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Abstract— We present a framework for quadrupedal lo-
comotion over highly challenging terrain where the choice
of appropriate footholds is crucial for the success of the
behaviour. We use a path planning approach which shares many
similarities with the results of the DARPA Learning Locomotion
challenge and extend it to allow more flexibility and increased
robustness. During execution we incorporate an on-line force-
based foothold adaptation mechanism that updates the planned
motion according to the perceived state of the environment.
This way we exploit the active compliance of our system to
smoothly interact with the environment, even when this is
inaccurately perceived or dynamically changing, and update
the planned path on-the-fly. In tandem we use a virtual model
controller that provides the feed-forward torques that allow
increased accuracy together with highly compliant behaviour
on an otherwise naturally very stiff robotic system. We leverage
the full set of benefits that a high performance torque controlled
quadruped robot can provide and demonstrate the flexibility
and robustness of our approach on a set of experimental trials
of increasing difficulty.

I. INTRODUCTION

The ability to move from one place to another is one
of the most basic and important skills in nature. Although
wheels offer great efficiency they are not suited for crossing
highly unstructured and challenging terrain. Nature shows
that legged locomotion has far more potential in these areas
in terms of agility and performance.

This paper presents the newest development in a stream of
research that aims to increase the autonomy and flexibility of
legged robots in unstructured and irregular environments. We
present a framework for quadrupedal locomotion over highly
challenging terrain where the choice of appropriate footholds
by the robot is crucial for the success of the behaviour.
In addition, our approach combines a virtual model based
controller that guarantees the overall compliant behaviour of
the system while also maintaining a high level of accuracy
in trajectory execution.

The evaluation of our approach is done on the hydrauli-
cally actuated quadruped robot HyQ [1], shown in Fig.
1. With the framework presented in this paper, HyQ is
able to cope with unperceived obstacles, traverse highly
irregular terrain, walk over 15 cm pallets and climb stairs.
This performance is achieved by global evaluation of the
terrain, planning of appropriate footholds and robust exe-
cution of these steps. In addition, force-based feedback is
used to detect early or no contact of the swing-leg and

email: alexander.w.winkler@gmail.com, ruediger.dillmann@kit.edu,
{ioannis.havoutis, stephane.bazeille, jesus.ortiz, michele.focchi,
darwin.caldwell, claudio.semini}@iit.it.

Fig. 1. The hydraulically actuated and fully torque controlled quadruped
robot HyQ. Here shown during an experimental trial where it steps onto a
structure that consists of two 0.15m high pallets.

update the planned motion on-the-fly. This allows us to
execute the planned motions even in inaccurately perceived
or dynamically changing environments.

We present experimental trials on a set of environments
with increasing difficulty. We use real maps of the environ-
ment that are created offline. The environment is changed
during trials to underline that our framework is robust to
such dynamic changes. We experiment on flat ground with
unperceived obstacles, on crossing a gap with distinct step-
ping stones where we purposely remove one of the stepping
stones, and on climbing one and two pallets. Note that the
height of one pallet is 15 cm, that is 20% of the leg length
of HyQ fully stretched.

Our contributions include online replanning of motions
based on sensed contact forces, a virtual model controller
for a fully torque controlled quadruped robot with on-board
state estimation for accurate but compliant robot behaviour,
and on-the-fly adaptation of swing-leg trajectories.

The rest of the paper is structured as follows. In Section II
we discuss related work on robotic legged locomotion. Sec-
tion III describes the different steps that generate the initial
plan for the robot to follow. Section IV describes the adaptive
execution of the plan, the local plan updating based on force-
feedback, the estimated robot state, and the virtual model
controller employed by our approach. Section V evaluates
our approach in real world experimental trials. In Section VI
we conclude and present ideas for future work.



II. RELATED WORK

Statically stable walking, keeping the robots’s center of
gravity (CoG) inside the polygon formed by its supporting
feet, was first identified by Muybridge [2] and mathemati-
cally evaluated by McGhee and Frank [3]. This work was
extended to facilitate walking over irregular terrain [4].

