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ABSTRACT

Having accurate knowledge of the positions of people around a robot provides

rich, objective and quantitative data that can be highly useful for a wide range of

tasks, including autonomous person following. The primary objective of this re-

search is to promote the development of robust, repeatable and transferable software

for robots that can automatically detect, track and follow people in their environ-

ment. The work is strongly motivated by the need for such functionality onboard

an intelligent power wheelchair robot designed to assist people with mobility impair-

ments.

In this thesis we propose a new algorithm for robust detection, tracking and

following from laser scanners mounted at leg height. We develop a set of quantita-

tive benchmarks based on the CLEAR MOT metrics which demonstrate that the

approach is more effective than currently available alternatives in a variety of envi-

ronments, both indoor and outdoor, and on different robot platforms (the intelligent

power wheelchair and a Clearpath Husky). To the best of our knowledge, these

are the first benchmarks which evaluate person tracking performance from a mobile

robot with laser scanners at leg height. We further integrate our novel person track-

ing system with a person following control system to demonstrate its usefulness in

this application. The method has been implemented in the Robot Operating System

(ROS) framework and will be publicly released as a ROS package.
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ABRÉGÉ

Une connaissance précise de la position des personnes autour d’un robot fournit

des données riches, objectives et quantitatives, qui peuvent être hautement utiles

pour une grande variété de tâches, incluant le suivi automatique de personnes.

L’objectif premier de cette recherche est de promouvoir le développement de logiciels

robustes, reproductibles et transférables, pour que des robots puissent automatique-

ment détecter, localiser et suivre des gens dans leur environnement. Ce travail est

fortement motivé par le besoin d’une telle fonctionnalité, à bord de fauteuils roulants

électriques intelligents conçus pour assister les personnes à mobilité réduite.

Dans cette thèse nous proposons un nouvel algorithme pour la détection, la

localisation et le suivi à partir de capteurs lasers situés à hauteur de la jambe.

Nous développons un ensemble de mesures de référence quantitatives basées sur les

métriques CLEAR MOT, qui démontrent que notre approche est plus efficace que

les alternatives actuelles, ce dans une variété d’environnements, à la fois intérieurs

et extérieurs, et sur différentes plateformes de robots (le fauteuil roulant électrique

intelligent et un Clearpath Husky). Au mieux de notre connaissance, nous sommes

les premiers à évaluer la performance du suivi de personnes depuis un robot mobile

équipé de capteurs lasers à hauteur de la jambe. De plus, pour en démontrer l’utilité,

nous intégrons notre nouveau système de localisation de personnes avec un système

de contrôle automatique permettant au robot de se déplacer en suivant une personne.

Cette méthode a été implémentée avec le Robot Operating System (ROS), et sera

publiquement disponible sous forme d’un paquet ROS.
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CHAPTER 1
Introduction

Having accurate knowledge of the positions of people over time provides rich,

objective and quantitative data that can be highly useful for a wide range of appli-

cations. More specifically, the capability to autonomously detect, track and follow a

person has been identified as an important functionality for many assistive and ser-

vice robot systems [16, 34]. Over the last decade, significant progress has been made

in developing person detection and tracking algorithms, often with the aim of improv-

ing human-robot interaction or robot navigation in populated environments [2, 44].

Yet most of the work to date is not easily transferable to new applications: algo-

rithms are tested on a single robot in a single environment (if at all, sometimes only

in simulation under artificial conditions), in many cases the code has not been made

publicly available, datasets collected during validation sessions are not shared, and

quantitative comparisons to existing algorithms are not performed. For example,

to the best of our knowledge, no research groups have been able to replicate re-

cently published person tracking results on different robot platforms. This is further

reflected in the fact that, as far as we know, there does not yet exist a robust, open-

source, laser-based person-following system for a mobile robot that has demonstrated

capability to work indoors, outdoors and in cluttered and crowded areas.

To address this, a novel method and software architecture for autonomous person

tracking and following with 2D laser scanners is proposed in this thesis. It builds on
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recent results in the literature [2, 44], extending them in several directions to improve

accuracy and reduce the number of errors. One contribution of this work is a novel

tracking method which uses tracking of both legs jointly, rather than individually,

such as in [2, 44], to improve reliability, especially in cases of self-occlusion. It also

integrates local occupancy grid maps to improve data association by disallowing

the initiation or continuation of people tracks in occupied space. However, unlike

the approach in [62] which constructs occupancy grid maps of all scan points, the

approach in this thesis only uses non-human scan points and therefore does not

require people to move continuously to be tracked. The proposed approach also

integrates the method of object tracking present in Robot Operating System (ROS)

leg detector package in which all detected objects are tracked in every frame, included

non-human objects, improving data associated in cluttered environments. Finally,

a closed-loop control algorithm allowing the robot to autonomously follow tracked

individuals is incorporated.

A major asset of the proposed approach is the ability to work on multiple dif-

ferent robots, under various operating conditions. We present extensive empirical

results, validating the performance of the approach on two different robot platforms

over 45 minutes of data collected across different environments, both indoor and

outdoor, with moving and stationary robots, and varied crowd and obstacle condi-

tions. These results show the benefit of the proposed tracking approach compared

to the existing open-source implementation in ROS, especially in the application of

person following. Another contribution of this work is a public release of all datasets

and code used during our investigations as an open-source ROS package to facilitate
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ongoing research in this area in the future. These datasets include, to the best of

the our knowledge, the first laser-based person tracking benchmarks collected on a

moving robot.

While the work in this thesis focuses specifically on the problem of accurate

tracking and following of people by social and assistive robots, we expect our work

to have significant applications outside of this field, including for security (e.g. track-

ing intruders), entertainment (e.g. developing interacting exhibits), marketing (e.g.

location-aware personalized advertisement), rehabilitation (e.g. assessment of pa-

tients’ locomotion patterns following an injury [42]), and beyond.

1.1 Problem Description

The problem of interest can be decomposed into three sub-problems: (1) detec-

tion, (2) tracking, and (3) following. For reasons of modularity and robustness, these

problems are tackled with three separate (though connected) modules. Such modu-

larity is consistent with most of the literature on the topic, and allows development

of a solution that is transferable to a large range of applications. For example, a

security robot may require only detection and tracking; a social robot on the other

hand may ask the user to manually specify what person to follow (e.g. from an

image, or with a gesture command), and use autonomous behavior only for tracking

and following.

