Loading [a11y]/accessibility-menu.js
Improving Underwater Vehicle navigation state estimation using Locally Weighted Projection Regression | IEEE Conference Publication | IEEE Xplore
Scheduled Maintenance: On Monday, 27 January, the IEEE Xplore Author Profile management portal will undergo scheduled maintenance from 9:00-11:00 AM ET (1400-1600 UTC). During this time, access to the portal will be unavailable. We apologize for any inconvenience.

Improving Underwater Vehicle navigation state estimation using Locally Weighted Projection Regression


Abstract:

Navigation is instrumental in the successful deployment of Autonomous Underwater Vehicles (AUVs). Sensor hardware is installed on AUVs to support navigational accuracy. S...Show More

Abstract:

Navigation is instrumental in the successful deployment of Autonomous Underwater Vehicles (AUVs). Sensor hardware is installed on AUVs to support navigational accuracy. Sensors, however, may fail during deployment, thereby jeopardizing the mission. This work proposes a solution, based on an adaptive dynamic model, to accurately predict the navigation of the AUV. A hydrodynamic model, derived from simple laws of physics, is integrated with a powerful non-parametric regression method. The incremental regression method, namely the Locally Weighted Projection Regression (LWPR), is used to compensate for un-modeled dynamics, as well as for possible changes in the operating conditions of the vehicle. The augmented hydrodynamic model is used within an Extended Kalman Filter, to provide optimal estimations of the AUV's position and orientation. Experimental results demonstrate an overall improvement in the prediction of the vehicle's acceleration and velocity.
Date of Conference: 31 May 2014 - 07 June 2014
Date Added to IEEE Xplore: 29 September 2014
Electronic ISBN:978-1-4799-3685-4
Print ISSN: 1050-4729
Conference Location: Hong Kong, China

References

References is not available for this document.