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Fuzzy Segmentation and Recognition of Continuous Human Activities
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Abstract— Most previous research has focused on classifying
single human activities contained in segmented videos. However,
in real-world scenarios, human activities are inherently contin-
uous and gradual transitions always exist between temporally
adjacent activities. In this paper, we propose a Fuzzy Segmen-
tation and Recognition (FuzzySR) algorithm to explicitly model
this gradual transition. Our goal is to simultaneously segment a
given video into events and recognize the activity contained in
each event. Specifically, our algorithm uniformly partitions the
video into a sequence of non-overlapping blocks, each of which
lasts a short period of time. Then, a multi-variable time series is
creatively formed through concatenating the block-level human
activity summaries that are computed using topic models over
each block’s local spatio-temporal features. By representing an
event as a fuzzy set that has fuzzy boundaries to model gradual
transitions, our algorithm is able to segment the video into a
sequence of fuzzy events. By incorporating all block summaries
contained in an event, the proposed algorithm determines the
most appropriate activity category for each event. We evaluate
our algorithm’s performance using two real-world benchmark
datasets that are widely used in the machine vision community.
We also demonstrate our algorithm’s effectiveness in important
robotics applications, such as intelligent service robotics. For
all used datasets, our algorithm achieves promising continuous
human activity segmentation and recognition results.

I. INTRODUCTION

In recent decades, human activity recognition has drawn
increasing attention from researchers in different fields of
study, such as computer vision, ubiquitous computing, ma-
chine learning, and robotics [1]-[3]. Most works in human
activity recognition focus on simple primitive activities con-
tained in short, manually segmented clips, such as walking
and hand-waving, in contrast to the fact that human activities
involve continuous, complex temporal patterns, for example,
grabbing a box then packing and delivering it.

We are especially interested in peer-to-peer human-robot
teaming [3], in which humans and autonomous robots oper-
ate collaboratively in the same physical workspace to achieve
the same objective. In this application, human activities are
always performed in a continuous fashion. Thus, temporal
segmentation and recognition of continuous human activities
are crucial capabilities for autonomous robots to understand
and effectively interact with humans.

Not surprisingly, recognizing a sequence of human activ-
ities from a continuous, unsegmented video is considerably
more challenging than from a temporally partitioned video
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that contains a single activity. Besides the well-investigated
difficulties to categorize human activities in partitioned clips,
such as variations of human appearances and motions, illumi-
nation changes and dynamic backgrounds, etc., recognizing
human activities in unsegmented visual data poses additional
challenges. First, analyzing continuous human activities has
to deal with the transition effect, i.e., the transition between
temporally adjacent human activities always occurs gradual-
ly, and their temporal boundaries are usually vague. Second,
humans usually perform multiple activities in parallel. For
example, naturally, everyone sits while driving. Third, gen-
erating ground truth to evaluate continuous human activity
recognition systems is a challenging task. Errors often arise
due to clock synchronization issues, limited human reaction
time, and imprecise activity definitions [4]. In consequence,
these problems result in significant difficulties in construction
of continuous activity recognition systems.

To address this important but difficult research problem,
we introduce a novel algorithm, named Fuzzy Segmentation
and Recognition (FuzzySR), to temporally partition a video
into coherent constituent segments in an unsupervised fash-
ion and to categorize the activity contained in each individual
segment. The main idea of our FuzzySR algorithm is demon-
strated in Figure 1, which contains three components: block-
level activity summarization, fuzzy event segmentation, and
event-level activity recognition.

