
Pareto efficiency in synthesizing shared autonomy policies with
temporal logic constraints

Jie Fu and Ufuk Topcu1

Abstract— In systems in which control authority is shared
by an autonomous controller and a human operator, it is
important to find solutions that achieve a desirable system
performance with a reasonable workload for the human
operator. We formulate a shared autonomy system capable
of capturing the interaction and switching control between
an autonomous controller and a human operator, as well as
the evolution of the operator’s cognitive state during control
execution. To trade-off human’s effort and the performance
level, e.g., measured by the probability of satisfying the
underlying temporal logic specification, a two-stage policy
synthesis algorithm is proposed for generating Pareto efficient
coordination and control policies with respect to user specified
weights. We integrate the Tchebychev scalarization method
for multi-objective optimization methods to obtain a better
coverage of the set of Pareto efficient solutions than linear
scalarization methods.

I. INTRODUCTION

Despite the rapid progress in designing fully autonomous
systems, many systems still require human’s expertise to
handle tasks which autonomous controllers cannot handle or
which they have poor performance. Therefore, shared auton-
omy systems have been developed to bridge the gap between
fully autonomous and fully human operated systems. In this
paper, we examine a class of shared autonomy systems,
featured by switching control between a human operator
and an autonomous controller to collectively achieve a given
control objective. Examples of such shared autonomy sys-
tems include robotic mobile manipulation [1], remote tele-
operated mobile robots [2], human-in-the-loop autonomous
driving vehicle [3], [4]. In particular, we consider control
under temporal logic specifications.

One major challenge for designing shared autonomy
policies under temporal logic specifications is making trade-
offs between two possibly competing objectives: Achieving
the optimal performance for satisfying temporal logic con-
straints and minimizing human’s effort. Moreover, human’s
cognition is an inseparable factor in synthesizing shared
autonomy systems since it directly influences human’s per-
formance, for example, a human may have limited time span
of attention and possible delays in response to a request.
Although finding an accurate model of human cognition
is an ongoing challenging topic within cognitive science,
Markov models have been proposed to model and predict

This work is supported by AFOSR grant # FA9550-12-1-0302, ONR
grant # N000141310778, and NSF CNS award # 1446479.

1Jie Fu and Ufuk Topcu are with the Department of Electrical and
Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104,
USA jief, utopcu@seas.upenn.edu

human behaviors in various decision making tasks [5]–[7].
Adopting this modeling paradigm for human’s cognition, we
propose a formalism for shared autonomy systems capturing
three important components: The operator, the autonomous
controller and the cognitive model of the human operator,
into a stochastic shared-autonomy system. Precisely, the
three components includes a Markov model representing
the fully-autonomous system, a Markov model for the fully
human-operated system, and a Markov model representing
the evolution of human’s cognitive states under requests
from autonomous controller to human, or other external
events. The uncertainty in the composed system comes from
the stochastic nature of the underlying dynamical system
and its environment as well as the inherent uncertainty in
the operator’s cognition. Switching from the autonomous
controller to the operator can occur only at a particular set
of human’s cognitive states, influenced by requests from the
autonomous controller to the operator, such as, pay more
attention, be prepared for a possible future control action.

Under this mathematical formulation, we transform the
problem of synthesizing a shared autonomy policy that
coordinates the operator and the autonomous controller
into solving a multi-objective Markov decision process
(multi-objective MDP) with temporal logic constraints: One
objective is to optimize the probability of satisfying the
given temporal logic formula, and another objective is
to minimize the human’s effort over an infinite horizon,
measured by a given cost function. The trade-off between
multiple objectives is then made through computing the
Pareto optimal set. Given a policy in this set, there is no
other policy that can make it better for one objective than
this policy without making it worse for another objective. In
literature, Pareto optimal policies for multi-objective MDPs
have been studied for the cases of long-run discounted
and average rewards [8], [9]. The authors in [10] proposed
the weighted-sum method for multi-objective MDPs with
multiple temporal logic constraints by solving Pareto op-
timal policies for undiscounted time-bounded reachability
or accumulated rewards. These aforementioned methods are
not directly applicable in our problem due to the time un-
boundness in both satisfying these temporal logic constraints
and the accumulated cost/reward. To this end, we develop a
novel two-stage optimization method to handle the multiple
objectives and adopt the so-called Tchebychev scalarization
method [11] for finding a uniform coverage of all Pareto
optimal points in the policy space, which cannot be com-
puted via weighted-sum (linear scalarization) methods [12]

ar
X

iv
:1

41
2.

60
29

v1
 [

cs
.R

O
]

 1
8

D
ec

 2
01

4

as the latter only allows Pareto optimal solutions to be
found amongst the convex area of the Pareto front. Finally,
we conclude the paper with an algorithm that generates a
Pareto-optimal policy achieving the desired trade-off from
user-defined weights for coordinating the switching control
between an operator and an autonomous controller for a
stochastic system with temporal logic constraints.

II. PRELIMINARIES

We provide necessary background for presenting the
results in this paper.

A vector in Rn is denoted ~v = (v1, v2, . . . , vn) where
vi, 1 ≤ i ≤ n are the components of ~v. We denote
the set of probability distributions on a set S by D(S).
Given a probability distribution D : S → [0, 1], let
Support(D(s)) = {s ∈ S | D(s) 6= 0} be the set of
elements with non-zero probabilities in D.