For the purposes of this thesis, attention is focused on systems with planar laser

sensors. Such sensors are widely available on autonomous robots, especially those

deployed in public and urban environments, due to their reliability and accuracy for
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mapping and navigation tasks. Laser sensing is also computationally cheap to pro-

cess, lighting invariant, and functional under diverse operating conditions. Further,

the wide field of view of modern laser scanners allows the robot to follow in close

proximity with less risk of losing people out of frame.

This work aims to build and test a system that can achieve person tracking and

following under diverse conditions: different robot platforms, indoors and outdoors,

single or multiple people, cluttered with stationary or moving obstacles, without an

a priori map of the environment. In support of this, the proposed system is deployed

and validated on two different robot platforms, each in a different environment.

1.2 Problem Statement

Specifically, this work proposes a novel solution to the issue of autonomously

detecting, tracking and following people from any generic mobile robot platform

equipped with planar laser scanners mounted at leg height.

1.3 Contributions

The contributions of this work include:

• A novel method for detecting and tracking people from mobile robots using

planar laser scanners mounted at leg height.

• A set of benchmarks demonstrating its empirical improvement over existing

open-source methods and to allow future methods to compare against ours.

• A software program utilizing the CLEAR MOT metrics to automatically eval-

uate new person-tracking method’s performance on the benchmarks.

• A set of software tools for creating and annotating new benchmarks.
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• Validation of our method on two separate robotic platforms, including the

Smartwheeler and a Clearpath Husky.

• A method for integration of the person tracking method with a person-following

navigation system, demonstrated on a Clearpath Husky.

Finally, this work is an integral component in the development of the Smartwheeler

intelligent powered wheelchair [57], providing it with the important functionality of

autonomous person following [34].

1.4 Publications

Many of the chapters in this thesis contain work previously published by the

authors at the 2015 International Conference on Robotics and Automation, under

the title Person tracking and following with 2D laser scanners [43]. Section 6.3.4

also contains work previously published by the authors at the 2014 IROS Workshop

on Rehabilitation & Assistive Robotics, under the title Laser-based person tracking

for clinical locomotion analysis [42].
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CHAPTER 2
Background

This thesis builds on several existing concepts, frameworks and models from

probability, robotics, artificial intelligence and machine learning. To provide the

necessary primer and context for the novel algorithms presented in this work, this

section outlines the relevant prior work. It begins with an introduction to a mod-

ern robotics software development framework, followed by occupancy grid mapping,

target tracking and, finally, supervised machine learning.

2.1 Robot Operating System

The Robot Operating System (ROS) is a software framework used extensively in

the implementation of this work [58]. It has also seen widespread adoption in other

robotics research and industrial applications since its release in 2007 [55]. At its core,

it was designed with the purpose of facilitating the interoperation and communication

of discrete robotic software systems. Under the ROS framework, individual processes

(referred to as nodes in the ROS community) can communicate either through shared

memory (via nodelets) or through a network-based, TCP message passing system.

ROS facilitates distributed computing as nodes can be programmed and compiled

once, then run on any single computer as well as any network-connected computer

with no modification to the source code. Further, it is language-agnostic, meaning

nodes can be written in Python, C++, LISP, MATLAB and Java and communicate
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with other nodes via a common message-passing interface, regardless of the language

any are written in.

Due it its growth and widespread adoption, ROS also contains many existing,

well-tested, open-source libraries and tools that can vastly simplify the implemen-

tation of new robotic systems. These libraries include camera drivers, laser scanner

drivers, a coordinate frame transform library [23], localization algorithms [24], si-

multaneous localization and mapping (SLAM) algorithms [38, 27] and navigation

algorithms [47].

The modularity of systems developed with ROS is perhaps one reason why many

such open-source libraries exist. Instead of having a robot run one monolithic pro-

gram containing all the functionality of the system, ROS programs are typically

composed of several modules which communicate via message passing. This modu-

larity facilitates code charing of individual components and it is our hope that it will

likewise facilitate the sharing of this work.

Furthermore, under the ROS framework, software developers can harness the

benefits of multiple languages, writing code in whichever language is most appropri-

ate for the task at hand. For example, in the implementation of this work, C++ is

used when fast processing time is needed and Python is used when fast prototyping

and development times are higher priorities.

2.2 Occupancy Grid Mapping

Occupancy grid maps are an integral component of modern robotic systems

and are utilized in this work [68, 66]. Essentially, they are methods for constructing
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maps containing estimates of occupied and freespace areas nearby a robot using noisy

sensor observations.

Specifically, it is assumed that a set of known robot poses x1:t and noisy sensor

measurements z1:t are given, and we wish to estimate our belief in a map of the

nearby environment m. The canonical approach is to first decompose the nearby

environment into discrete, non-overlapping cells m = {m1,m2, ...,mN}, where each

cell mi ∈ {0, 1} is a binary variable indicating whether that location is freespace or

occupied. This space can then be reasoned over in a probabilistic manner using the

posterior probability

p(m|x1:t, z1:t) = p(m1,m2, ...,mN |x1:t, z1:t), (2.1)

which can be factorized by the chain rule to yield

p(m|x1:t, z1:t) = p(m1|m2, ...,mN ,x1:t, z1:t)p(m
2|m3, ...,mN ,x1:t, z1:t)...p(m

N |x1:t, z1:t).

(2.2)

However, without further simplification, reasoning over this belief space quickly

becomes intractable because it grows exponentially with the number of cells in the

decomposition. Thus, it is common to adopt a (naive) assumption of independence

between cells

p(mi ⊥⊥ mj) ∀i ∈ 1, 2, ..., N, j ∈ 1, 2, ..., N, i 6= j. (2.3)

The posterior then simplifies to

p(m|x1:t, z1:t) =
N∏
i=1

p(mi|x1:t, z1:t). (2.4)
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This can then be evaluated in practice using a recursive binary Bayes filter on

each cell of the map and performing an update on each cell after each received mea-

surement [66]. Specifically, the posterior probabilities in the product of Equation 2.4

can alternatively be express via the Bayes rule as

p(mi|x1:t, z1:t) =
p(zt|x1:t, z1:t−1,m

i)p(mi|x1:t, z1:t−1)

p(zt|x1:t, z1:t−1)
. (2.5)

Applying the Markov assumption, we have

p(mi|x1:t, z1:t) =
p(zt|xt,m

i)p(mi|x1:t−1, z1:t−1)

p(zt|xt)
. (2.6)

Then, applying the Bayes rule to the measurement model

p(zt|xt,m
i) =

p(mi|xt, zt)p(zt|xt)

p(mi)
(2.7)

results in

p(mi|x1:t, z1:t) =
p(mi|xt, zt)p(m

i|x1:t−1, z1:t−1)

p(mi)
. (2.8)

In practice, it is common to perform all calculations in log-space to prevent

floating-point rounding errors when storing numbers close to 0, as is commonly the

case with probabilities. As such, our measurement update becomes

logit(p(mi|x1:t, z1:t)) = logit(p(mi|xt, zt)) + logit(p(mi|x1:t−1, z1:t−1))− logit(p(mi)),

(2.9)

where logit is the log-odds ratio (logit(x) = x
1−x), p(mi|xt, zt) is the sensor-dependent,

measurement probability, p(mi|x1:t−1, z1:t−1) is the map cell belief from the previous
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timestep and p(mi) is the prior belief in the map cell, typically set to between 0.2−0.5,

depending on the assumed concentration of objects in the map area [66].