In environments where smooth, continuous support is
available (flats, fields, roads, etc.), where exact foot place-
ment is not crucial for the success of the behaviour, legged
systems can utilize a variety of more dynamic gaits, e.g.
trotting, galloping. Marc Raibert studied the principles of
locomotion and dynamic balancing with legged robots [5].
The quadruped BigDog and LS3 are a recent extension of
his work. While BigDog is able to traverse irregular terrain
using a reactive controller, the footholds are not planned
in advance. Similar performance can be seen on HyQ, that
is able to overcome obstacles through reactive control [6],
[7] or reflexes [8]. For more complex environments, with
obstacles like large gaps or stairs, such systems quickly reach
their limits as a higher level movement planning process that
takes the environment into account is required.

In terrain with only a few possible discrete footholds, e.g.
steps, stairs, cluttered rooms, legged robots can employ a
range of typically non-gaited static or quasi-static locomotion
strategies that rely more on accurate foothold planning,
and consequentially on features of the terrain. The DARPA
Learning Locomotion Challenge excelled the development of
footstep planning over rough terrain. It resulted in a number
of successful control architectures [9], [10], [11], [12], [13],
[14] to plan and execute footsteps to traverse challenging
terrain. Rebula et al. [9] avoids global footstep planning by
simply choosing the next best reachable foothold. This can
cause the robot to locally navigate into an unsurmountable
obstacle. To avoid this, some controllers [15], [13] globally
plan the complete footsteps from start to goal, though in
this case time consuming replanning is necessary in case of
slippage or deviation from the planned path. The approach
in [12] stands between the two above mentioned methods
and plans a global rough body path to avoid local minima,
but the specific footholds are chosen only a few steps in
advance. This reduces the necessary time for replanning in
case of slippage, while still considering a locally optimal
plan. Pongas et al. [10] focused mainly on generating a
smooth CoG trajectory independent of the foothold pattern.
Previously we have experimented with coupling on-board
perception with a trotting controller and a simplistic crawl
gait controller [16].

Our approach has many similarities to the above men-
tioned work by Kolter et al. [11] and Rebula et al. [9].
The latter has the most in common with our approach. At
this point we also wish to highlight that we do not make
use of any external state measuring system, e.g. a Vicon
marker-based tracker system commonly used in many of the
aforementioned approaches.

III. INITIAL PLANNING

The complex task of planning and executing a path
from a start to a goal position is divided into a set of
different solvable sub tasks (Fig. 2). A stance F is a tuple
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Fig. 2. An overview of the entire framework for quadrupedal path planning
and execution over rough and irregular terrain.

(flf , frf , flh, frh) of four feet locations f ∈ R3 in the
world frame – left-front, right-front, left-hind, right-hind
respectively. A state s includes a stance F , the position and
orientation of the robot body Xb in the world frame and the
swing-leg1 l as

s = {F , Xb, l}. (1)

The goal of the initial planning is to find a sequence S of
robot states s from start to goal as

S = (si)
n
i=0 = (s0, s1, . . . , sn), (2)

where si ∈ S describes the ith state in the sequence
and n the total number of steps necessary to cross the
terrain. This sequence S is then reactively executed by the
controller described in Section IV. The different modules of
the initial planning architecture are described in the following
subsections.

A. Vision Task

Accurate perception of the environment is important for
path planning. We use a real map of the environment that is
generated offline using a Microsoft Kinect sensor and the
KinectFusion [17] algorithm (Fig. 3). The point cloud is
converted to a discretized height map (cell resolution: 1 cm)
and given to the terrain cost generation module. At this point
online perception and map building is part of ongoing work
that comes close to our line of research, but is beyond the
scope of this paper.

1The swing-leg is a number between 1 and 4 referring to the leg to swing
to reach state s.



B. Terrain Cost Generator
As in [11] the terrain cost generator creates a terrain cost

map from the height map, where the terrain cost ct reflects
how desirable it is to place a foot at a specific location.
To create this terrain cost map we choose the following
characteristics, also called features, that affect the quality
of a foothold:

1) standard deviation of the heights around the cell
2) highest cell in an area in front of the evaluated cell
3) highest cell in an area behind the evaluated cell
4) estimated slope through regression
5) estimated curvature through regression

These 5 features are calculated on 3 different scales as done
in [11], [19] to generate a cost vector cc ∈ R15 for each
cell. The individual costs in this cost vector cc are weighed
by a weight vector2 w1 ∈ R15 to produce the terrain cost
ct = wT

1 cc for each cell. A high terrain cost ct implies that
this is not a good foothold to choose, based on the terrain
characteristics.