A. Markov decision processes and control policies

Definition 1: A labeled Markov decision process (MDP)
is a tuple M = 〈S,Σ, D0, T,AP, L, r, γ〉 where S and
Σ are finite state and action sets. D0 : S → R is the
initial probability distribution over states. The transition
probability function T : S ×Σ× S → [0, 1] is defined such
that given a state s ∈ S and an action σ ∈ Σ, T (s, σ, s′)
gives the probability of reaching the next state s′. AP is
a finite set of atomic propositions and L : S → 2AP is a
labeling function which assigns to each state s ∈ S a set of
atomic propositions L(s) ⊆ AP that are valid at the state
s. r : S × Σ × S → R is a reward function giving the
immediate reward r(s, a, s′) for reaching the state s′ after
taking action a at the state s and γ ∈ (0, 1) is the reward
discount factor. �
In this context, T (s, a) gives a probability distribution over
the set of states. T (s, a)(s′) and T (s, a, s′) both express the
transition probability from state s to state s′ under action a
in M . A path is an infinite sequence s0s1 . . . of states such
that for all i ≥ 0, there exists a ∈ Σ, T (si, a, sj) 6= 0. We
denote Γ(s) ⊆ Σ to be a set of actions enabled at the state
s. That is, for each a ∈ Γ(s), Support(T (s, a)) 6= ∅.

A randomized policy in M is a function f : S∗ →
D(Σ) that maps a finite path into a probability distribution
over actions. A deterministic policy is a special case of
randomized policies that maps a path into a single action.
Given a policy f , for a measurable function φ that maps
paths into reals, we write Ef

s [φ] (resp. Ef
D0

[φ]) for the
expected value of φ when the MDP starts in state s (resp.
an initial distribution of states D0) and the policy f is used.
A policy f induces a probability distribution over paths in
M . The state reached at step t is a random variable Xt and
the action being taken at state Xt is also a random variable,
denoted At.

B. Synthesis for MDPs with temporal logic constraints

We use linear temporal logic (LTL) [13] to specify a
set of desired system properties such as safety, liveness,
persistence and stability. In the following, we present some

basic preliminaries for LTL specifications and introduce a
product operation for synthesizing policies in MDPs under
LTL constraints.

A formula in LTL is built from a finite set of atomic
propositions AP , true, false and the Boolean and tem-
poral connectives ∧,∨,¬,⇒,⇔ and � (always), U (un-
til), ♦ (eventually), © (next). Given an LTL formula
ϕ as the system specification, one can always represent
it by a deterministic Rabin automaton (DRA) Aϕ =
〈Q, 2AP , δ, I,Acc〉 where Q is a finite state set, 2AP is the
alphabet, I ∈ Q is the initial state, and δ : Q × 2AP → Q
is the transition function. The acceptance condition Acc is
a set of tuples {(Ji,Ki) ∈ 2Q × 2Q | i = 0, 1, . . . ,m}.
The run for an infinite word w = w[0]w[1] . . . ∈ (2AP)ω is
an infinite sequence of states q0q1 . . . ∈ Qω where q0 = I
and qi+1 = δ(qi, w[i]). A run ρ = q0q1 . . . is accepted in
Aϕ if there exists at least one pair (Ji,Ki) ∈ Acc such that
Inf(ρ)∩ Ji = ∅ and Inf(ρ)∩Ki 6= ∅ where Inf(ρ) is the set
of states that appear infinitely often in ρ.

We define a product operation between a labeled MDP
and a DRA.

Definition 2: Given a labeled MDP M =
〈S,Σ, D0, T,AP, L, r, γ〉 and the DRA Aϕ =
〈Q, 2AP , δ, I, {(Ji,Ki) | i = 1, . . . ,m}〉, the product
MDP is M = M n Aϕ = 〈V,Σ,∆,D0, r, γ,Acc〉, with
components defined as follows: V = S × Q is the set
of states. Σ is the set of actions. D0 : V → [0, 1] is the
initial distribution, defined by D0((s, q)) = D0(s) where
q = δ(I, L(s)). ∆ : V × Σ × V → [0, 1] is the transition
probability function. Given v = (s, q), σ, v′ = (s′, q′) and
q′ = δ(q, L(s′)), let ∆(v, σ, v′) = P (s, σ, s′). The reward
function is defined as r : V × Σ × V → R where given
v = (s, q), v′ = (s′, q′), a ∈ Σ, r(v, a, v′) = r(s, a, s′) for
a ∈ Σ. The acceptance condition is Acc = {(Ĵi, K̂i) | Ĵi =
S × Ji, K̂i = S ×Ki, i = 1, . . . ,m}. �

The problem of maximizing the probability of satisfying
the LTL formula ϕ in M is transformed into a problem of
maximizing the probability of reaching a particular set in
the product MDP M, which is defined next.

Definition 3: [14] The end component for the product
MDP M is a pair (W, f) where W ⊆ V is a non-
empty set of states and f : W → D(Σ) is a randomized
policy. Moreover, the policy f is defined such that for any
v ∈ W , for any a ∈ Support(f(v)),

∑
v′∈W ∆(v, a, v′) =

1; and the induced directed graph (W,→f) is strongly
connected. Here, v →f v′ is an edge in the directed
graph if ∆(v, a, v′) > 0 for some a ∈ Support(f(v)). An
accepting end component (AEC) is an end component such
that W ∩ Ĵi = ∅ and W ∩ K̂i 6= ∅ for some i ∈ {1, . . . ,m}.
�
Let the set of AECs inM be denoted AEC(M) and the set
of accepting end states be denoted by W = {v | ∃(W, f) ∈
AEC(M), v ∈ W}. Note that, by definition, for each AEC
(W, f), by exercising the associated policy f , the probability
of reaching any state in W is 1. Due to this property, once
we enter some state v ∈ W , we can find at least one

accepting end component (W, f) such that v ∈ W , and
initiate the policy f such that for some i ∈ {1, . . . ,m}, all
states in Ĵi will be visited only a finite number of times
and some state in K̂i will be visited infinitely often. The
set AEC(M) can be computed by algorithms [14], [15] in
polynomial time in the size of M.