All that remains is to define p(mi|xt, zt) for the specific sensor which is used to

construct the map. In the case of planar laser scanners, the main sensor employed

in this work, it is calculated via ray-tracing laser scan points from the laser centre.

If a ray from the laser stops near the position of cell mi, then it is assumed mi is an

obstacle and thus p(mi|xt, zt) takes a value greater than p(mi). If the ray continues

unhindered beyond the position of cell mi, then it is assumed mi is freespace and

p(mi|xt, zt) takes a value less than p(mi). Finally, if the ray does not intersect the

position of cell mi, then typically p(mi|xt, zt) takes the value of p(mi), which results

in logit(p(mi|x1:t, z1:t)), from Equation 2.9, maintaining its previous state.

This sub-section serves as a brief overview of occupancy grid mapping and the

reader is encouraged to review [68, 66] for a more in-depth analysis. This technique

will be revisited in Section 3.2.3 of this thesis.

2.3 Target Tracking

Target tracking is the process of estimating the pose (i.e., position and orienta-

tion) of one or many objects based on noisy observations from a sensor. In practice,

the task is often non-trivial due to limited visibility of the sensor, noise in its read-

ings, occlusions of the targets, difficulty in distinguishing multiple targets, and diffi-

culty in differentiating targets from background objects. In this section we present

the Kalman filter state estimation method, along with the Nearest Neighbour and
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Global Nearest Neighbour data association approaches, which are three commonly-

used frameworks for target tracking and will be utilized by the algorithms presented

in this thesis.

2.3.1 The Kalman Filter

In the case of state estimation of a single tracked target with noisy observations,

a Kalman filter can provide an estimate of the target’s state which is more accurate

than any single observation alone [35]. Furthermore, the filter provides optimal esti-

mates in the case of a linear system with Gaussian noise on process and observation

variables. Note that, although it is optimal for state estimation of such systems, it

can still be employed on systems which are actually non-linear or are disturbed by

other types of noise and produce useful, albeit non-optimal, state estimates.

The Kalman filter uses a hidden Markov model (HMM) to model the underlying

dynamics of the tracked object [15]. In common with HMM conventions, it is assumed

that xk is the hidden state (such as the position and velocity of an object) and zk is

the noisy observation of the object. Note that in this case we are assuming discrete-

time intervals between observations and state updates of the system, where k ∈ N is

an index for each timestep. Further extensions for the Kalman filter for continuous-

time systems exist, however they will not be described in this work.

The assumed model for how the system evolves over time is given by

xk = Fxk−1 + Buk + wk, (2.10)

where F is the state transition model (which we assume here is constant, although

it can alternatively be modelled as time-dependent), B is the input model, uk is the
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input at timestep k and wk is a stochastic process noise which is assumed to have

a zero-mean Gaussian distribution w ∼ N (0,Q) with covariance Q (which can also

be modelled as time-dependent but will be assumed constant here). This model thus

combines a linear, deterministic component with a noise component to account for

uncertainties in the process.

Observations are assumed to be generated according to the model

zk = Hxk + vk, (2.11)

where H is the observation model (which we assume here is constant, although it

can alternatively be modelled as time-dependent) and vk is a stochastic observation

noise which is assumed to have a zero-mean Gaussian distribution v ∼ N (0,R) with

covariance R (which can also be modelled as time-dependent but will be assumed

constant here).

The Kalman filter then derives an estimate of the hidden state x̂k along with an

uncertainty covariance Pk using these models together with new observations. At

every timestep, the state estimate is first updated using the state transition model

x̂k|k−1 = Fx̂k−1|k−1 + Buk. (2.12)

Note that x̂k|k−1 refers to the estimated state at timestep k, using only observations

up to timestep k− 1 and that x̂k|k is the estimated state at timestep k, using obser-

vations up to timestep k. Using this notation, x̂k|k is written interchangeably with

x̂k
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Further, the state covariance is updated using the state transition model accord-

ing to

Pk|k−1 = FPk−1|k−1F
T + Q. (2.13)

Note that both of these initial steps are predictive and do not utilize new measure-

ment information from the current timestep k.

Next, a measurement update is made using the latest sensor information to cor-

rect the state estimate and covariance. First, the measurement residual is determined

according to

yk = zk −Hx̂k|k−1. (2.14)

Intuitively, this reflects the amount of “surprise” in the latest observation. That is,

how different our actual observation zk is from what we expect it to be based on our

state estimate x̂k|k−1.

Next, the residual covariance and optimal Kalman gain are calculated by

Sk = HPk|k−1H
T + R (2.15)

Kk = Pk|k−1H
TS−1k . (2.16)

Finally, we can produce an updated state estimate and covariance for the current

timestep

x̂k|k = x̂k|k−1 + Kkyk (2.17)

Pk|k = (I −KkH)Pk|k−1. (2.18)
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2.3.2 Data Association

The Kalman filter is a useful tool for state estimation of a single target where

observations are known unambiguously to have originated from the target. However,

in the case of multiple tracked targets, where observations can originate from all

targets and ambiguity exists regarding which target produces which observation, a

data association method is required. This section briefly outlines the fundamentals

of data association as well as two possible approaches for resolving this problem.

Formally, data association is concerned with finding a correspondence between

a given set of previously tracked objects (referred to henceforth simply as tracks)

Xk−1 and a set of detections, or observations, in the current timestep Zk. This

assignment can then be used to obtain an updated set of tracks Xk by performing

a measurement update on each track using its assigned observation, as is shown in

Kalman filter framework in Section 2.3.1.

In the simplest case, the number of tracks always equals the number of detec-

tions per timestep and there exists a one-to-one mapping between the two. More

complicated cases arise, for example, when new objects can enter and leave the sen-

sor’s field of view, necessitating track initiation and deletion algorithms. Further

issues emerge when spurious observations can arise from non-tracked, background

objects or when the tracked objects can be temporarily occluded. In such cases, the

assignment space for matching tracks to observations should be expanded to include

these possibilities in order to achieve best performance.