Our continuous human activity segmentation and recogni-
tion algorithm adopts the bag-of-words (BoW) representation
based on local spatio-temporal features. The BoW represen-
tation is a most popular model for human activity recognition
due to its robustness in real-world environments [2], [S]-[7].
Following the BoW representation, several approaches were
proposed to construct human activity recognition systems.
Although demonstrated to be effective to recognize primitive
activities in segmented clips [5]-[8], the BoW model ignores
long-term temporal structures of the sequential data, which
limits their capability of partitioning continuous videos that
exhibit temporal patterns. In addition, since the BoW model
encodes videos as a histogram of visual words that are com-
puted from local features, it takes discrete values generally in
high dimensional space, which makes analysis directly using
the BoW model very expensive and generally intractable [9].
This characteristic limits the BoW model’s ability to directly
form a time series for temporal pattern analysis.

An important objective of this paper is to bridge the gap
between temporal human activity segmentation and the Bow
representation, which is not discussed in previous studies to
our knowledge. Our approach achieves this objective through
applying the block-level activity summarization. A block is
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Fig. 1: Illustration of our FuzzySR algorithm for continuous human activity segmentation and recognition. The block-level
activity summarization module summarizes activity distribution of each block by mapping high-dimensional discrete feature
space to real-valued activity space. The fuzzy event segmentation module uses the summaries to form a multi-variable time
series, and applies fuzzy temporal clustering to discover and segment events that are modeled as fuzzy sets. The event-level
activity recognition module incorporates summaries of all blocks contained in an event to determine an activity label.

defined as a unit time interval of user-defined duration that
contains a short sequence of consecutive frames, in which the
activity performed by a human subject is assumed consistent.
As illustrated in Figure 1, our block-level activity summa-
rization partitions a continuous video into a sequence of non-
overlapping blocks, and summarizes activity information of
each block by mapping the high-dimensional discrete BoW
representation in feature space to the real-valued distribution
over activities in activity space. Then, the block-level activity
distributions are used to form a multi-variable time series. It
is noteworthy that the use of local spatio-temporal features
also ensures that our algorithm captures temporal variations
within each block.

Another objective of this paper is to discover and segment
events from a given video that contains a sequence of human
activities, and to infer an activity label for each individual
event. An event is defined as a maximum continuous period
of time during which the activity label is constant. Through
treating the block-level activity distribution as intermediate
information to form a real-valued multi-variable time series,
our algorithm follows a fuzzy temporal clustering approach
[10] to segment events. We use fuzzy sets to model events
and employ fuzzy event boundaries to handle the transition
effect. This procedure is called fuzzy event segmentation, as
depicted in Figure 1. To determine the activity category of
a segmented event, we introduce a new, optimization-based
method that incorporates summaries of all blocks contained
in the event to make the most appropriate decision. We name
this method event-level activity recognition.

In order to demonstrate the effectiveness of our FuzzySR
algorithm, we conduct extensive experiments using bench-
mark activity datasets that are widely used in the machine

vision community. In addition, we introduce a new dataset
collected in real-world scenarios that focus on human-robot
teaming. It can be difficult to identify the activities contained
in the new dataset without discovering temporal patterns and
segmenting the events. Our FuzzySR algorithm shows very
promising results over the used datasets.

The rest of the paper is structured as follows. After review-
ing related work in Section II, we discuss our fuzzy contin-
uous human activity segmentation and recognition approach
in Section III. Then, experimental results are presented in
Section IV. Finally, we conclude this paper in Section V.

II. RELATED WORK

Segmentation and recognition of continuous human activ-
ities is a research topic that involves several key techniques.
Previous works relating to this topic are reviewed in detail
in this section.

A. Activity Classification

A large number of studies in human activity recognition
focused on the problem of recognizing repetitive or punctual
activities, such as walking and kicking, from short, manually
partitioned visual data such as image sequences and videos,
which can be acquired from color or RGB-D cameras.

A most popular methodology to construct a vision-based
activity recognition system is based on the BoW model using
local spatio-temporal features [2]. Dollar et al. [6] extracted
such features using separable filters in both spatial and tem-
poral dimensions. Laptev et al. [11] detected spatio-temporal
features based on generalized Harris corner detectors. Other
local spatio-temporal features were also implemented based
on the extended Hessian saliency measure [12] and salient
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region detectors [13]. Furthermore, with the emergence of
color-depth cameras, such as Kinect, several recent works [8]
introduced local spatio-temporal features in 4D space, which
can incorporate color and depth information in videos.