III. MODELING HUMAN-IN-THE-LOOP STOCHASTIC
SYSTEM

We aim to synthesize a shared autonomy policy that
switches control between an operator and an autonomous
controller. The stochastic system controlled by the human
operator and the autonomous controller, gives rise to two
different MDPs with the same set of states S, the same set
AP of atomic propositions and the same labeling function
L : S → 2AP , but possibly different sets of actions and
transition probability functions.
• Autonomous controller: MA = 〈S,ΣA, TA,AP, L〉

where TA : S × ΣA × S → [0, 1] is the transition
probability function under autonomous controller.

• Human operator: MH = 〈S,ΣH , TH ,AP, L〉 where
TH : S ×ΣH × S → [0, 1] is the transition probability
function under human operator.

Let DM
0 : S → [0, 1] be the initial distribution of

states, same for both MA and MH . For the same system,
the set of physical actions can be the same for both the
autonomous controller and the human. We can add subscript
to distinguish whose action it is. The models MA and MH

can be constructed either from prior knowledge or from
experiments by applying a policy that samples each action
from each state a sufficient amount of times [16].

In the shared autonomy system, the interaction between
the autonomous controller and the operator is often made
through a dialogue system [17]. The controller may send a
request of attention, or some other signal to the operator.
The operator may grant the request, or respond to signals,
depending on his current workload, level of attention. Ad-
mitting that it is not possible to capture all aspects of an
operator’s cognitive states, we have the following model to
capture the evolution of the modeled cognitive state.

Definition 4: The operator’s cognition in the shared au-
tonomy system is modeled as an MDP

MC = 〈H,E,DH
0 , TC ,Cost, γ,Hs〉

where H represents a finite set of cognitive states. E is a
finite set of events that trigger changes in cognitive state.
DH

0 : H → [0, 1] is the initial distribution. TC : H × E ×
H → [0, 1] is the transition probability function. Cost :
H × E ×H → R is the cost function. Cost(h, e, h′) is the
cost of human effort for the transition from h to h′ under
event e. γ ∈ (0, 1) is the discount factor. Hs ⊆ H is a
subset of states at which the operator can take over control.
�
This cognitive model can be generalized to accomodate dif-
ferent model of operator’s interaction with the autonomous
controller. The set E of events can be requests sent by

the autonomous controller to the operator, a workload that
the operator assigns to himself, or any other external event
that influences the operator’s cognitive state. This model
generalizes the model of operator’s cognition in [18], in
which an event is a request to increase, decrease, or maintain
the operator’s attention in the control task. In particular, it
is assumed that in a particular set of states, transitions from
the autonomous controller to the operator can happen. For
instance, for tele-operated robotic arm or semi-autonomous
vehicle, operator may take over control only when he is
aware of the system’s state and not occupied by other tasks
[17]. The model is flexible and can be extended to other
cognitive models in shared autonomy. In this paper, we
assume the model of operator for the given task is given.
One can obtain such a model by statistical learning [6].

We illustrate the concepts using the robotic arm example.

Example 1: Consider a robot manipulator having to pick
up the objects on a table and place it into a box. There
are two types of objects, small and large. For small and
large objects, the probabilities of a successful pick-and-place
maneuver performed by the autonomous controller is 85%
and 50% respectively. The MDP for the controller is shown
in Figure 1a. With an operator tele-operating the robot,
the probabilities of a successful pick-and-place maneuver is
95% and 75% respectively. The operator’s cognitive model
includes two cognitive states: 0 represents the state when
the human does not pay any attention to the system (at
the attention level 0), and 1 represents the state when he
pays full attention (at the attention level 1). The set of
events in MC is the requests of human attention to the
task, E = {0, 1} where e ∈ E represents the current
requested attention level is e. For any h ∈ {0, 1}, e ∈ E, let
Cost(h, e, h′) = 10 for h′ = 1, otherwise 5. The transition
probability function of MC is shown in Figure 1b.

Fig. 1: (a) The MDP for the robotic arm controlled by the
autonomous controller. A state (n,m) represents there are
n small objects and m large objects remaining to be picked.
The available actions are a and b for picking up small and
large objects, respectively. The MDP for the robotic arm
tele-operated by the human can be obtained by changing
the probabilities on the transitions. (b) The MDP MC for
modeling the dynamics of human’s attention changes.

Given two MDPs, MA for the controller and MH for the
operator, and a cognitive model for the operator MC , we
construct a shared autonomy stochastic systems as an MDP

as follows.

MSA = 〈S,Σ,T , D0,AP, L,Cost, γ〉

where S = S × H is the set of states. A state (s, h)
includes a state s of the system and a cognitive state h
of human. Σ = (ΣA ∪ ΣH) × E is the set of actions. If
(a, e) ∈ ΣA×E, the system is controlled by the autonomous
controller and the event affecting human’s cognition is e.
If (a, e) ∈ ΣH × E, the system is controlled by human
operator and the event affecting human’s cognition is e.
T : S×Σ×S → [0, 1] is the transition probability function,
defined as follows. Given a state (s, h) and action (a, e) ∈
ΣA×E, T ((s, h), (a, e), (s′, h′)) = TA(s, a, s′)TC(h, e, h′),
which expresses that the controller acts and triggers an
event that affects the operator’s cognitive state. Given a
state (s, h) for h ∈ Hs, and action (a, e) ∈ ΣH × E,
T ((s, h), (a, e), (s′, h′)) = TH(q, a, q′)TC(h, e, h′), which
expresses that the operator controls the system and an event
e happens and may affect the cognitive state. D0 : S×H →
[0, 1] is the initial distribution. D0(s, h) = DM

0 (s)×DH
0 (h),

for all s ∈ S, h ∈ H . L : S → 2AP is the labeling function
such that L((s, h)) = L(s). Cost : S×Σ×S → R is a cost
function for human effort defined over the state and action
spaces and Cost((s, h), (a, e), (s′, h′)) = Cost(h, e, h′). γ ∈
(0, 1) is the discount factor, the same in MC . Slightly
abusing the notation, we denote the cost function in MSA the
same as the cost function in MC and the labeling function
in MSA the same as the labeling function in M .