There exist a number of approaches for handling this data association problem

as well as numerous configurations for each approach depending on the problem,
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sensor configuration and assumptions adopted [4]. In the following two subsections,

we introduce two possible methods: the Nearest Neighbour and the Global Nearest

Neighbour data association approaches.

Nearest Neighbour

The Nearest Neighbour (NN) approach is perhaps the simplest assignment method

for performing data association [18]. Using this approach, one first calculates a

distance matrix D ∈ RN×N between every track and every observation

Di,j = d(Xi,Zj) ∀i = 1, 2, ..., N, j = 1, 2, ..., N. (2.19)

Then, one greedily matches detections to tracks by sequentially selecting the closest,

unassigned track-detection pair from D until all are assigned.

Several metrics exists for the track-observation distance calculation [9], perhaps

the simplest of which is the Euclidian distance

d(Xi,Zj) = dEuclid(X
i,Zj) = ‖Xi − Zj‖2. (2.20)

In many cases, however, one can achieve more accurate assignments by also utilizing

information from uncertainty covariances from the track state estimates [18], such

as those provided by the Kalman filter in Section 2.3.1. In such cases, the Euclidian

distance can be replaced with the Mahalanobis distance, which is calculated by

Di,j = dMahalanobis(X
i,Zj) =

√
(Zj −Xi)T (Si)−1(Zj −Xi), (2.21)

where Si is the innovation covariance for track Xi.
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The NN data association approach benefits from a simple implementation, how-

ever, due to its greedy assignment method, it is suboptimal [4].

Global Nearest Neighbour

The Global Nearest Neighbour (GNN) approach is a data association method which

minimizes the cumulative distance of all assignments in the matrix D. This typically

results in less assignment errors compared to the NN approach [39].

In the literature, finding the matchings in D which minimize the cumulative

distance is typically referred to as the linear assignment problem or simply the as-

signment problem [14], and there exist a number of published methods and libraries

for finding the optimal solution. For example, two commonly used methods are

the Munkres assignment algorithm [40] and the Jonker-Volgenant assignment algo-

rithm [33].

While the GNN approach is typically superior to the NN approach at producing

accurate assignments, it suffers from a slower computation time. Specifically, the

best solutions for the GNN approach scale at a rate of O(n3) [40], where n is the

number of tracked objects, whereas efficient NN approaches can scale at a more

modest rate of O(n2).

Other Data Association Approaches

In addition to the GNN and NN approaches, there exist many other data associa-

tion techniques, such as the Probabilistic Data Association Filter [5] and the Multi-

Hypothesis Tracker [60, 19]. However, these approaches will not be utilized in this

thesis as the method presented in this work would not benefit from these alternative
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approaches in its current form. For more in-depth analyses in this area, the reader

is encourged examine existing seminal work [4].

Track Initiation and Deletion

For each data association approach, there exist several methods for handling the

special cases of track initiation, deletion, occlusion, or false position observations.

Tracks can be initiated in the simplest case by starting a new track for every

unassigned measurement at each timestep [39, 52]. A more conservative approach,

which is useful in situations where noisy background measurements can arise, is to

first start a potential track for every unassigned measurement, then to only intiate

a confirmed track once the potential track has been assigned measurements across

multiple timesteps [29].

To remove tracks when objects leave the sensor’s field of view, common ap-

proaches include deleting targets which have not been seen for a threshold number

of scans scans or deleting targets which have a position covariance larger than a

threshold [9].

In other works, occlusions are commonly handled as missed observations so when

a target is occluded for a long period of time, its track is deleted [51]. However, more

complicated methods also exist for occlusion reasoning which use prior information

of the environment to potentially improve tracking and reduce the number of tracks

deleted during temporary occlusions [46].

Finally, false positive measurement observations are commonly handled im-

plicitely with the track initiation scheme: any targets which are not promoted from

potential targets to confirmed targets are assumed to have been false positives [1].
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2.4 Supervised Machine Learning

In the general task of supervised machine learning, a set of labelled samples is

provided which are assumed to be drawn independently and identically distributed

(i.i.d.) from an underlying probability distribution [8]. Each sample {x, y} consists

of a set of M features x ∈ X and a label y ∈ Y . In general, the feature set x can

consist of variables from a number of domains, such as categorical (e.g., x ∈ NM),

real (e.g., x ∈ RM), integer (e.g., x ∈ ZM) or some mixture across various domains.

It is assumed to be visible when samples are provided from outside the training set.

The label y, on the other hand, is assumed to be hidden when samples are provided

from outside the training set. It is therefore typically the target variable which one

desires to predict in practice. In the case of classification, it is typically categorical

(e.g., y ∈ N), whereas in the case of regression, it is typically real-valued (e.g., y ∈ R).

The general goal of supervised learning is thus to use a provided set of labelled

training data D = {X i,Y i}Ni=1 to learn a function f : X → Y , which is able to predict

labels Y as accurately as possible on unseen data using the given features X .

In the following subsections we review two types of supervised learning algo-

rithms: the decision tree classifier as well as the random forest classifier. First, the

decision tree classifier is presented as it is used as an integral component of the ran-

dom forest classifier, then the random forest classifier is presented as it is the method

chosen for supervised learning in this work. Rationale for choosing the random forest

classifier over other methods include its simple implementation, accuracy of predic-

tion, robustness to hyper-parameter selection and invariance to the scaling and types

of input features [22].
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2.4.1 Decision Tree Classifier

Decision tree classifiers are a class of supervised machine learning models which

predict output classes using sequences of binary decisions learned on the input fea-

tures [11]. The decisions are learned by greedily finding the feature and decision

threshold for any of the features which splits the data as much as possible into its

distinct classes. This greedy partitioning of the data is then repeated and applied

recursively to the nodes (i.e., subgroups) of data produced in the previous step until

all nodes are fully split into distinct classes or a termination criterion is met.

Several possible metrics exist to determine the optimality of the decision tree

split, such as Gini impurity [11] and information gain [59]. Here, we present the Gini

impurity metric as it is used in the algorithms in this thesis and is the default metric

in widely-used machine learing software implementations [56, 10]. Its calculation is

also very similar to the information gain calculation and it has been shown in other

works that the choice of metric has had little influence on practical performance [65].