Temporal structures of single activities contained in mutu-
ally segmented videos are also widely investigated in human
activity recognition. An early work [14] used Hidden Markov
Models (HMMs) to recognize human actions in a sequence
of images. Since this work, HMMs have been widely applied
to model temporal patterns of human activities [1]. Another
popular model to analyze temporal human activity variations
is Conditional Random Fields (CRF) [15]. Its extensions,
such as hidden CRFs [16], were widely used in recent years.
Several space-time activity recognition approaches were also
recently introduced based on relationship matching [17], or
spatio-temporal phrases [7].

These bag-of-word and temporal models focused on single
human activity recognition in partitioned videos. We address
a different task: segmentation and recognition of continuous
human activities in unsegmented videos.

B. Temporal Activity Segmentation

Automatic segmentation of complex continuous activities
is important, since human activities are always continuous in
real-world scenarios, which are characterized by a complex
temporal composition of single activities. Previous work on
temporal segmentation can be generally categorized into two
groups: change point detection and temporal clustering.

Change point detection has a long history in statistics and
machine learning. The earliest and best-known technique is
the CUSUM detector [18], which represents a time series as
piecewise segments of Gaussian mean with noise. In recent
years, change point detection has drawn increasing attention
to process visual data. For example, Zhai et al. [19] proposed
to employ change point detection to segment video scenes.
Change point detection was also used by Ranganathan [20]
to perform place categorization.

Temporal clustering [21] is another popular methodology
to segment continuous videos. Especially, several works used
temporal clustering to segment visual and motion data into
disjoint single-activity events that have hard boundaries [22],
[23]. Different from previous methods, we explicitly model
gradual transitions between temporally adjacent human ac-
tivities, following the clustering method proposed by Abonyi
et at. [10]. In addition, the time series used in our algorithm
is formulated in a new way by computing and concatenating
block-level human activity distributions.

III. OUR ALGORITHM

We describe our FuzzySR algorithm for fuzzy continuous
human activity segmentation and recognition in this section.
FuzzySR provides a general framework to identify complex,
continuous human activities from unsegmented videos with
gradual activity transitions. In addition, our FuzzySR algo-
rithm bridges the gap between the BoW model and temporal
activity segmentation. The idea of our algorithm is presented
in Figure 1.

A. Block-Level Activity Summarization

Input to our algorithm is an unsegmented video with each
frame encoded using the BoW representation based on local
spatio-temporal features. This input video W is temporally
partitioned into a sequence of blocks of equal length: W =
{w1,...,wp}, where B is the number of blocks. Each block
w;j, j =1...B,1is a set of discrete visual words computed
from local spatio-temporal features at time point ;.

Our algorithm applies a statistical topic model, i.e., Latent
Dirichlet Allocation (LDA) [9], to summarize human activity
information that is contained in each block. Given a block
w, LDA represents each of K activities as a multinomial
distribution of all possible visual words in the dictionary D.
This distribution is parameterized by ¢ ={@uw,;- - -, Puw p }>
where ¢,, is the probability that the word w is generated
by the activity. LDA also models each block w C W as a
collection of the visual words, and assumes that each word
w € w is associated with a latent activity assignment z. By
using these visual words to associate blocks with activities,
LDA models a block w as a multinomial distribution over
the activities, which is parameterized by 8 = {61,...,0k},
where 6} is the probability that w is generated by the kth
activity. The LDA model is a Bayesian model, which places
Dirichlet priors on the multinomial parameters: ¢ ~ Dir(3)
and 6 ~ Dir(a), where 8 = {Bu,,...,Bup } and a =
{a1,...,ak} are the concentration hyperparameters.