Note that, although the cost of human effort only contains
the cost in his cognitive model, it is straightforward to in-
corporate the cost of human’s actions into the cost function.

Example 1: (Cont.) We construct MDP MSA in Fig-
ure 2 for the robotic arm example. For example,
T ((1, 1), 0), (aA, 1), ((0, 1), 1)) = T ((1, 1), aA, (0, 1)) ·
TC(0, 1, 1) = 0.75 · 0.85 = 0.7225, which means the
probability of the robot successfully picking up a small
object and placing it into the box while the human changes
his cognitive state to 1 (fully focused) upon the robot’s
request is 0.7225. Also it is noted that from the states
((0, 1), 0) and ((1, 1), 0), no human’s action is enabled. The
cost function is defined such that Cost((q, h), a, (q, h′)) =
10 if h′ = 1, otherwise 5.

Fig. 2: A fragment of MDP MSA for robotic arm example
(note only a subset of states and transitions are shown).
Subscripts A and H distinguish actions performed by the
autonomous controller (A) and the human (H), respectively.

The main problem we solve is the following.
Problem 1: Given a stochastic system under shared au-

tonomy control between an operator and an autonomous
controller, modeled as MDPs MH and MA, a model of hu-
man’s cognition MC , and an LTL specification ϕ, compute a

policy that is Pareto optimal with respect to two objectives:
1) Maximizing the discounted probability of satisfying the
LTL specification ϕ and 2) minimizing the discounted total
cost of human effort over an infinite horizon.
The definition of Pareto optimality in this context is given
formally at the beginning of section IV-A. By following a
Pareto optimal policy, we achieve a balance between two
objectives: It is impossible to make one better off without
making the other one worse off.

IV. SYNTHESIS FOR SHARED AUTONOMY POLICY

Given an MDP MSA = 〈S,Σ,T , D0,AP, L,Cost, γ〉
and a DRA Aϕ = 〈Q, 2AP , δ, I, {(Ji,Ki) | i = 1, . . . ,m}〉,
the product MDP following Definition 2 is M = MSA n
Aϕ = 〈V,Σ,∆,D0,Cost

M, γ,Acc〉. Recall that the policy
maximizing the probability of satisfying the LTL specifica-
tion is obtained by first computing the set of AECs in M
and then finding a policy that maximizing the probability of
hitting the setW of states contained in AECs (see Section II-
B).

For quantitative LTL objectives, for example, maximizing
the probability of satisfying an LTL formula, or a discounted
reward objective over an infinite horizon, a memoryless
policy in the product MDP suffices for optimality [19], [20].
In the following, by policies, we mean memoryless ones in
the product MDP.

Problem 1 is in fact a multi-objective optimization prob-
lem for which we need to balance the cost of human’s effort
and satisfaction for LTL constraints. However, the solutions
for multi-objective MDPs cannot be directly applied due to
the constraint that once the system runs into an AEC of
M, the policy should be constrained such that all states in
that AEC are visited infinitely often. Based on the particular
constraint, we divide the original problem into a two-stage
optimization problem: The policy synthesis for AECs is
separated from solving a multi-objective MDP formulated
before reaching a state in an AEC.

A. Pareto efficiency before reaching the AECs

The first stage is to balance between a quantitative cri-
terion for a temporal logic objective and a criterion with
respect to the cost of human effort before a state in the
set W is reached. Remind that W is the union of states in
the accepting end components of M. We formulate it as an
multi-objective MDP. However, for objectives of different
types, such as, discounted, undiscounted, and limit-average.
the scalarization method for solving multi-objective MDPs
does not apply. Thus, we consider to use the discounted
reachability property [21] for the given LTL specification,
as well as discounted costs for the human attention, with
the same discount factor γ ∈ (0, 1) specifying the relative
importance of immediate rewards.

For an LTL specification, discounting in the state se-
quence before reaching the setW means that the number of
steps for reaching W is concerned [21]. Without discount-
ing, as long as two policies have the same probability of
reaching the set W , they are equivalent regardless of their

expected numbers of steps to reach W . With discounting
though, a policy has smaller expected number of steps in
reaching W is considered to be better than the other.

Definition 5: Given the product MDPM, for a state v in
M, the discounted probability for reaching the setW under
policy f : V \W → D(Σ) is

U1(v, f) = Ef
v

[∞∑
t=0

γt · r1(Xt, At, Xt+1)

]
where the reward function r1 : V × Σ × V → {0, 1} is
defined such that r1(v, a, v′) = 1 if and only if v /∈ W
and v′ ∈ W , otherwise r1(v, a, v′) = 0. The discounted
total reward with respect to human attention for a policy
f : V \W → D(Σ) and a state v is

U2(v, f) = Ef
v

[∞∑
t=0

γt · r2(Xt, At, Xt+1)

]
,

where the reward function r2 : V × Σ× V → R is defined
such that r2(v, a, v′) = −CostM(v, a, v′) if and only if v /∈
W and v′ /∈ W , r2(v, a, v′) = −U∗AEC(v′) if v /∈ W and
v′ ∈ W , and r2(v, a, v′) = 0 otherwise. Here, U∗AEC :W →
R is the discounted cost of human attention for remaining
in an accepting end components under the optimal policy
for the second stage. �

The discounted value profile, at v for policy f , is defined as
~U(v, f) = (U1(v, f), U2(v, f)). We denote ~r = (r1, r2) as
the vector of reward functions. The function U∗AEC :W → R
is computed in the next section.