C. Body Path Planner
Next we use the terrain cost map to calculate a body cost

map that reflects how desirable it is for the CoG of the robot
to be at that position. The cheapest path through this body
cost map leads the robot through regions of good footholds.
This reduces the search area for the foothold selection and
decreases the computational load.

The body cost for each cell cb is calculated from

cb = w21c̄t + w22cgoal + w23ĉroll,pitch. (3)

with the weight factors2 w2. The first cost value c̄t is
the previously calculated terrain cost averaged over an area
around each of the four footholds in nominal stance3 [11].
In our approach we added a goal deviation cost cgoal, which
gives a low cost to cells that are closer to the direct line
from start to goal. A large weight factor w22 will cause the
robot to walk in a straight line towards the goal, paying
no attention to possibly difficult regions of the terrain. The
second difference to previous work is the estimated roll and
pitch cost ĉroll,pitch. It estimates the average terrain height

2All weight factors w were experimentally tuned and slightly adjusted
according to the desired robot behaviour and terrain.

3The nominal stance is a fixed joint configuration that creates a “natural”
stance of the robot. Fig. 4 shows a simplified representation of the robot in
nominal stance (grey).

Fig. 3. Maps generated by a the KinectFusion algorithm displayed in the
simulation environment SL [18], highlighting the planned footholds. Left:
the map of the gap with the stepping stones, right: the map with the single
pallet.
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Fig. 4. The robot in nominal stance (grey) with the foothold search area
(green and blue squares) for each leg. The gray dotted line shows the
body path as previously planned. (a) The best foothold (red x) around each
nominal footholds is chosen in order of the gait sequence; (b) the virtual
CoG is moved by a step-length d and the next 4 best footholds inside the
blue search areas are chosen.

in an area below the left feet compared to the right feet. A
big difference will most likely cause the robot to have a large
roll angle to compensate for this difference, which decreases
the stability of the stance. The same estimation is done for
the pitch using the average terrain height below the front and
hind legs. Finally we use Dijkstra’s search algorithm [20] to
find the path with the lowest total body costs cb through this
map. We can use Dijkstra here since we are not limited by
the time taken by the search, i.e. the robot is allowed to plan
the path as long as it takes before executing the first step.
In practice more efficient search approaches such as A*, D*,
D*lite, etc, can be used.

D. Footstep Planner
The footstep planner searches for specific footholds that

roughly guide the robot along the previously planned body
path (see Fig. 4). As described by [11] the 4 nominal
footholds corresponding to a virtual CoG position on the
planned body path are calculated. In each area around these
nominal footholds the foothold with the lowest foothold cost
cf is chosen. After the best 4 footholds are chosen in a
specific swing-leg sequence, the virtual CoG is moved by
the step-length d and the procedure is repeated.

The foothold cost cf used to choose a specific foothold is
calculated from

cf = w31ct + w32cbias + w33csupp + w34croll,pitch, (4)

with the weight factors2 w3. The terrain cost ct was previ-
ously calculated by the terrain cost generator. The bias cost
cbias ensures that the robot chooses footholds based on the
planned body path by assigning the lowest cost to the center
of each search area.

We built on this approach by including a support triangle
cost csupp which is based on the size of the support triangle4

if this foothold is chosen. A larger support triangle leaves
more flexibility to position the CoG in a statically stable
way. We also added a roll and pitch cost croll,pitch to the
foothold cost. Compared to the estimated roll and pitch cost

4The triangle formed by the location of the stance feet. For static stability
the CoG must always be inside this triangle.



ĉroll,pitch in the body path finder, this cost knows the precise
location of the chosen footholds and calculates the height
difference and score based on these. Our additional costs
greatly improve the quality of the chosen footholds, since
they “plan ahead” according to which stances F are statically
executable. Stances that are difficult to execute are eliminated
early in the planning process, which reduces the complexity
to find a suitable body position and orientation later on.

