently, provides an automatic stop criterion for a
desired sensitivity. The performance of the proposed approach
is evaluated through simulation results in the well-known
Freiburg and Cave maps.

I. INTRODUCTION

The standard approach to autonomous robotic exploration
in mobile robotics relies on the use of grid-based represen-
tations [1]. Relying on grid-based maps however, ignores
the structural dependency in the environment due to the
assumption of independence between cells. In this paper
we suggest to compute frontiers through continuous map
building and dynamic updating of the environment. To this
end, we introduce the C-frontier map, a continuous model
of the boundaries of known-free and unknown areas that
accounts for structural dependencies, from which we are able
to select goals for further exploration. The C-frontier map is
in turn extracted from another continuous representation that
models the occupancy probability distribution from sensor
data. We use Gaussian processes, as a powerful regression
tool in a Bayesian framework, to learn such continuous
occupancy map.

II. RELATED WORK

Traditional autonomous exploration strategies have been
devised to use occupancy grid maps to represent free, occu-
pied and unknown regions [2]. Despite their popularity, occu-
pancy grid maps exhibit shortcomings due to the assumption
of independence between cells, fixed resolution, and the
memory intensive requirements to model three-dimensional
environments.
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Fig. 1. Cave map entropy evolution

In an effort to tackle the limitation of the granularity in
occupancy grid maps in [3], an occupancy grid is maintained
for the sole purpose of evaluating spatial entropy when
comparing candidate actions. Thus, it can be computed at
a very coarse resolution since it is not used to maintain
neither the robot localization estimate, nor the structure of
the environment. The technique in [3] evaluates exploratory
and place revisiting paths, which are selected based on
entropy reduction estimates of both the map and the path.
Whilst the map entropy is computed on an occupancy grid
at coarse resolution, path entropy is the outcome of Pose
SLAM [4, 5], a variant of SLAM in which only the robot
trajectory is estimated through the observation of relative
constraints between robot poses. The evolution of the map
entropy for this method v.s. our Gaussian process continuous
occupancy map is shown in Fig. 1.

Other strategies have been proposed to move beyond
simple grid structures for efficient exploration. In [6] the
use of octomaps is suggested, treating the frontier between
explored and unexplored areas as boundary conditions,
and the explored area as a scalar field. Optimal paths to
the boundaries of unexplored sections are computed using
steepest descent on the associated gradient field. Another
effort to cope with varying resolutions for the explored and
unexplored regions in grid maps is presented in [7], where
registered sensor data is used to populate an occupied voxel
cell, but a sparse free space representation is generated by a
particle set. The evolution of a stochastic differential equation
that simulates the expansion of the system of particles in
free space with Newtonian dynamics determines the sparse
unexplored regions. In [8], an information potential field by
taking into account the joint entropy of map and path is
defined. The robot trajectory is computed from descending
on the gradient of the potential field, still, an accurate
computation of occupancy maps is preliminary to compute
the potential field.

Although the above methods attempt to ease the short-
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Fig. 2. A regressed continuous occupancy map of the Cave environment, with size of 20m× 20m. (a) Pose SLAM map; red dots indicate robot poses,
green lines depict loop-closures. (b) The obstacle probability map Λo. (c) The free space probability map Λf . (d) The overall fused COM Λ.

comings of using grid maps to explore, they still fall short
of accounting for structural correlations in the environment.
Recent developments in Bayesian regression and classi-
fication methods, particularly from the machine learning
community, are providing strong mathematical tools for
continuous learning and inference in complex data sets. Non-
parametric kernel models, such as Gaussian processes (GP),
have proven particularly powerful to represent the affinity
of spatially correlated data, overcoming the assumption of
independency between cells [9]. The GP associated variance
surface equates to a continuous representation of uncertainty
in the environment, which can be used to highlight un-
explored regions and optimize a robot’s search plan. The
continuity property of the GP map can improve the flexibility
of the planner by inferring directly on collected sensor data
without being limited by the resolution of the grid cell [10].