Definition 6: [8] Given an MDP M = 〈V,Σ,∆〉 and
a vector of reward functions ~r = (r1, r2, . . . , rn), for a
given state v ∈ V , policy f Pareto-dominates policy f ′ at
state v if and only if ~U(v, f) = (U1(v, f), . . . , Un(v, f)) 6=
~U(v, f ′) = (U1(v, f ′), . . . , Un(v, f ′)) and for all i =
1, . . . , n, Ui(v, f) ≥ Ui(v, f

′). A policy f is Pareto optimal
in a state v ∈ V if there is no other policy f ′ Pareto-
dominating f . For a Pareto-optimal policy f at state v,
the corresponding value profile ~U(v, f) is referred to as
a Pareto-optimal point (or an efficient point). The set of
Pareto-optimal point are called the Pareto set. �

A Pareto optimal policy f for a given initial distribution is
defined analogously by comparing the expectations of value
functions under the initial distribution.

We employ Tchebycheff scalarization method [11], [22]
to find Pareto optimal policies for user specified weights.
First, we solve a set of single objective MDPs, one for each
reward function. Let Ui(·, f∗i) : V → R be the value func-
tion of the optimal policy f∗i with respect to the i-th reward
function. The ideal point U I = (U I

1 , U
I
2) is then computed

as follows: for i = 1, 2, U I
i =

∑
v∈V D0(v)Ui(v, f

∗
i).

Given a weight vector ~w = (w1, w2) where wi is the weight
for the i-th criterion such that w1+w2 = 1, a Pareto optimal
policy associated with the weight vector ~w can be found with
the following nonlinear program:

min
x

max
i=1,2

(λi · (UI
i −Ri · x)) + ε

∑
i=1,2

λi ·
(
UI

i −Ri · x
)

subject to: ∀v ∈ V \W,∑
a∈Γ(v)

x(v, a) = D0(v) + γ
∑
v′∈V

∑
a′∈Γ(v′)

∆(v′, a′, v) · x(v′, a′),

and ∀v ∈ V \W, ∀a ∈ Σ, x(v, a) ≥ 0,
(1)

where ε is a small positive real that can be chosen arbitrarily,
x(v, a) is interpreted as the expected discounted frequency
of reaching the state v and then choosing action a, Ri ·
x =

∑
v∈V

∑
a∈Γ(v)

∑
v′∈V ri(v, a, v

′)∆(v, a, v′)x(v, a),
and ~λ is a positive weighting vector computed from a
weight ~w, the ideal points and the Nadir points [22] for
all reward functions (detailed in Appendix). The nonlinear
programming problem can then be formulated into a linear
programming problem in the standard way by setting a new
variable z = maxi=1,2(λi ·(U I

i −Ri ·x)). The Pareto optimal
policy f : V → D(Σ) is defined such that

f(v)(a) =
x(v, a)∑

a∈Γ(v) x(v)
, (2)

which selects action a with probability f(v)(a) from the
state v, for all v ∈ V , a ∈ Γ(v).

Example 2: Continue with the robot arm example. Given
the discount factor γ = 0.98, for the simple objective (1st
objective) as quickly as possible of reaching a state at which
all objects are in the box, the optimal strategy f∗1 is shown
in the first row of Table I. Intuitively, the robot starts by
requesting the operator to increase his level of attention and
wants to switch control to human as soon as possible as the
latter has higher probability of success for a pick-and-place
maneuver. Alternatively, the optimal policy with respect to
minimizing the cost of human effort (2nd objective), is to let
the robot pick up all the objects since by doing so, eventually
all the objects will be collected into the box. The strategy
f∗2 is shown in the second row of Table I.

Now suppose that a user gives a weight 0.8 for the
first objective and 0.2 for the second objective, through
normalization, the new weight vector ~λ = (11.93, 0.02),
is obtained with the method in Appendix. By solving the
linear programming problem in (1), we obtain a Pareto-
optimal policy f∗P shown in the third row of Table I. Noting
that the difference of f∗P and f∗1 is that when it comes to
the small object, if the current human attention is high, the
robot will request the human to decrease his attention level
and therefore, if the object fails to be picked up through
tele-operation, the autonomous controller will take over for
picking up the small object. Whileas in f∗1 , the robot prefers
the human operator to pick up all objects, no matter it is a
big one or a small one.

Figure 3 shows the state value for the initial state v0 =
((1, 1), 0) with respect to reward functions r1, r2, under the
policies f∗1 , f∗2 and a subset of Pareto optimal policies, one
for each weight vector ~w in the set {(β, 1−β) | β = k

10 , k =

1, 2, . . . , 9}.

TABLE I: Policies for pick-and-place task
States: ((1, 1), 0) ((1, 1), 1) ((1, 0), 0) ((1, 0), 1) ((0, 1), 1) ((0, 1), 0)
f∗1 : (aA, 1) (bH , 1) (aA, 1) (aH , 1) (bH , 1) (bA, 1)
f∗2 : (aA, 0) NA (aA, 0) NA NA (bA, 0)
f∗P (aA, 1) (bH , 1) (aA, 0) (aH , 0) (bH , 1) (bA, 1)

0.955 0.96 0.965 0.9715

16

17

18

19

20

21

22

23

24

Optimal strategy for the 2nd objective,
and w=(0.1,0.9),(0,2,0.8)

w=(0.3,0.7), (0.4,0.6),(0.5,0.5)

W=(0.6,0.4)
w=(0.7,0.3)

w=(0.8,0.2)
Optimal strategy for the 1st objective

Fig. 3: The state values of the initial state with respect to
reward functions r1, r2, under policies f∗1 , f∗2 and a set of
Pareto optimal policies f∗P , one for each weight vectors in
the set {(β, 1 − β) | β = k

10 , k = 1, 2, . . . , 9}. The x-axis
and y-axis represent the values of the initial state under the
1st and 2nd criteria, respectively.