Our approach also allows deviation from a specific swing-
leg sequence to allow more flexibility in foot placement and
greatly increase locomotion speed. When attempting a long
step with a front leg, it is better to first move the hind
legs close to the front legs. This avoids the hind legs being
overextended while swinging the front leg. Another reason
to change the swing-leg sequence is to always use and create
the biggest possible support triangles. After the foothold with
the lowest foothold cost cf is determined, our planner checks
the swing distance to this foothold. If this distance is smaller
than a threshold (e.g. 5 cm), moving this foot has little or no
advantage for the robot in relationship to the effort and time
the step takes. In this case the planner skips this step and
the next leg in the cycle is evaluated.

E. Body Pose Finder
As mentioned earlier we are searching for a sequence S

of states s from start to goal. At this point a sequence
of stances F and the corresponding swing-leg l have been
found. The body pose finder creates intermediate states for
static stability and plans the optimal body pose Xb for each
state.

An intermediate state si→(i+1) is inserted between every
state in S as

S = (si)
n
i=0 = (s0, s0→1, s1, s1→2, . . . , sn), (5)

that moves the CoG into the current support triangle so the
robot is statically stable when executing the next step. The
CoG is moved between the center of the support triangle and
the average position of the feet in the next stance. Moving the
CoG towards the next stance limits backward motion of the
CoG. The planner checks if the calculated CoG is inside the
support triangle, reduced by a safety margin to account for
inaccuracies in execution, and re-plans more conservatively
if necessary. Similar to [11] we choose the vertical position
of the body based on the height of the feet raised by a desired
body height. The pitch of the body is based on the height
difference between the front and the hind feet. We improve
on this concept by adjusting the roll depending on the height
difference between the left and the right feet.

IV. PATH UPDATING, RE-PLANNING AND CONTROL

After the initial plan has been generated, the sequence of
states is executed. In our approach we combine the initial
plan with a number of online elements that are crucial
to the success of the behaviour. An open-loop execution
of the initial plan is doomed to failure due to a number
of factors, such as the robot being (desirably) compliant,
incomplete or inaccurate knowledge of the environment and
foot slippage. Though in short movements such nuisances
can be neglected, our aim is to use our platform in large
scale environments where errors from the aforementioned
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Fig. 5. Detailed view of the controller that executes the initial plan. The
controller compliantly executes, updates and re-plans the initial plan on-the-
fly.

factors quickly accumulate. Our approach combines online
feet trajectory generation, a force-based foothold adaptation
method and a virtual model controller that, alongside the
very-low gain PD controller at the joint level, keep the robot
highly compliant and the overall behaviour highly accurate.

A. Trajectory Generator

The trajectory generator interpolates the states in S at a
rate of 250 Hz and uses inverse kinematics to map these
interpolated Cartesian states to desired joint states qdes ∈
R12. While the position and orientation of the body Xb

are simply interpolated between two states s, the swing-
leg must be “consciously” raised and lowered. Based on
the current position of the leg and the desired position, an
optimal swing-leg trajectory is generated online. For steps
on flat ground the height of the swing is low to increase
accuracy and speed of execution. If the desired foothold lies
higher than 10% of the leg length, a trajectory is generated
that swings the leg outward. This motion allows the robot
to step onto obstacles that it would otherwise collide with
(stumble) due to joint range limitations while swinging up.
Adjusting the roll and pitch of the robot while swinging
a leg creates whole body motions that greatly increase the
kinematic reachability. This allows us to execute swing-leg
trajectories and stances that are otherwise not possible (see
Fig. 8). The time to execute these trajectories depends on
the travel distance. Short motions are assigned less time to
achieve optimal performance.

B. Force-based Foothold Adaptation and Plan Update

The execution of a motion can never be absolutely accurate
and the environment can never be perfectly known. Because
of this the robot may collide with the environment before or
after the expected contact. Although the active compliance
limits the effect of such unexpected contacts and ensures



Mx, My, Mz

Fx, Fy, Fz

Fig. 6. The virtual elements used to calculate forces and moments around
the trunk of the robot. The virtual forces and moments are transformed to
forces at the feet and subsequently to feedforward torques for the legs that
are in stance.

a smooth interaction with the environment, the robot is still
not aware that his foot is now higher or lower than expected.
This is likely to cause the robot to fail to execute its desired
motion in future steps.