The objective in block-level activity summarization to is
to estimate 6, i.e., the per-block activity distribution. How-
ever, exact parameter estimation is generally intractable [9].
Gibbs sampling is a widely used technique to approximately
estimate LDA’s parameters, which is able to asymptotically
approach the correct distribution [24]. When Gibbs sampling
converges, each activity probability 0, €60, k=1,..., K, can
be estimated by:

ng + g
> (i + aq)’
where ny, is the number of times that a word is assigned to the
activity z = k in the block. When trained using labeled data,
semantics (i.e., known activity categories) can be associated
with the resulting clusters using the Hungarian method [25].
It is noteworthy that, although our discussion is based on the
benchmark LDA model, other sophisticated topic models are
also directly applicable to our approach.

After the per-block activity information is summarized for
all blocks within the video, a real-valued multi-variable time-
series can be formed: ® = {6, ...,0p}, which contains B
time-ordered summaries computed at time points t1,...,t3,
where 0;={0;1,...,0;k}",j=1,..., B, summarizes the
activity information contained in the jth block at time ¢;.

Or = (D

B. Fuzzy Event Discovery and Segmentation

Given a time series of block-level activity summaries, the
continuous human activity segmentation task is to seek a se-
quence of non-overlapping events e(t;—1,t;), i = 1,..., E,
where ¢; is the temporal boundary of an event that satisfies
to<ti1<...,<tg,and F is the number of events to segment.
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Fig. 2: Tllustration of modeling events using fuzzy sets that
have fuzzy boundaries. A transition always exists between
human activities in real-world scenarios. In the video, there
exists an transition (block 40-60) between writing-on-board
and answering-phone, and another transition (block 105-135)
occurs after it. Through solving the optimization problem in
Eq. (5), we can obtain the fuzzy segmentation results, which
are encoded by the fuzzy membership 3(¢) that is computed
using the Gaussian membership function A(t).

The segmentation task can be formulated as an optimization
problem. Following [10], the optimal event boundaries can
be determined through minimizing the sum of the individual
event’s cost:

E
g e i— 17
i=1

where dis(8;, v?) denotes the distance between the jth block
summary 6; and the mean v¢ of @ in the ith event (i.e., center
of the ith cluster), and f3;(t;) denotes the membership of the
jth block in the ith event. Typically, a hard membership is
used, which satisfies §3;(t;) = 1(¢; < t; < t;41), where 1()
is the indicator function.

However, transitions between temporally consecutive hu-
man activities are usually vague in the real-world scenario.
Consequently, changes of the time series that is formed by
block summaries do not suddenly occur at any particular time
point. Therefore, it is not practical to define hard boundaries
of the events and not appropriate to model gradual activity
transition using the hard membership.

To address the gradual transition issue, instead of defining
hard event boundaries, we model each event as a fuzzy set
with fuzzy boundaries, and assign the jth block with a fuzzy
membership 5;(t;) € [0, 1] to the ith event as follows:

o Add)
) = S )

where A;(t;) is the Gaussian membership function that is

defined as:
(t; —v})
2 ol)? > ’ @

where v! and (o?)? are the mean and variance of the ith block
in time dimension, respectively. Figure 2 illustrates our idea
of modeling events using fuzzy sets with fuzzy boundaries,
which also visualizes the fuzzy segmentation results.

To estimate v’ and (0%)? in order to divide a time series
into a sequence of events with fuzzy boundaries, a modified

cost

Zzﬁz

=1 j=1

- dis(8;, v; ) 2)

3)

Ai(t;) = exp <—

Gath-Geva (GG) clustering approach [10], [26] is employed.
Through adding time as a variable to each block summary,
ie., x =t, 0], the GG approach favors continuous clusters
in time. Assuming « conforms to the Gaussian distribution,
the optimization problem is defined as:

o . . E B .
b Dic1 2ojer My dis(zy, m;)
subject to SE wig=1 Y )
0<p;<1 Vi, j

where p; ; € [0,1] denotes the membership degree of x; to
the ¢th cluster parameterized by 7;, which is computed by:

1
Soi (dis(s, m;)/ dis(ay, my)) "
and m € (1, 00) denotes the weighting exponent that encodes
the fuzziness of the resulting clusters. A common choice of
the weighting exponent [10], [26] is m = 2. This value will
be used throughout this paper.