Though the Pareto optimal policy for ~w = (0.8, 0.2) is
deterministic in this example. It may generally need to be
randomized for a given weight vector.

So far we have introduced a method for synthesizing
Pareto optimal policies before reaching a state in one of the
accepting end components. Next, we introduce a constrained
optimization for synthesizing a policy that minimize the
expected discounted cost of staying in an AEC and visiting
all the states in that AEC infinitely often.

B. A constrained optimization for accepting end compo-
nents

For a state v in W , one can identify at least one AEC
(W, f) such that v ∈W . It is noted that the policy f : V →
D(Σ) is a randomized policy that ensures every state in W
is visited infinitely often with probability 1 [15]. However,
there might be more than one AEC that contains a state
v, and we need to decide which AEC to stay in such that
the expected discounted cost of human effort for the control
execution over an infinite horizon is minimized.

We consider a constrained optimization problem: For each
AEC (W, f) where W ⊆ V and f : W → D(Σ), solve
for a policy g : W → D(Σ) such that the cost of human
effort for staying in that AEC is minimized. The constrained
optimization problem is formulated as follows.

min
g
UAEC(v, g,W) =

∞∑
k=0

γk · Eg
v[CostM(Xt, At, Xt+1)]

subject to: ∀v ∈W,Prg(∀t, ∃t′ > t,Xt′ = v) = 1, and
∀v ∈W, ∀a /∈ Γ(v), g(v)(a) = 0,

(3)

where the term Prg(∀t,∃t′ > t,Xt′ = v) measures the
probability of infinitely revisiting state v under policy g.

The linear program formulated for solving (3) can be
obtained as follows:

min
∑
v∈V

∑
a∈Γ(v)

[
x(v, a) ·

(∑
v′∈V

CostM(v, a, v′)∆(v, a, v′)

)]
subject to: for v ∈W,∑
a∈Γ(v)

x(v, a) = η(v) + γ
∑
v′∈V

∑
a′∈Γ(v′)

∆(v′, a′, v) · x(v′, a′),

∀v ∈W, ∀a ∈ Σ, x(v, a) ≥ 0,

∀v ∈W,
∑

a∈Γ(v)

x(v, a) >= ε, and

∀v ∈W, ∀a /∈ Γ(v), x(v, a) = 0,
(4)

where ε is an arbitrarily small positive real. η : W → [0, 1]
is the initial distribution of states when entering the set W .
Because for single objective optimization the optimal state
value does not depend on the initial distribution [23], η can
be chosen arbitrarily from the set of distributions over W .
The physical meaning of

∑
a∈Γ(v) x(v, a) is the discounted

frequency of visiting the state v, which is strictly smaller
than the frequency of visiting the state v as long as γ 6=
1. By enforcing the constraints

∑
a∈Γ(v) x(v, a) >= ε, we

ensure that the frequency of visiting every state in W is non-
zero, i.e., all states in W will be visited infinitely often.

The solution to (4) produces a memoryless policy g∗ :
W → D(Σ) that chooses action a at a state v with prob-
ability g∗(v)(a) = x(v,a)∑

a∈Γ(v) x(v,a) . Using policy evaluation
[24], the state value U∗AEC(v,W) for each v ∈W under the
optimal policy g∗ can be computed. Then, the terminal cost
U∗AEC :W → R is defined as follows.

U∗AEC(v) = min
(W,f)∈AEC

U∗AEC(v,W)

and the policy after hitting the state v is g such that
Ug
AEC(v,W) = U∗AEC(v,W) = U∗AEC(v).
We now present Algorithm 1 to conclude the two-state

optimization procedure.
Remark: Although in this paper we only considered

two objectives, the methods can be easily extended to more
than two objectives for handling LTL specifications and
different reward/cost structures in synthesis for stochastic
systems, for example, the objective of balancing between
the probability of satisfying an LTL formula, the discounted
total cost of human effort, and the discounted total cost of
energy consumption.

V. AN EXAMPLE ON SHARED AUTONOMY

We apply Algorithm 1 to a robotic motion planning prob-
lem in a stochastic environment. The implementations are
in Python and Matlab on a desktop with Intel(R) Core(TM)
processor and 16 GB of memory.

Figure 4a shows a gridworld environment of four different
terrains: Pavement, grass, gravel and sand. In each terrain,
the mobile robot can move in four directions (heading north
‘N’, south ‘S’, east ‘E’, and west ‘W’). There is onboard
feedback controller that implements these four maneuver,

Algorithm 1: TwoStageOptimization
Input: The MDP MA,MH and MC , a specification

automaton DRA Aϕ, and a weight ~w.
Output: A pareto policy f for the discounted

reachability and a partial function
Policy : V → F , where F is the set of
randomized policies. Policy(v) is the policy to
follow after state v is reached.

begin
M = GetProductMDP (MA,MH ,MC ,Aϕ);
AEC(M) = GetAEC (M) ; /* Compute the
accepting end components. */
for (W, f) ∈ AEC do

g∗W =ConstrainedOptAEC (W,CostM);
/* Solve (4). */
U∗AEC(v,W) =PolicyEvaluate
(W,CostM, g∗W);

W = ∪(W,f)∈AECW ;
for v ∈ W do

U∗AEC(v) = min(W,f)∈AEC U
∗
AEC(v,W);

Policy(v) = g∗W for which W such that
U∗AEC(v,W) = U∗AEC(v).