To avoid such difficulties, online force feedback detects
the contact condition of the swing-leg. This is done by
computing the force at the foot, using the load and torque
sensors of each of the robot’s joints and the leg Jacobian
of the current leg state. If early contact is detected the
swing is stopped and the subsequent states are re-planned
so that the haptically sensed difference is reflected in the
robot’s perception of the environment. The controller re-
plans the optimal CoG positions, orientations and swing-leg
trajectories on the fly. This enables the robot to continue
the initial sequence in spite of unperceived obstacles up to
20% of its leg length. In the opposite case, if no forces
are sensed after the swing has been completed, then the
target foothold is lowered by 2 cm and the swing time is
prolonged until the robot “feels” the ground. This haptic
force feedback makes our approach very robust to perception
inaccuracies and contributes greatly to the overall stability of
the locomotion behaviour.

C. Virtual Model
As outlined before, we aim for a highly compliant be-

haviour of our system in order to naturally cope with the
environment and estimation inaccuracies. Nonetheless we re-
quire very precise foothold landing, something crucial for the
overall success for the behaviour. We follow a virtual model
control approach similar to [21]. We calculate virtual forces
(Fx, Fy , Fz) and moments (Mx, My , Mz) according to a
desired state and the current state of the system (Fig. 6). The
current state of the system is computed with the approach of
[22], without the use of any external sensing (e.g. a VICON
motion capture system). The desired state on the other hand
is planned and re-planned/updated according to the current
situation, e.g. force-based foothold adaptation. The virtual
forces and moments are then transformed to forces fi that
the feet in contact need to apply. Theses forces can be
optimized over with a number of methods. In our case we
use a least squares optimization that provides the least norm
solution, i.e. the minimum force solution. The feet forces are
subsequently mapped to feedforward torques τff (Fig. 7) for

the joint actuators of the legs that are in stance, using the
Jacobian of the system’s current state. Formally this is done
by

τff = JT f , (6)

where f is the vector of (linear) forces that each foot in stance
needs to apply to emulate the virtual model behaviour, and
J is the Jacobian of the legs that are in contact. We wish
to underline here that without the virtual model controller,
successful execution of the planned motions is impossible.

D. PD Controller
We use a PD controller with very low feedback gains for

all joints of the robot, as we are aiming at a very compliant
behaviour, something important for smooth interaction with
the environment. This is the joint level controller that runs
on a 1 kHz control loop (Fig. 5). Note that the leg in swing
phase is controlled only through this loop as the virtual
model produces torque inputs only for the legs in stance.
The feedback torque τfb that the PD control loop provides
is generally very small in comparison to the feed-forward
control input that comes from the virtual model. Fig. 7 is an
illustrative example of this hybrid control setup, where the
virtual model torque accounts for most of the control input.

V. EXPERIMENTAL RESULTS

The following section describes the experiments conducted
to validate the performance of our controller and the obtained
results.

A. Experimental Setup
For each of our experiments, we only give the robot the

x,y-coordinates of the goal in front of it. We validate the
performance of our framework in 4 different scenarios as
seen in Fig. 8. In the first experiment the robot plans a
path for flat, obstacle-free terrain. Unperceived by the robot,
random obstacles are then placed in the robot’s path. The
second experiment consist of two pallets connected by a
sparse path of stepping stones. The pallets are 1.2 m apart
and the stepping stones lie 0.08 m lower than the pallets.
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Fig. 8. Snapshots of the 4 experimental trials used to evaluate the performance of our framework. From top to bottom: flat ground with random, unperceived
obstacles; crossing over stepping stones while the highlighted stone was removed during the trial; climbing over a 15 cm tall pallet; climbing a stair-like
structure consisting of two stacked pallets.

Unperceived by the robot, a set of two stepping stones is
removed after the front legs have used this foothold. In the
third experiment the robot must climb over a pallet with
dimensions 1.2 m × 0.8 m × 0.15 m. In the last experiment
the robot must climb up two stacked pallets. The height of
each pallet is 0.15 m (20% of the leg length) and the offset
of the pallets is 0.4 m.