The distance function dis(x;,7n;) in Eq. (5) is defined
inversely proportional to the probability that x; belongs to
the ¢th cluster parameterized by 7,. Since the time variable
t is independent of the block summary 6, dis(z;,n;) can be
factorized as:

Wi = (6)

1 1
plajm)  aip(tylol, (of)2)p(8;|v!, %)
where «; = p(n,) is the prior probability of the ith cluster,
which satisfies Zle a; =1, and t; and 6, in the jth block
conform to the Gaussian distribution:
p(t;lof, (0f)?) = N(tj]vf, (0f)?)
p(6;]v), 57) = N'(6;;07, 7).

dis(;, ;) = ™

In order to estimate the parameter of each cluster, that is
n; = {ai, vl (04)2, 09, 2%}, i =1,..., E, the Expectation-
Maximization approach is applied to solve the optimization
problem in Eq. (5), leading to the following model parameter
along time dimension:

B B
ot = M7 (oh)? = D i1 kit —

g B m g B m
Z] 1 M4 5 Zj:l Hg

which can be used to compute the fuzzy membership £;(t;)
of the jth block in the ¢th event, as defined in Eq. (3).

C. Event-Level Activity Recognition

In this paper, a continuous video is uniformly divided into,
as well as represented by, a sequence of blocks. Accordingly,
an event can be defined as a maximum sequence of temporal-
ly distinct, contiguous blocks having specific start time, end
time, and a consistent activity label. The objective of event-
level activity recognition is to determine these parameters for
each event that contains a consistent activity.

To determine the start time and end time of an event that
are also boundaries of an activity, the general computational
principle “winner-take-all” is adopted to represent segmenta-
tion results corresponding to the fuzzy memberships. Given
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the fuzzy membership of the jth block, i.e., B; =
i=1,...,

[Bi(25)],
E, its segmentation result y; is computed by:
y; = argmax 3;(t;) )
i=1,...,.E
After the segmentation result is obtained for each block,
the activity label of an event is determined using summaries
of all blocks that are contained in the event. Mathematically,
given the sequence of block summaries ® = {64,...,05}
and segmentation results y = {y1,...,ys}, for each event
e;, 1 =1,..., F, the activity category z; is determined by
solving the following optimization problem:

0; 1 )
= arg max )-log ——"——]. (10)
Z ( Zs*l 0]',5

By computing the probab111t}¥ that the jth block belongs to
the kth activity, i.e., 0; / Z 0; s, our algorithm considers
the importance of each block in a probabilistic fashion to
decide the final activity label of an event. In our case, since
topic modeling is applied to summarize each block’s activity
information, Z j.s = 1, V7 is satisfied.

IV. EMPIRICAL STUDY

This section describes evaluation results of our FuzzySR
algorithm to fuzzily segment and classify continuous human
activities over three real-world datasets: KTH and Weizmann
datasets, and a newly collected dataset containing continuous
human activities, which is recorded using a color-depth
camera that is installed on a mobile robot. We run FuzzySR
on long video sequences to partition events and label each
event with an activity class. Then, we compare our FuzzySR
algorithm’s segmentation and recognition results with ground
truth and results provided by human estimators.

A. KTH Dataset

The KTH dataset contains 2391 video sequences that were
captured at 25 frames per second (FPS) with a resolution of
160x120. All video sequences were recorded using a static
camera in the environment with homogeneous backgrounds.
This dataset contains six human activities: walking, jogging,
running, boxing, hand waving, and hand clapping. Each
activity is performed by 25 human subjects in four different
scenarios: outdoors, outdoors with scale variation, outdoors
with different clothes, and indoors. Representative frames of
each activity are depicted in Figure 3.