In this paper, we propose an approach to detect frontiers
from a continuous representation of the environment that
does not suffer from the issues associated to grid maps. It
computes exploration goals on the GP associated variance
surface. However, training a unique GP for both occupied and
free areas results in a mixed variance surface and it is not
possible to disambiguate between boundaries of occupied-
unknown and free-unknown space without thresholding of
the continuous map (see Fig. 6 in [9]). Moreover, it limits
selection of an appropriate kernel and results in extrapolated
obstacles or low quality free areas. To address this problem
we propose training two separate GPs, one for free areas
and one for obstacles, and fuse them to come up with a
unique continuous occupancy map. Given its associated gra-
dient field over consecutive maps, areas of higher variation
would effectively represent incomplete parts of the map,
hence equating to an information-driven frontier map for
exploration, our so-called C-frontier map.

III. GAUSSIAN PROCESSES

In GPs, statistical inference is employed to learn de-
pendencies between points in a data set [11]. A GP f(x)
is described by its mean, m(x), and covariance (kernel)
function, k(x, x′), as

f(x) ∼ GP(m(x), k(x, x′)) (1)

where x and x′ are the training and test (query) input vectors,
respectively. By assuming that the target data, y, is jointly
Gaussian, it follows

f(x′) ∼ N (µ, σ2) (2)

µ = E(f ′|x, y, x′) = k(x′, x)[k(x, x) + σ2
nI]−1y, (3)

σ2 = k(x′, x′)− k(x′, x)[k(x, x) + σ2
nI]−1k(x, x′), (4)

where σ2
n is the variance of the Gaussian observation noise

and f ′ represents the output values at the test locations.

IV. INFERRING CONTINUOUS OCCUPANCY
MAPS WITH GPS

Through inference with GPs, we are able to estimate the
full map posterior and avoid the common marginalization in
building occupancy grid maps. In this work it is assumed
that the robot is equipped with a laser range finder and
that local sensor measurements are mapped into a global
reference frame, e.g. with a Pose SLAM approach [4].

Training points for the free area GP map are sampled along
the laser beam between the robot and the sensed obstacles
as in [9]. Computing the obstacles GP map is more straight
forward, as it is possible to use the global measured points
directly. In both instances the target value can be simply
set to one depending on the nature of the map, i.e, a binary
classification problem with static state: obstacle or free. Note
that in training with one GP the target value can be y+ = 1
and y− = −1 for occupied and free points, respectively.

Since environments are constructed from sudden changes
from free areas to obstacles, we are interested in covariance
and mean functions which produce as sharp a distribution as
possible. However, sharp kernels are inappropriate for cover-
ing large free areas, or for learning structural dependencies
such as walls.

To this end, for the obstacles GP map we have chosen the
Matérn covariance function [12], given by

kMatern(x, x′) =

1

Γ(ν)2ν−1

[√
2ν|x− x′|

κ

]ν
Kν

(√
2ν|x− x′|

κ

)
,

(5)

where Γ is the Gamma function, Kν(·) is the modified
Bessel function of the second kind of order ν, κ is the
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(a) The robot is in the beginning of the
exploration.
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(b) The robot moved to the last goal ex-
tracted from the last C-frontier map.
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(c) An optimal motion to cover a close
and informative, but unseen region in the
map.

(d) The C-frontier map shows the
boundaries of free and unknown areas.

(e) The C-frontier map is dynamically
updated and it maintains the boundaries
in the global framework.

(f) After covering an unexplored area,
the purple circle shows the next selected
goal in the map.

Fig. 3. Evolution of the frontier surface in the Cave map. The C-frontier map is global and facilitates optimal exploration goal extractions. The map is
non-dimensional and illustrates a generalized idea for continuous frontiers.

characteristic length scale, and ν is a parameter used to
control the smoothness of the covariance.

In order to cover larger spaces with less measurements,
the GP map of the free area is defined with a compound
covariance function given by the product of a squared
exponential covariance function [11], expressed by

kSE(x, x′) = exp

(
|x− x′|2

2κ

)
, (6)

and a Matérn covariance function.
For a given query point in the map x′i, our GPs predict

mean values for its occupancy and free states µi, and
associated variances σ2

i . In general there is no guarantee that
predicted GPs mean values be constrained to the target values
or in case of one GP lie in the interval [y−, y+], thus we are
interested to interpret outputs as distributions by benefiting
from GPs mean and variance values concurrently. Following
the idea in binary discriminative classification (see sections
3.1 and 3.2 in [11] and chapter 8 in [13]), a logistic function
(response function) can be used to squash the GPs outputs
into the range [0, 1] and guarantee a valid probabilistic
interpretation. By inverting and bounding GPs variances, we
can compute the bounded information associated to each
location, λi = σ2

min/σ
2
i . GPs variances represent the amount

of occupancy uncertainty at each point on the map, hence
the square root of these information values are proportional
to the required weights for logistic regression model, wi ∝
λ