As defined in [11], the Gini impurity for a set of categorical samples, y =

{y1, y2, ..., yN}, is

IG(y) = 1−
M∑
i=1

(βi)
2
, (2.22)

where each yi ∈ {1, 2, ...,M} is a category label, and

βi =

∑N
j=1 I(yj = i)

N
(2.23)

is the fraction of samples in the set with a category label of i (i.e., the empirical fre-

quency). Note that I(·) is used here as a binary indicator function, with I(true) = 1
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and I(false) = 0. In essence, Gini impurity measures the expected fraction of incor-

rectly labelled samples if labels were chosen randomly from the empirical frequency

of each category in the set.

To use this metric to determine a decision feature and threshold for splitting

the data, one can exhaustively test all possible splits, each resulting in two new

distinct sample sets. The feature and threshold which provides the lowest average

Gini impurity across both sets is then selected.

As decision trees tend to be low-bias, high-variance classifiers, they are prone

to overfitting [30]. To counter this, common strategies are to either use a set of

termination criteria that encourage training to stop prematurely or to implement

methods such as post-pruning. Example termination criteria include the decision

tree exceeding a threshold maximal depth, the tree exceeding a threshold maximum

number of total leaf nodes, nodes having less than a threshold minimum number of

samples or nodes having less than a threshold minimum number of samples required

to exist after a split.

2.4.2 Random Forest Classifier

A random forest classifier is an ensemble classification model which uses a census

voting from a set of stochastically-trained decision trees to classify new samples [13].

It is trained by constructing a set of many decision trees, with the exact number

of trees specified by a hyperparameter. Each decision tree is trained using a subset

of size N samples drawn with replacement from the original training data, where

N is the total number of samples in the training data. This is an example of the
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more general method called bagging, which is used to reduce variance in supervised

learning models [12].

Individual decision trees are then trained according to the standard training

method presented in Section 2.4.1 with the minor difference being that only a random

subset of features is considered for each split, where the number of features to use

is specified by a hyperparameter. Using random subsets of features in this manner

increases bias of the individual decision trees, which is undesirable. However, this

is compensated by a reduction in correlation among trees in the random forest and

therefore a reduction in variance in the overall ensemble of decision trees. Further,

each individual decision tree has similar termination criteria to those outlined in

Section 2.4.1.

At test time, a given sample can be classified using the set of decision trees

by aggregating the classification output of each individual tree. Methods for com-

bining outputs from all trees include a majority voting scheme, or by averaging the

probabilistic prediction from each tree [56].

Hyperparameters for the random forest classifier, such as the termination condi-

tions and the number of features to use on each split can be determined using cross

validation. However, the hyperparameter specifying the number of decision trees

to use in the random forest classifier can be treated differently than the others. In

general, increasing the number of decision trees will increase classification accuracy

on test data asymptotically to an upper limit, with the only downside to using more

decision trees being a slower computation time. Therefore, this parameter can be

set by plotting the out-of-bag error (the classification error on samples only tested
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on trees which did not use them for training) vs. the number of decision trees and

selecting a reasonable amount at which the out-of-bag error plateaus [32].
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CHAPTER 3
Joint Leg Tracker

In this section, we present our system for autonomously detecting, tracking and

following people using 2D laser scanners. Our proposed system, which we call the

Joint Leg Tracker, includes several components. The autonomous person detection

is achieved using clustering over laser detections; confidence levels are also assessed

using supervised machine learning to help prune false positives. The autonomous

tracking is achieved using a combination of Kalman filter (for predictive over con-

secutive scans) and a GNN approach to resolve the scan-to-scan data association

problem. Finally, a control algorithm is used to follow the tracked target.

Our goal in desiging the tracking system is to provide robust information on the

locations and identities of people around the chair. Specifically, the system would

ideally be able to detect and track anyone within range of the sensors and would

neither mix up identities of people nor errorneously report non-human objects as

people. This information is then needed for the autonomous following module.

The design of the autonomous following module was focused on maintaining a

set distance away from the tracked person, reacting to their position changes as fast

as possible, without causing overshoot or jerkiness in the robot.
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3.1 Autonomous Person Detection

The laser scanner returns a vector of distance measurements taken on a plane,

roughly 30cm from the ground, at a resolution of approximately 1/3◦. An example

image showing a set of returned scan points is shown in Figure 3–1.

Figure 3–1: Raw scan points from an example scan. The blue-green axis shows the
position and orientation of the laser scanner and scan points are shown in red.

Scan points returned are first clustered according to a fixed distance threshold,

such that any points within the threshold are grouped together as a cluster. The

threshold is chosen to be small enough to often separate a person’s two legs into

two distinct clusters, but to rarely generate more than two clusters per person. To

mitigate noise, clusters containing less than three scan points are discarded in low-

noise environments and clusters containing less than five scan points are discarded

in high-noise environments. The positions of all clusters are then transformed into
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a reference frame which uses the robot’s odometry to compensate for its egomotion.

An example of this clustering applied to a laser scan is shown in Figure 3–2.

Figure 3–2: Clustering of scan points from an example scan. Cluster centroids are
shown with black spheres and laser scan points are shown in red squares.

Detected cluster centroids are used as observations for the tracker. The obser-

vations at timestep k are denoted as

Zk =

{
z1
k, z

2
k, ..., z

Mk
k

}
where Mk is the total number of detected clusters at time k.

Clusters are further classified as human or non-human, based on a set of geo-

metric features of the clusters. The features are listed in Table 3–1 and extend the

set proposed in [2] and [44]. The classification is done using a random forest classifier

whose training implementation is described in detail in Section 4.1.1.
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Figure 3–3: Confidence calculation output on clusters from an example scan. Lighter
blue spheres indicate clusters with a higher confidence value. Note how scan clusters
which have a semi-circular, curved shape in the laser scan have a greater resemblance
to human legs than other clusters and therefore have a lighter blue colour.

One benefit of using an ensemble classification method is that a measure of con-

fidence in the classification can be extracted by considering the number of individual

decision trees predicting each class. A function for extracting this confidence is in-

cluded in the random forest classifier implementation for OpenCV [10]. Thus, rather

than using the binary output of the classifier (human/non-human), we consider the

confidence level (from 0-100%) from the classifier and pass this information (along

with the cluster centroid location) to the tracking module.