F

Walking

Running Boxing

Waving

Jogging Clapping

Fig. 3: Representative frames of activities in KTH dataset.

Since the KTH dataset only contains manually segmented,
single-activity videos, to evaluate our method’s performance
of continuous human activity segmentation and recognition,
we generate blocks from existing videos in the dataset, and
then concatenate these blocks into long videos that contain
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(b) Fuzzy segmentation (encoded by the fuzzy membership score 5(t)).
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(c) Event-level activity recognition results and comparisons with ground
truth and results provided by human estimators.

Fig. 4: Experimental results of segmentation and recognition
of continuous activities from the KTH dataset. The test video
contains six events with instant transitions between activities.

continuous human activities. Specifically, we generate 500
blocks, each of which has a duration of five seconds and
contains 75 frames. We use 100 blocks (around 12—18 blocks
for each activity) to construct an LDA model for block-level
summarization, and the remaining 400 blocks for testing.
Following [11], we extract local spatio-temporal features
through detecting space-time interest points and describing
them using histogram of oriented gradients (HOG). Features
belonging to the same block are combined together. Then, a
dictionary of local spatio-temporal words with 400 clusters
are constructed using the k-means quantization. Using this
dictionary, features in each block can be converted to visual
words. Accordingly, each block is represented by the BoW
model, which serves as the input to our algorithm.
Experimental results over the KTH dataset are presented
in Figure 4. The time series of block-level human activity
summarization is illustrated in Figure 4a, which is obtained
by using the learned LDA model on the blocks in the video.
This observation demonstrates that the LDA model is capable
of summarizing block-level activity information. In addition,
it can be observed that activities with upper body motions
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(e.g., boxing, waving, and hand clapping) are easily confused
with each other. Similarly, activities with lower body motions
(e.g., walking, jogging, and running) are confused with each
other. Especially, jogging and running are not well separated,
because these two activities are extremely similar.

Based on the time series of block-level activity summariza-
tions, the fuzzy segmentation result obtained by our method
over the KTH dataset is graphically presented in Figure 4b.
It can be observed that each event is encoded by a fuzzy set
that has fuzzy boundaries. When a current activity is going to
transfer to a new activity, the fuzzy membership score (3(t)
of the current event decreases and simultaneously the new
event’s score increases. Furthermore, we observe that each
event obtains its maximum fuzzy membership score at the
center of a segment in the time dimension, and an activity
with a longer duration generally obtains a more confident
segmentation result with a greater fuzzy membership score.
These observations indicate our algorithm’s effectiveness to
model activity transitions and segment continuous activities.

The event-level continuous activity recognition result that
is obtained by our algorithm over the KTH dataset is shown
in Figure 4c. Our algorithm’s performance is also compared
with ground truth and results that are manually estimated by
human estimators, which are depicted in Figure 4c. It can be
observed that our algorithm well estimates the start and end
time points of the events in the test video, and the activity
contained in each event is correctly recognized. When the
concatenated video is presented to human estimators, due to
the clear, instant transition between temporally adjacent ac-
tivities, human estimators can perfectly recognize the events
and correctly classify the activities contained in each event,
as presented in Figure 4c.

B. Weizmann Dataset

The Weizmann dataset contains 93 segmented video clips
with a resolution of 180 x 144 and was captured at 25 FPS.
This dataset was recorded by a static camera in an outdoor
environment with a simple background. The dataset contains
ten activities that are performed by nine human subjects.
The full activity list is: walking, running, jumping, siding,
bending, one-hand waving, two-hands waving, jumping in
place, jacking, and skipping. Representative frames showing
these activities are depicted in Figure 5.