1/2
i . Therefore

p(y±,i | xi) =
1

1 + exp(−wiµi)
(7)

where wi = y±,iγλ
1/2
i and γ > 0 is a constant.

An alternative solution is discussed in [9] through em-
ploying a probabilistic least-square classifier (see section 6.5
in [11]). However, it requires a unique covariance matrix
inversion for each point which can be a bottleneck for long-
term exploration experiments.

Querying over a uniformly sampled range of points, we
assemble both an obstacle probability map, Λo(x) : R2 7→ R,
and a free area probability map, Λf (x) : R2 7→ R. The
fusion of the two (see section IV-B) is our desired continuous
occupancy map (COM). Figure 2 illustrates an example of a
regressed COM.

A. Selection of training and query sets

The training set consists of temporally annotated measure-
ment points in the global reference frame. Given that each
Pose SLAM pose is annotated with its corresponding laser
scan, and that such a map contains only such poses that
introduce a relevant amount of information change into the
map, the obvious choice is to use such sensor data to train
the GPs.

A plausible query set could be a dense uniform distribution
over the entire GP domain. That is, sampling all areas cov-
ered by the robot sensor range. This is also a computationally
intractable choice. Instead, at each iteration, the query set
is computed locally over a moving window of fixed size
centered at the robot’s current pose and covering the current
perception field.



Algorithm 1 explorationCOM(probot, plocal, reset)
1: pglobal ← transform2global(probot, plocal)
2: pfree ← lineSegmentation(probot, plocal)
3: if firstFrame then
4: Λ = Λo = Λf = ∅
5: optimize GP hyperparameters θo, θf
6: else if reset == true then
7: Λ = Λo = Λf = ∅
8: end if
9: x′

o, x
′
f ← testData(probot)

10: xo, xf ← trainingData(pglobal, pfree)
11: σ2

o ← GP(θo, xo, x
′
o), σ2

f ← GP(θf , xf , x
′
f )

12: λo ← σ2
min,o/σ

2
o , λf ← σ2

min,f/σ
2
f

13: p(yo | xo)← logisticReg(µo, λo)
14: p(yf | xf )← logisticReg(−µf , λf )
15: Λo ← fusionBCM local(p(yo | xo),Λo)
16: Λf ← fusionBCM local(p(yf | xf ),Λf )
17: Λ← fusionBCM(Λo,Λf )
18: F ← ‖∇Λ‖1 − β(‖∇Λo‖1 + Λo − 0.5)
19: goal← goalExtraction(F, probot)
20: return goal

B. Fusion and updating the occupancy probability maps

After learning a local COM by using the local query
set, we need to fuse it with the global COM. The problem
is similar to the mixture of Gaussian processes. However,
here we fuse a local part with the current global map.
The Bayesian committee machine (BCM) [14], suggests
an approach to combine estimators which were trained on
different data sets. Assuming a Gaussian prior with zero
mean and covariance Σ and each GP with mean E(f ′|Di)
and covariance cov(f ′|Di), where Di = {(x, y)i} is the
dataset of observations used for each process, it follows that

E(f ′|D) = C−1

p∑
i=1

cov(f ′|Di)
−1E(f ′|Di) (8)

with

C = cov(f ′|D)−1 = −(p− 1)(Σ)−1 +

p∑
i=1

cov(f ′|Di)
−1

(9)
where p is total number of processes. Note that in this paper,
E(f ′|Di) represents probability values from a COM.