~r = GetRewardVec
(M, {U∗AEC(v) | v ∈ W},W);
/* Formulate the reward vector

according to Definition 5. */
f =GetParetoOptimal (~r,M, ~w) /* Solve

(1) and obtain the Pareto optimal
policy f as in (2). */

return f,Policy.

which are motion primitives. Using the onboard controller,
the probability of arriving at the correct cell is 95% for
pavement, 80% for grass, 75% for gravel and 65% for
sand. Alternatively, if the robot is operated a human, it can
implement the four actions with a better performance for
terrains grass, sand and gravel. The probability of arriving
at the correct cell under human’s operation is 95% for
pavement, 90% for grass, 85% for gravel and 80% for
sand. The objective is that either the robot has to visit
region R1 and then R2, in this order, or it needs to visit
region R3 infinitely often, while avoiding all the obstacles.
Formally, the specification is expressed with an LTL formula
ϕ = (♦(R1 ∧ ♦R2) ∨�♦R3) ∧�♦¬Unsafe.

Figure 4b is the cognitive model of the operator, including
three states : L, M and H represent that human pays low,
moderate, and high attention to the system respectively. The
costs of paying low, moderate and high attention to the
system are 1, 5, and 10, respectively. Action ‘+’ (resp. ’−’)
means a request to increase (resp. decrease) the attention and
action λ means a request to maintain the current attention.
The operator takes over control at state H .

During control execution, we aim to design a policy that
coordinates the switching of control between the opera-

Fig. 4: (a) A 5× 5 gridworld, where the disk represents the
robot, the cells R1, R2, and R3 are the interested regions,
the crossed cells are obstacles. We assume that if the robot
hits the wall (edges), it will be bounced back to the previous
cell. Different grey scales represents different terrains: From
the darkest to the lightest, these are sand, grass, pavement
and gravel. (b) The MDP MC of the human operator.
tor and the autonomous controller, i.e., onboard software
controller. The policy should be Pareto optimal in order
to balance between maximizing the expected discounted
probability of satisfying the LTL formula ϕ, and minimizing
the expected discounted total cost of human efforts. Figure 5
shows the state value for the initial state with respect to
reward functions r1 for the LTL formula and r2 for the cost
of human effort, under the single objective optimal policy
f∗1 and f∗2 , and a subset of Pareto optimal policies, one
for each weight vectors ~w in the set {(β, 1 − β) | β =
k
10 , k = 1, 2, . . . , 9}. For the LTL specification, all policies
are randomized.

0.3 0.4 0.5 0.6 0.7 0.8 0.920

40

60

80

100

120

140

160

180

200

w=(0,1)

w=(0.4,0.6)
w=(0.6,0.4)

w=(0.7,0.3)
w=(0.8,0.2)

w=(0.9,0.1)

w=(1,0)

w=(0.9,0.1)
w=(0.2,0.8)

w=(0.3,0.7)

Fig. 5: The state values of the initial state given reward
functions r1, r2, under policies f∗1 , f∗2 and a set of Pareto
optimal policies f∗P , for each ~w ∈ {(β, 1 − β) | β =
k
10 , k = 1, 2, . . . , 9}. The x-axis represents the values of
the initial state for discounted probability of satisfying the
LTL specification. The y-axis represents the values of the
initial state with respect to the cost of human effort.

VI. CONCLUDING REMARKS AND CRITIQUES

We developed a synthesis method for a class of shared
autonomy systems featured by switching control between
a human operator and an autonomous controller. In the

presence of inherent uncertainties in the systems’ dynamics
and the evolution of humans’ cognitive states, we proposed a
two-stage optimization method to trade-off the human effort
for the system’s performance in satisfying a given temporal
logic specification. Moreover, the solution method can also
be extended for solving multi-objective MDPs with temporal
logic constraints. In the following, we discuss some of the
limitations in both modeling and solution approach in this
paper and possible directions for future work.

We employed two MDPs for modeling the system op-
erated by the human and for representing the evolution of
cognitive states triggered by external events such as work-
load, fatigue and requests for attention. We assumed that
these models are given. However, in practice, we might need
to learn such models through experiments and then design
adaptive shared autonomy policies based on the knowledge
accumulated over the learning phase. In this respect, a
possible solution is to incorporate joint learning and control
policy synthesis, for instance, PAC-MDP methods [25], into
multi-objective MDPs with temporal logic constraints.

Another limitation in modeling is that the current cogni-
tive model cannot capture all possible influences of human’s
cognition on his performance. Consider, for instance, when
the operator is bored or tired, his performance in some tasks
can be degraded, and therefore the transition probabilities in
MH are dependent on the operator’s cognitive states. In this
case, we will need to develop a different product operation
for combining the three factors: MA, a set of MH ’s for
different cognitive states, and MC , into the shared autonomy
system. Despite the change in modeling the shared auton-
omy system, the method for solving Pareto optimal policies
developed in this paper can be easily extended.

APPENDIX

Consider a multiobjective MDPM = 〈V,Σ,∆,D0, ~r, γ〉
where ~r = (r1, r2, . . . , rn) is a vector of reward functions
and γ is the discount factor, let Ui(·, f∗i) be the vecto-
rial value function optimal for the i-th criterion, specified
with the reward function ri. An approximation of the
Nadir point for the i-th criterion is computed as follows,
UN
i =

∑
v∈V D0(v) minj=1,...,n Ui(v, f

∗
j) where Ui(·, f∗j)

is a vector value function obtained by evaluating the optimal
policy for the j-th criterion with respect to the i-th reward
function. The weight vector after normalization is defined
as λi = wi

|UI
i −UN

i |
.