Walking Running Jumping Siding Bending

iy

Waving1 Waving2 P-jumping Jacking Skipping

Fig. 5: Exemplary frames of activities in Weizmann dataset.
Similar to our previous experimental settings, we generate

227 blocks using the existing video clips contained in the
Weizmann dataset. Each block has a duration of one second
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(a) Fuzzy segmentation (encoded by the fuzzy membership score 5(t)).
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(b) Event-level activity recognition results and comparisons with ground
truth and results provided by human estimators.

Fig. 6: Experimental results of segmentation and recognition
of continuous activities from the Weizmann dataset. The test
video contains twelve events with instant transitions between
temporally adjacent activities.

and contains 25 frames. Among the 227 blocks, we generate
a test video by concatenating 100 blocks, which contains
all ten activities. The test video contains twelve events and
each event contains at least five blocks. The remaining blocks
are employed to train the LDA model to summarize activity
information in each block. We represent each block as a bag
of visual words, which are computed by quantizing the local
spatio-temporal features [11] extracted from the block using
a dictionary of size 400.

Experimental results over the Weizmann dataset are graph-
ically presented in Figure 6. It can be observed from Figure
6a that our method is very effective to segment a long video
that contains continuous human activities into fuzzy events;
the fuzzy boundaries can well estimate the instant transition
between temporally adjacent activities. Figure 6b shows our
approach’s event-level human activity recognition results and
comparisons with ground truth and human estimations. Due
to the instant transition between human activities in the test
video, human estimators are able to accurately segment the
test video and correctly label the activity contained in each
event. In addition, it can be observed that, based on the fuzzy
event membership score, our FuzzySR achieves comparable
segmentation results, and the activity contained in each event
is correctly recognized.

C. Continuous Activity Dataset

In real-world scenarios, transitions always exist between
temporally adjacent activities. Although the benchmark KTH
and Weizmann datasets can be used to generate long videos,
activity transitions in the concatenated video are assumed to
occur instantly, which is contradictory to the actual situation.
Therefore, a continuous activity dataset is needed to demon-
strate our algorithm’s effectiveness to model gradual activity
transitions in real-world scenarios.

To the best of our knowledge, there are no publicly avail-
able labeled video datasets adequate to evaluate continuous
human activity recognition systems. Due to the lack of such
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Fig. 7: Setup of our experiments using the newly collected continuous human activity dataset. The Microsoft Kinect color-
depth camera is installed on a Pioneer 3DX mobile robot (Figure 7a). Our dataset represents continuous human activities
in 3D space (Figure 7b), which contains both depth (Figure 7c) and color (Figure 7d) information. The extracted 4D local
spatio-temporal features [8] are also illustrated on the color image (Figure 7d).

a dataset, we collect a new one using the Microsoft Kinect
color-depth camera that is installed on a Pioneer 3DX mobile
robot, as shown in Figure 7a. The dataset contains five color-
depth videos. Each video has a duration of around 15 minutes
and is recorded at 15 FPS with a resolution of 640x480.
Each color-depth video contains a sequence of continuous
human activities that are performed in a natural way in 3D
space. For example, Figure 7 illustrates the 3D view along
with its color and depth images of an activity in our newly
collected 3D human activity dataset.

Our dataset is collected in the scenario of a small gift store,
in which the human actor plays a role of the store owner and
performs a sequence of activities related to customer service.
A robot is used to operate in the same environment to help
the human improve productivity. During the experiment, the
robot is assumed to stay in an observing state without any
movements. The tasks that the store owner needs to accom-
plish include posting information and receiving messages
on the internet, answering phone calls from customers and
suppliers, writing inventory information on a white board,
and preparing packages for customers. In this scenario, six
activities are designed, as illustrated in Figure 8:

o Grab box: grab an empty box from the storage area on
the right side and bring it to the packing area;
o Pack box: put required items into the box in the packing
area in the center;
o Push box: push the packed box from the packing area
to the delivery area in the far left corner;
o Use computer: operate a computer in the center area;
o Write on board: write notes on a board on the right side;
o Answer phone: answer phone calls on the left side.
We extract 600 blocks, i.e., 100 blocks for each activity,
from five long videos to learn the LDA model for block-level
activity summarization. We represent each block as a bag of
visual words, which are computed by quantizing the 4D local
spatio-temporal features [8] extracted from the block using a
dictionary of size 400. The 4D features encode variations in
spatial and temporal dimensions, and incorporate both color
and depth information. For example, the extracted features
for the grabbing box activity are shown in Figure 7d.
Experimental results over a color-depth video that contains

X ﬁ-: I 5 J o3
W G e
‘

K

1=25675
Use computer

Answer phone

Fig. 8: Typical sequences of the continuous human activities
in our dataset. Execution time is labeled under each frame
to emphasize the difference in activity durations. In contrast
to previous datasets, gradual transitions exist between tem-
porally adjacent activities in our dataset.

six events are depicted in Figure 9. It can be observed from
Figure 9a that the test color-depth video is well segmented
by our algorithm, which is able to model gradual transitions
between temporally adjacent activities. By encoding events
as fuzzy sets, our algorithm well estimates the membership of
each block. When a block appears in the center of an event,
it has a high membership score. If a block approaches to
the end of the current event, its membership score decreases.
Blocks located in transitions generally have low membership
scores for the ongoing event and the new event.

The continuous human activity recognition result over our
dataset is presented in Figure 9b. It can be observed that,
with the presence of gradual transitions between activities,
our FuzzySR algorithm is still able to correctly recognize
continuous activities and well estimate event boundaries.
In this experiment, ground truth is provided by the human
actor who performs these activities. Transitions between
temporally adjacent activities are explicitly labeled in the
ground truth, as shown in Figure 9b. For comparison, we
invited five human estimators to segment and recognize the
continuous activities contained in the test video. Without
knowing the number of activities, human estimators clustered
the activities into 4, 4, 5, 6 and 44 categories, which indicates
a strong ambiguity on the definitions of the activities in our
dataset. Given the number of activities, human estimators
correctly recognized the activities. On the other hand, with
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(a) Fuzzy segmentation (encoded by the fuzzy membership score 3(t)).
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(b) Event-level activity recognition results and comparisons with ground truth
and results provided by human estimators. The white spaces in the ground truth

denote transitions between activities.

Fig. 9: Experimental results of segmentation and recognition
of continuous activities using our continuous activity dataset.
The test color-depth video contains six events with gradual
transitions between temporally adjacent activities.

the presence of gradual transitions, human evaluators may
have difficulty precisely labeling each event’s boundaries.
These phenomena can be seen in Figure 9b. Comparing
with human estimations, our FuzzySR algorithm achieves
comparable segmentation and recognition results over this
activity dataset, as demonstrated in Figure 9b.

V. SUMMARY

We propose the FuzzySR algorithm to perform continuous
human activity segmentation and recognition. Given a video
containing continuous activities, after uniformly partitioning
the video into blocks, our algorithm computes the activity
distribution of each block through mapping high-dimensional
discrete feature space to real-valued activity space. Then, the
summaries are used to form a multi-variable time series, and
fuzzy temporal clustering is used to segment events. Lastly,
our algorithm incorporates all block summaries contained in
an event and solves an optimization problem to determine
the most appropriate activity label for each event. Our main
contributions are twofold:

o We bridge the gap between bag-of-word models based
on local spatio-temporal features and continuous human
activity segmentation problems;

o We explicitly model gradual transitions between tempo-
rally adjacent human activities.

Extensive experiments using real-world datasets demonstrate
our FuzzySR algorithm’s satisfactory performance on contin-
uous activity segmentation and recognition, which can allow
an autonomous robot to interpret human activities in real-
world scenarios.
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