V. FRONTIER MAPS

We are in the quest for the extraction of boundaries
between known-free and unknown areas directly from a
continuous representation of the occupancy probability dis-
tribution in the surroundings, without having to resort to a
grid map. To this end, assuming the COM has been inferred,
we propose to look at its associated gradient field, which
effectively represents variations around the boundaries, or
incomplete parts of the map. The gradient field is a vector
field and its dimension is double the COM in 2D environ-
ments. As the C-frontier map is a scalar field and has the
same dimensions as the COM, by computing the L1-norm
(Manhattan distance) of the gradient field, we can reduce
the dimensions back to the COM, and also obtain sharp and
desirable boundaries. However, boundaries that are related
to obstacles need to be accounted for as these are not real
frontiers of interest.

(a) (b)

Fig. 4. The final occupancy grid maps; a) exploration with the grid-
based method and b) exploration with COM. Inferring the COM with GP
regression leads to a partially incomplete equivalent occupancy grid map.
See Fig. 5 for a completed experiment with GP regression.

To fulfill the above, we define the C-frontier map F as

F = ‖∇Λ‖1 − β(‖∇Λo‖1 + Λo − 0.5), (10)

where ∇ is the gradient operator, and β is a factor that
controls the effect of obstacle boundaries. ‖∇Λ‖1 defines all
boundaries, whilst the second and third terms define obstacle
outlines and obstacles, respectively. The subtracted constant
from the obstacles is to remove the biased probability for
unknown areas in the obstacles probability map. The result-
ing frontier map F contains only known-free and unknown
boundaries and by clustering points in this map we can select
goals for further exploration. Frames (d) to (f) in Fig. 3 show
three instances of the C-frontier map for the Cave scenario.

VI. GOAL EXTRACTION

To obtain goal candidates for further exploration, the
frontier map is thresholded in order to contain the most
informative boundaries, which are in turn clustered with a k-
means method. Subsequently, we select the goal with the best
balance of information gain and traverse distance, according
to

f = max{αm̄i
ni
N
− d1/2

i , i = 1, 2, ...,M}, (11)

where di is the distance from the current robot pose to the i-
th cluster centroid (squared root to prevent steep variations),
m̄i is the mean value of the valid frontier points in the
cluster, ni is the number of points in the i-th cluster, N
is the total number of points, M is the total number of
clusters, and α is a factor to relate information gain to the
cost of motion. Alg. 1 describes the overall procedure to C-
frontier map construction and goal extraction for exploration
in a continuous space, taking as inputs the local sensor
measurements plocal and the robot pose probot in the global
reference frame.

VII. MAP REGENERATION

Loop closure during SLAM may change the map signif-
icantly. To account for such changes, we propose to reset
and learn the COM with all the available data again. To
efficiently detect such a drift in the COM we measure the



(a) Pose SLAM map of the Freiburg dataset. The map is computed
from a real LMS-laser log taken with a Pioneer2 robot at the
University of Freiburg (building 079 AIS-Lab).

(b) Pose SLAM map of the Cave
dataset.

(c) Completed COM at the end of the experiment. Despite sparse
measurements in some locations, the whole map is completely
explored based on the proposed information-driven strategy.

(d) Final COM. The robot explored the
environment efficiently without exces-
sive movements.

Fig. 5. Exploration in Freiburg map (a and c) and Cave map (b and d). Map dimensions in meters.

Jensen-Shannon divergence [15]. The generalized Jensen-
Shannon divergence for n probability, p1, p2, ..., pn, with
weights π1, π2, ..., πn is

JSπ(p1, p2, ..., pn) = H(

n∑
i=1

πipi)−
n∑
i=1

πiH(pi) (12)

where H is the Shannon entropy function.

H(p) = −
n∑
i=1

p(xi)log(p(xi)) (13)

and p(xi) is the probability associated to variable xi. All the
weights are set to one as all points are equal.

Alternatively, cumulative relative entropy by summing the
computed Jensen-Shannon entropy in each iteration shows
map drifts over a period of time and contains the history of
map variations. Consequently, the method is less sensitive to
small sudden changes.

VIII. RESULTS AND DISCUSSION

The proposed approach is demonstrated with exploratory
simulations in two standard mapping environments, the Cave
and Freiburg maps [16]. The Cave map represents a sim-
ple hand-drawn environment with a few rough obstacles,
whereas the Freiburg map is computed from a real LMS-
laser log taken with a Pioneer2 robot at the University of
Freiburg (building 079 AIS-Lab), and contains many rooms
and disconnected obstacles which make for a challenging
environment to explore. GP computations have been imple-
mented with the Open Source GP library in [11].