An example of the confidence calculation output is shown in Figure 3–3. Further,

psuedocode for this module is included in Algorithm 1.
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Data: Laser scanner reading Sk, robot postion estimate from odometry Ok

Result: Laser scan cluster centroids and confidences Zk = {zik, conf
Z,i
k }Mi=1

C ← ∅ // Set of clusters of raw scan points

foreach scan point ss in Sk do
cc ← ∅ // Closest cluster

dc ← Dc,max // Euclidian distance to closest cluster

foreach cluster c in C do
foreach scan point sc in c do

if ‖ss − sc‖2 < dc then
dc ← ‖ss − sc‖2
cc ← c

end

end

end
if cc 6= ∅ then

cc ← ss ∪ cc // Add scan point to existing cluster

else
C ← {ss} ∪ C // Create new cluster

end

end

Zk ← ∅ // Cluster centroids and confidences

foreach cluster c in C do
zk ←Centroid(c) // Centroid calculation

zk ← Transform(zk, Ok) // Egomotion compensation

confZk ← Confidence(c) // Human confidence calculation

Zk ← {zk, confZk } ∪ Zk

end

return Zk
Algorithm 1: Laser scan clustering. Note that this algorithm can result in
over-segmentation in certain circumstances because it can only add scan points to
existing clusters and cannot join two already existing clusters. This, however, is
mitigated by the fact that scan points are iterated over sequentially in a clock-wise
direction, such that cluster joining events would be a rare occurrence.
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Table 3–1: Features used for confidence calculation of scan clusters.

Number of points Width Length
Standard deviation Avg dist. from median Occluded (boolean)
Linearity Circularity Radius of best-fit circle
Boundary length Boundary regularity Mean curvature
Mean angular diff. Inscribed angular var. Dist. from laser scanner

3.2 Autonomous Tracking of Multiple People

While our ultimate goal in designing the tracking and following system is to

follow a single person, the tracking system was designed to be capable of tracking

multiple people. This was done with the intention of reducing the possibility of con-

fusing the identify of the person being followed when operating in densely populated

environments.

3.2.1 Kalman Filter Tracking

The position of each detected cluster (regardless of confidence level) is individ-

ually tracked over time using a Kalman filter [35]. We refer to each Kalman filter

which tracks a scan cluster over time as a track denoted as xj
k and the set of all

active tracks as

Xk =

{
x1
k,x

2
k, ...,x

Nk
k

}
,

where Nk is the total number of tracks at time k. Further, the set of tracks Xk

also includes a single track for each tracked person (their initiation is introduced in

Sec. 3.2.4).
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The Kalman filter for each track has a state estimate

xj
k =



x

y

ẋ

ẏ


containing the position and velocity of the cluster in 2D coordinates. New tracks are

initialized with a velocity of zero and existing tracks are updated with a constant

velocity motion model, according to

F =



1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1


.

Process noise, w, is assumed to be Gaussian white noise with diagonal covariance

Q =



qp 0 0 0

0 qp 0 0

0 0 qv 0

0 0 0 qv


.

Since only the position of each cluster is observed at each timestep, the obser-

vation matrix is

H =

1 0 0 0

0 1 0 0
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and the observation noise has a covariance of

R =

r 0

0 r

 .
In tuning the Kalman filter, it was found that a small observation noise covariance

(r = 0.12m) is sufficient because position measurements from the laser scanner are

highly accurate.

3.2.2 Global Nearest Neighbour Data Association

Since the system is designed to track all detected scan clusters, uncertainty arises

pertaining to how detections Zk should be matched to tracks from the previous time

Xk−1 to produce updated tracks Xk for the current time. This can potentially become

an intractable combinatorial optimization problem. To address this, we use a GNN

data association approach which is solvable in polynomial time (O(max(Nk,Mk)3)),

via the Munkres assignment algorithm [40].

First, all tracks Xk−1 are propagated to produce the state estimates Xk|k−1 for

time k. Next, the Munkres cost matrix is populated with the cost of assignment

between every propagated track and every detection. The cost metric used in our

tracking system is the Mahalanobis distance1 between the detection zi
k and the prop-

agated track xj
k|k−1. The covariance used to calculate this distance is the innovation

1 Note that other GNN data association approaches have recommended minimiz-
ing the square of this distance [39]. We found best results minimizing the non-squared
distance in our applications.
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covariance, which, in the case of the linear Kalman filter, is

Sj
k = HPj

k|k−1H
T + R. (3.1)

where Pj
k|k−1 is the prediction covariance of the propagated track xj

k|k−1. Here we

use a higher noise covariance (r = 0.52m) to allow more flexibility in associations.

A threshold is imposed such that detections outside the pth percentile confi-

dence bounds of the expected observation are given an arbitrarily high assignment

cost, costmax. Since the Munkres algorithm requires a square matrix and Nk is often

different from Mk due events such as people entering and leaving the field of view of

the sensor, the cost matrix is padded with costmax to produce the necessary shape.

When an assignment is made between a detection and a track by the Munkres al-

gorithm and the associated cost is costmax, the assignment is ignored. Otherwise,

the track is updated with the position and the confidence-level of the detection.

The position is used to perform an observation update in the track’s Kalman filter

to produce the updated track positions Xk for the current time k. Tracks with-

out matched detections are propagated forward without observations. Detections

without matched tracks spawn new tracks at their current position. The confidence

of each track, denoted confT,jk , is computed by the exponentially-weighted moving

average

confT,jk = αconfT,jk−1 + (1− α)confZ,ik , (3.2)

where confZ,ik is the confidence of the ith detection which was assigned to the jth

track and α is the parameter specifying the amount of smoothing (set to 0.95 in this

work).
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Figure 3–4: Tracked scan clusters in an example laser scan. Small colourful cylinders
show the estimated positions of tracked laser scan clusters.

Further, since people are represented as a single track but people’s legs can

produce between 0-2 observations (depending on the number of legs visible to the

laser scanner and whether or not their legs have been clustered together), an identical

temporary track is created for each person before the data association. If both of

the person’s tracks are matched to detected scan clusters, then the tracked person’s

position is updated with the mean of the detections’ positions. If only one track is

matched to a scan cluster, then the tracked person’s position is updated with the

mean of the detection’s position and the propagated position of the person’s track.

After the person’s original track has been updated, the temporary track is deleted.

An example image showing the estimated positions of tracked scan clusters is

shown in Figure 3–4. Further, psuedocode for the data association portion of this
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algorithm is shown in Algorithm 2 and psuedocode for the measurement update

portion of this algorithm is shown in Algorithm 3.

3.2.3 Local Occupancy Grid Mapping

To improve robustness, an odometry-corrected local occupancy grid map is con-

structed and updated after every observation with any scan clusters not associated

with tracked people, on the assumption that these are non-human detections. The

map covers a 20m × 20m square area, at a resolution of 5cm × 5cm/cell, and is

updated periodically to remain centred at the latest position of the laser scanner.