REFERENCES

[1] B. Pitzer, M. Styer, C. Bersch, C. DuHadway, and J. Becker, “Towards
perceptual shared autonomy for robotic mobile manipulation,” in
IEEE International Conference on Robotics and Automation, May
2011, pp. 6245–6251.

[2] K. Kinugawa and H. Noborio, “A shared autonomy of multiple
mobile robots in teleoperation,” in Proceedings of IEEE International
Workshop on Robot and Human Interactive Communication, 2001,
pp. 319–325.

[3] S. Gnatzig, F. Schuller, and M. Lienkamp, “Human-machine in-
teraction as key technology for driverless driving - a trajectory-
based shared autonomy control approach,” in IEEE International
Symposium on Robot and Human Interactive Communication, Sept
2012, pp. 913–918.

[4] W. Li, D. Sadigh, S. Sastry, and S. Seshia, “Synthesis for human-in-
the-loop control systems,” in Tools and Algorithms for the Construc-
tion and Analysis of Systems, ser. Lecture Notes in Computer Science,
E. brahm and K. Havelund, Eds. Springer Berlin Heidelberg, 2014,
vol. 8413, pp. 470–484.

[5] A. Pentland and A. Liu, “Modeling and prediction of human behav-
ior,” Neural Computation, vol. 11, no. 1, pp. 229–242, 1999.

[6] C. A. Rothkopf and D. H. Ballard, “Modular inverse reinforcement
learning for visuomotor behavior,” Biological cybernetics, vol. 107,
no. 4, pp. 477–490, 2013.

[7] C. L. McGhan, A. Nasir, and E. Atkins, “Human intent prediction us-
ing markov decision processes,” in Proceedings of Infotech Aerospace
Conference, 2012.

[8] K. Chatterjee, R. Majumdar, and T. A. Henzinger, “Markov decision
processes with multiple objectives,” in Symposium on Theoretical
Aspects of Computer Science. Springer, 2006, pp. 325–336.

[9] K. Chatterjee, “Markov decision processes with multiple long-run
average objectives,” in FSTTCS 2007: Foundations of Software Tech-
nology and Theoretical Computer Science, ser. Lecture Notes in
Computer Science, V. Arvind and S. Prasad, Eds. Springer Berlin
Heidelberg, 2007, vol. 4855, pp. 473–484.

[10] V. Forejt, M. Kwiatkowska, and D. Parker, “Pareto curves for prob-
abilistic model checking,” in Proceedings of 10th International Sym-
posium on Automated Technology for Verification and Analysis, ser.
LNCS, S. Chakraborty and M. Mukund, Eds., vol. 7561. Springer,
2012, pp. 317–332.

[11] P. Perny and P. Weng, “On finding compromise solutions in mul-
tiobjective markov decision processes,” in Proceedings of the 19th
European Conference on Artificial Intelligence. IOS Press, 2010,
pp. 969–970.

[12] I. Das and J. E. Dennis, “A closer look at drawbacks of minimizing
weighted sums of objectives for pareto set generation in multicriteria
optimization problems,” Structural optimization, vol. 14, no. 1, pp.
63–69, 1997.

[13] E. A. Emerson, “Temporal and modal logic,” Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics (B), vol.
995, p. 1072, 1990.

[14] L. De Alfaro, “Formal verification of probabilistic systems,” Ph.D.
dissertation, Stanford University, 1997.

[15] K. Chatterjee, M. Henzinger, M. Joglekar, and N. Shah, “Symbolic
algorithms for qualitative analysis of markov decision processes with
büchi objectives,” Formal Methods in System Design, vol. 42, no. 3,
pp. 301–327, 2013.

[16] D. Henriques, J. G. Martins, P. Zuliani, A. Platzer, and E. M.
Clarke, “Statistical model checking for markov decision processes,” in
9th International Conference on Quantitative Evaluation of Systems,
2012, pp. 84–93.

[17] M. A. Goodrich and A. C. Schultz, “Human-robot interaction: a
survey,” Foundations and trends in human-computer interaction,
vol. 1, no. 3, pp. 203–275, 2007.

[18] A.-I. Mouaddib, S. Zilberstein, A. Beynier, L. Jeanpierre, et al.,
“A decision-theoretic approach to cooperative control and adjustable
autonomy.” in European Conference on Artificial Intelligence, 2010,
pp. 971–972.

[19] C. Baier, J.-P. Katoen, et al., Principles of model checking. MIT
press Cambridge, 2008, vol. 26202649.

[20] J. Filar and K. Vrieze, Competitive Markov Decision Processes. New
York, NY, USA: Springer-Verlag New York, Inc., 1996.

[21] L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and
M. Stoelinga, “Model checking discounted temporal properties,”
Theoretical Computer Science, vol. 345, no. 1, pp. 139–170, 2005.

[22] R. E. Steuer, Multiple Criteria Optimization: Theory, Computation
and Application. Radio e Svyaz, Moscow, 504 pp., 1992, (in
Russian).

[23] M. L. Puterman, Markov decision processes: discrete stochastic
dynamic programming. John Wiley & Sons, 2009, vol. 414.

[24] A. G. Barto, Reinforcement learning: An introduction. MIT press,
1998.

[25] J. Fu and U. Topcu, “Probably approximately correct mdp learning
and control with temporal logic constraints,” in Proceedings of
Robotics: Science and Systems, Berkeley, USA, July 2014.

	I Introduction
	II Preliminaries
	II-A Markov decision processes and control policies
	II-B Synthesis for MDPs with temporal logic constraints

	III Modeling Human-in-the-loop stochastic system
	IV Synthesis for shared autonomy policy
	IV-A Pareto efficiency before reaching the AECs
	IV-B A constrained optimization for accepting end components

	V An example on shared autonomy
	VI Concluding remarks and critiques
	Appendix
	References