TABLE I
COMPARISON OF THE EXPLORATION METHODS IN THE CAVE MAP

(AVERAGED OVER 10 EXPERIMENTS, MEAN ± STANDARD ERROR)

Grid-based GP COM
Travel distance (m) 331 112 ± 4
Exploration time (min) 33.38 31.75 ± 5.45
Map entropy rate (NATS/step) -0.4438 -2.1480 ± 0.1991
Final map entropy (NATS) 143.8696 146.9389 ± 0.6757

The proposed approach is compared with a state-of-the-
art grid-based method [3] and results are collected in table I.
Data are averaged over ten experiments for the listed criteria.
The presented method outperforms the grid-based method in
all metrics except for the final map entropy.

The final map entropy for both methods is computed from
the final occupancy grid map, Fig. 4. In our approach, the
occupancy grid map is computed once at the end of the
experiment as the COM is inherently different. The final
map entropy in our approach is higher than the grid-based
method, however, the fact that GP regression covers regions
with sparse measurements and computes full map posterior
by considering cell dependencies results in a partially incom-
plete equivalent occupancy grid map. This in part improves
travel distance and map entropy rate as it can be seen in
table I.

A. Maps with varying levels of detail

The fully explored results of the maps are illustrated in
Fig. 5. The complete COM, shown in frame (c), nicely
handles sparse measurements as a result of the continuous
regression, which is significantly effective for large environ-
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Fig. 6. Three points in time during a frontier-based process using a grid map. Beyond the discretization effects, the effect of the independence assumption
between cells can be seen as small frontiers appearing since information of near free and occupied cells is not propagated to the rest of the cells.

ments.
The exploration process was set to continue until the C-

frontier map was cleared, i.e. no more significant frontiers
appear. Thresholding the C-frontier map to derive the most
informative areas prior to a k-means clustering process
allowed the algorithm to explore the whole area and set the
termination condition. This tuning allows the algorithm to
disregard frontiers which appear not sufficiently informative
to warrant further exploration, reducing the exploration strat-
egy’s computational time.
B. Comparison with grid maps

Figure 6 shows three points in time during a traditional
frontier-based exploration with grid maps, on the Cave map
with a cell size of 0.2m × 0.2m. The robot is always
driven to the nearest frontiers, with size larger than 9 cells.
Besides the loss of information due to the discretization, such
a sequence makes evident the effect of the independence
assumption between cells. In Fig. 6 small frontiers appear
because the information of near free and occupied cells is
not propagated to the rest of the cells. Hence, when the
robot has eventually explored the larger frontiers, it might be
driven to such artifacts instead of more informative regions.
In a more realistic model, the occupancy in each place is not
randomly distributed over the world as implicitly assumed by
grid structures. Instead, a spatial correlation between points
in the map should exist given the structured spatial nature of
the world around us, and this is exactly what is achieved with
the proposed GP maps. Training values for free and occupied
space are appropriately propagated over the environment,
thus generating well defined frontiers as shown in Fig. 3.

Figure 1 shows the evolution of the map entropy (in nats)
for the frontier-based grid exploration and the GP COM for
the same number of steps on the Cave map. For the case of
the GP continuous map, the map inferred at the same grid
size (0.2m) to make it a comparable metric. The plateau of
entropy values for the grid map case can be explained by the
fact that, at each step, the information gained by each cell is
not propagated over its vicinity. The opposite happens in a
GP map, where at each step the correlation between points
in the map helps in reducing the map entropy at a faster rate.

IX. CONCLUSIONS

The novel solution presented in this paper suggests a con-
tinuous parametrization of frontiers for autonomous robotic

exploration. The method benefits from GPs to iteratively
estimate structural variances or correlations of map points,
hence, an inferred COM represents occupied and free re-
gions. In addition, developing the notion of frontiers beyond
occupancy grid maps in the form of a continuous non-
dimensional frontier surface, where regions for further explo-
rations are the natural boundaries between free-known and
unknown areas, justifies the relevance of the proposed COM
for exploration. Further efforts are currently being devoted
to exploiting the COM in the planning process, and a closer
integration with uncertainties from the SLAM process.
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