By default, all cells are assumed to be freespace until updated with a non-human

observation (that is, the prior used for updates, p(mi), is less than the threshold at

which we assume a cell is in freespace).

The local map is used to assist with the data association by assigning the max-

imum cost, costmax, to matchings between clusters in occupied space and human

tracks. This is helpful to prevent situations where a tracked obstacle cluster is split

due to an occlusion and, simultaneously, a nearby person’s leg is occluded, poten-

tially resulting in a match between the person track and the obstacle cluster. The

map is also used to disallow person track initiations in occupied space, which can

occasionally arise from stationary non-human objects which can appear to be moving

due to a changing perspective of the laser scanner.

An example map constructed from a series of laser scans is shown in Figure 3–5.

3.2.4 Person Track Initiation and Deletion

To keep the number of person tracks manageable, initiation conditions are ap-

plied, using the following criteria: (1) a pair of tracks are detected, which move a
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Data: Laser scan cluster centroids and confidences Zk = {zik, conf
Z,i
k }Mi=1,

estimated state, covariance, confidence and human indicator of
tracked objects from previous timestep
Tk−1|k−1 = {xik−1|k−1, P i

k−1|k−1, conf
T,i
k−1, H

i}Ni=1, local grid occupancy
map from previous timestep Mk−1

Result: Assignments between clusters and tracked objects Ak, track-cluster
distance matrix Dk

Tk|k−1 ← ∅ // Propagated tracks and uncertainties

foreach {x, p, c, h} in Tk−1|k−1 do
Tk|k−1 ← Propogate(x, p, c, h) ∪ Tk|k−1
if h = True then

Tk|k−1 ← Propagate(x, p, c, h) ∪ Tk|k−1 // Duplicate human tracks

end

end

P ← |Tk|k−1|
Dk ← {costi,jmax}

max(P,M),max(P,M)
i=1,j=1 // Track-cluster distance matrix

for i← 1...P do
for j ← 1...M do

if dMalhanobis(x
i
k|k−1, z

j
k) < DMalhanobis,max then

// Disallow matchings between humans and detected

clusters in occupied space

if H i = False or Mk−1(z
j
k)= freespace then

Di,j
k ← dMalhanobis(x

i
k|k−1, z

j
k)

end

end

end

end

Ak ← Munkres(Dk) // Minimum assignment

return Ak, Dk
Algorithm 2: Cluster to track data association.
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Figure 3–5: Example local occupancy grid map constructed from a series of laser
scans. Black cells in the map (mostly appearing near laser scan points) show a
strong occupied belief, while white cells show a strong freespace belief.

given distance (0.5m) without drifting apart, (2) both tracks maintain a confidence

level above a threshold confmin, and (3) both are in freespace (as computed from the

local occupancy grid map). Upon initiating a person track, the person’s position is

estimated to be the mean of the positions of the pair of associated leg tracks. Then,

the leg tracks are deleted and only one track is kept representing the position of the

person.

Finally, human tracks are deleted when their innovation covariance S is greater

than a threshold, or confidence over the track drops below the threshold confmin.
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Figure 3–6: Tracked people in an example laser scan. Spheres over large cylinders
show the Joint Leg Tracker’s estimated positions of people in the frame.

The procedure for track initiation and deletion is described in Algorithm 4. An

image showing an example of the complete tracking system’s estimated position of

people in a laser scan is also shown in Figure 3–6.
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Data: Laser scan cluster centroids and confidences Zk = {zik, conf
Z,i
k }Mi=1,

propogated state, covariance, confidence and human indicator of
tracked objects from previous timestep
Tk|k−1 = {xik|k−1, P i

k|k−1, conf
T,i
k−1, H

i}Pi=1, assignments between clusters
and tracked objects Ak, track-cluster distance matrix Dk

Result: Updated tracks Tk|k, matched scan clusters Zmatched

Tk|k ← ∅ // Updated tracks

Zmatched ← ∅ // Matched clusters

for i← 1, 2, ..., P do
if IsNotDuplicate(i) then

j ← Ak[i] // Assigned cluster index by Munkres

z ← ∅ // Cluster for measurement update

if Di,j
k < costmax then

z ← zjk
Zmatched ← zjk ∪ Zmatched

end
if H i = True then

jduplicate ← A
Duplicate(i)
k

if D
i,jduplicate
k < costmax then

if z = ∅ then

z ← z
jduplicate
k

else

z ←Avg(z, z
jduplicate
k )

end

Zmatched ← z
jduplicate
k ∪ Zmatched

end

end
if z 6= ∅ then

Tk|k ← MeasurementUpdate(xik|k−1, z) ∪ Tk|k
else

// Update without measurement

Tk|k ← {xik|k−1, P i
k|k−1, conf

T,i
k−1, H

i} ∪ Tk|k
end

end

end
return Tk|k, Zmatched

Algorithm 3: Track measurement update.
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Data: Laser scan cluster centroids and confidences Zk = {zik, conf
Z,i
k }Mi=1,

state, covariance, confidence and human indicator of tracked objects
Tk|k = {xik|k, P i

k|k, conf
T,i
k , H i}Pi=1, matched scan clusters Zmatched, local

grid occupancy map from previous timestep Mk−1
Result: Updated tracks Tk|k accounting for track initiation and deletion

foreach zk in Zk \ Zmatched do
Tk|k ← NewNonHumanTrack(zk) ∪ Tk|k // Unmatched clusters

end

foreach {x, p, c, h} in Tk|k do
s← CalcResidualCovariance(p)
if s > Covmax or (h = True and c < confmin) then

Tk|k ← Tk|k \ {x, p, h, c} // Track deletion

end

end

for i← 1, 2, ..., P do
for j ← 1, 2, ..., P , j 6= i do

if confT,ik > confmin and confT,jk > confmin

and DistanceTravelledTogether(T i
k|k, T j

k|k) > Dmin

and Mk−1(x
i
k|k) = Freespace and Mk−1(x

j
k|k) = Freespace then

Tk|k ← NewHumanTrack(T i
k|k, T j

k|k) ∪ Tk|k // New person track

Tk|k ← Tk|k \ T i
k|k, T

j
k|k // Remove old leg tracks

end

end

end

return Tk|k
Algorithm 4: Track initiation and deletion.
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3.3 Autonomous Following: Navigation and Control

To enable the robot to autonomously follow one of the tracked people, the

system has been incorporated with a person-following control system developed by

N. Olmedo and H. Zhang at the University of Alberta [54], which is described in this

section. Note that we do not claim the person-following control system itself is a

contribution of this thesis, however, we do include the successful integration of our

person tracking algorithm with it as a contribution.