B. Results and Discussion

The first experiment shows the ability of our controller
to overcome unperceived obstacles. If the force feedback
senses unexpected contact with an obstacle the swing-leg
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with respect to its starting position while crossing the stepping stones trial
environment. Top: the height of the robot’s body. Bottom: the top-down view
of the robot’s position. Red crosses represent the chosen footholds, green
lines represent the planned path (reference) and blue lines represent the state
estimate that combines the IMU with the legged odometry. Note that the
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sequence is terminated. The force feedback senses the wood
and the stone and terminates the swing-leg sequence. Fol-
lowing this, the orientation of the body is replanned to
maximise kinematic reachability. Although our approach is
robust to adapting to unknown terrain, scenarios where the
foot initially touches down but slips after a few seconds are
difficult to detect, since the force feedback is used only for
detecting contact of the swing-leg and does not affect the
legs in stance (see Table I).

In the second experiment our controller demonstrates the
ability to overcome irregular terrain. The deviation from
the standard swing-leg sequence is crucial to traverse these
stepping stones. Additionally, we remove one stepping stone
during the experiment, which causes the robot to slowly
“feel” for contact moving the foot down. Even after deviating
8 cm from the planned foothold, the robot is able to locally
re-plan its motion and successfully cross the terrain. While
our framework is able to adapt to complete misses in
footholds, a contact followed by a slip or a tipping stepping
stone has proven difficult to handle. The performance of the
on-board state estimation for this trial can be seen in Fig.9.

In the third experiment whole body motions are crucial to

TABLE I
RESULTS AVERAGED OVER 10 TRIALS PER SETUP

Terrain Success rate Avg. Speed (cm/s)

Flat Ground 80% 1.83
Stepping Stones 70% 1.70
Pallet 90% 2.11
Two Pallets 80% 1.76



overcoming the pallet. Motions like crouching down before
stepping off the pallet are necessary to increase the kinematic
reachability and succeed in crossing this terrain. Due to the
joint limits it is difficult to raise the leg near vertically when
stepping onto the pallet. The adaptive swing-leg trajectory,
causing the outward swing motion, greatly improved the
performance of our system (see Table I).

The fourth experiment, similar to the previous one, shows
the robot at even more pronounced pitch angles. The in-
creased difficulty in this experiment comes from the fact that
the robot needs to simultaneously step on the ground, the first
step and the top pallet in order to successful complete the
trial. Again, whole body motions are key, as the reach of the
robot needs to be maximized. Failures to cross the terrain in
this and the previous setup are due to the insufficient joint
torques the robot can supply in extreme joint configurations,
due to the diminishing lever arm close to joint limits.

The success rates of the aforementioned experimental
trials can be seen in Table . I and provide substantial
evidence of the robustness of our path planning and control
framework. Additionally, the reader is strongly encouraged to
view the accompanying video as it provides the most intuitive
way to demonstrate the performance of our framework.

VI. CONCLUSION

We presented a framework for quadrupedal locomotion
over highly challenging terrain where the choice of appropri-
ate footholds is crucial for the success of the behaviour. We
showed how a body path and the footholds are planned and
how the planned motions are robustly executed. To do so, we
explained the benefits of a force-based foothold adaptation
method and the subsequent plan update. We presented the
use of a virtual model controller that ensures the overall
compliance of the system when interacting with the environ-
ment, while also providing highly accurate motion execution.
We evaluated our approach on a number of experimental
trials of increasing difficulty with irregular, structured and
unstructured terrains. Our framework has proven effective in
surpassing highly challenging terrains and robust to inaccu-
rately perceived and dynamically changing environments.

In the future we aim to extend our planning and control
framework to handle dynamically planned motions, where
the planner will rely on dynamic models of the robot, e.g.
table-cart or inverted pendulum, to produce more natural
and animal like motions. We also aim to extend our virtual
model controller to include more information in the opti-
mization step, such as the torque limits/capabilities of the
joint actuators and information about the feet contacts, e.g.
surface norms and estimated friction coefficients. In addition,
another part of our group is currently working on on-line
map building and localization, something that will allow our
framework to autonomously locomote past any traversable
terrain.
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