To initiate person following, a single human track is selected as input to an

Object Following Controller (OFC) [54]. The track can be manually selected by

the robot operator, or automatically selected using a predefined decision criteria,

such as picking the human closest to the robot. The OFC uses the track’s latest

state estimate to compute the difference (position error) from the desired position

of the human with respect to the robot (position goal). The position error is then

used to compute the robot’s velocity setpoints for low-level actuator controllers. The

motion generated decreases the position error over time and results in a trajectory

that causes the robot to follow the human.

To minimize the position error of the tracked human, the OFC modulates the

robot’s angular and linear velocity setpoints independently. Two vectors are used

for these calculations: a vector from the robot’s center to the goal position, and a

vector from the robot’s center to the human position. The first vector is expected to

be constant (as long as the goal position does not change), while the second vector

changes as the human and robot move with respect to each other. The control actions

aim to equalize the length of these vectors, and drive the angle between them to zero.
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A Proportional-Integral-Derivative (PID) controller [3] was implemented to calculate

the angular velocity setpoint using the angle between the vectors, while a second PID

controller calculates the linear velocity setpoint using the difference in lengths of the

vectors. Both controllers were tuned using classical Ziegler-Nichols method [71]. A

dead-band zone was defined to address vibrations in the control actions when the

position error is too small.

3.4 Existing Person Tracking Techniques

In additional to our novel work outlined in the previous subsections, there exist

numerous previously published methods on themes of autonomous person detection,

tracking and following. This section outlines many of the major prior developments

in these areas. Table 3–2 is also provided to summarize the works described in this

section.

Most previous work focuses on only one or two of the three identified sub-

problems: detection, tracking and following. Few papers present integrated systems

with state-of-the-art improvements in all three components. We focus in particular

on work that uses depth sensors, such as laser or RGB-D, as those are the sensors

available on our SmartWheeler robot, as well as on numerous other indoor, outdoor

and assistive robots. In comparison to camera sensors, they also provide data which

is lighting invariant, inexpensive to process and has a wide field of view.

3.4.1 Using Only Laser Scanners

Montemerlo et al. [49] were possibly the first to present a method for automati-

cally locating and tracking people from laser data. They proposed using a conditional
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particle filter for reasoning jointly about location of the robot as well as the possi-

ble locations of people. One drawback of this work is the necessity for an a priori

occupancy grid map of the operational environment, which is used for background

subtraction to detect the person.

Schulz et al. [62] proposed to estimate the number of people in the current

scan based on the number of moving local minima in the scan. Unfortunately, this

requires people move continuously to be tracked, and is susceptible to poor results in

cluttered environments (where the number of local minima is misleading). They also

introduced a Sample Based Joint Probabilistic Data Association Filter (SJPDAF)

over the observed local minima to improve tracking reliability.

Topp et al. [69] extended [62], by picking out shapes of legs and person-wide

blobs in laser scans using hand-coded heuristics, to allow detection and tracking

of both stationary and moving people. The approach was also combined with a

person following navigation algorithm, combining both the tracked person’s position

as well as the location of nearby obstacles to determine suitable control. Gockley et

al. [26] used a similar approach, with a few modifications, including using a Brownian

motion model for the tracking component. This approach was further extended by

Hemachandra [31], which improved the person-following component by proposing

a navigation approach that accounts for personal space, while avoiding obstacles.

Unfortunately these approaches cite tracking difficulties in cluttered conditions, since

they relied primarily on detecting clusters of a heuristically-determined size in the

laser scan.
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More recently, Arras et al. [2] reduced this limitation by proposing a method

that detects legs by first clustering scan points and then using supervised learning

to learn shapes of leg clusters. Detected legs are tracked over time using constant-

velocity Kalman filters and a multiple-hypothesis tracking (MHT) data association

technique. This approach benefits from its ability to maintain (but not initiate)

tracks of stationary people, and does not require an a priori occupancy grid map

of the environment. Initial results for this method appear promising, but demon-

strations on walking-speed robots in cluttered and crowded areas have yet to be

performed. Thus, many questions remain about the robustness and generalizability

of the approach.

Finally, Lu et al. [44] extended an existing ROS package originally developed at

Willow Garage, that had not been formally published.2 This method first matches

scan clusters using NN data association, then determines which clusters are human

legs using a supervised learning approach similar to [2]. In the data association liter-

ature, it is generally agreed that the NN filter is outperformed by more sophisticated

methods, such as the GNN filter, SJPDAF or MHT [9]. Furthermore, the data asso-

ciation approach only considers absolute Euclidian distances while ignoring valuable

uncertainty covariances that can improve tracking.

Navarro-Serment et al. [53] present the only published work, which we are aware

of, that aims to track people from a mobile robot in hilly, outdoor environments using

2 http://www.ros.org/news/2009/12/person-following-and-detection-in-an-
indoor-environment.html
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only 2D laser scanners. The method’s applicability to cluttered or crowded environ-

ments is questionable since it uses a NN data association approach and clusters scan

points with a relatively large threshold of 80cm and would thus be prone to clustering

people together with nearby obstacles.

3.4.2 Using Other Sensor Modalities

Munaro et al. [52] proposed to track people in real-time with an RGB-D sensor

on a mobile robot, demonstrating promising results with high update rates running

on a CPU only. Similarly, Gritti et al. [28] demonstrated a method for detecting

and tracking people’s legs on a ground plane from a low-lying viewpoint with the an

RGB-D sensor. However the RGB-D sensor’s narrow field of view, minimum distance

requirement, and inability to cope with sunlight, limit this technique’s applications

for person-following.

Cosgun et al. [16] presented a novel person following navigation technique which

is most similar to a Dynamic Window Approach [25]. The initial detection was

acquired via a user indicating the desired person they wish to follow in the an RGB-D

sensor’s image. Tracking was then achieved via lasers using estimated leg positions.

This approach can only track one person, and uses a NN matching over a small

number of laser segment features, thus is not robust in situations with multiple

individuals.

Kobilarov et al. [37] developed a person-following Segway robot using an omni-

directional camera and a laser scanner. Nonetheless, variable environment lighting,

backgrounds and appearances of people are factors which can be difficult to control

for and can mislead vision-reliant tracking systems.
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Table 3–2: Overview of related work on people tracking on mobile robots with planar laser scanners.
Paper Sensors Environ. Detection Data Assoc. Following Control

Montemerlo et al. [49] laser indoor background subtraction Conditional PF none
Schulz et al. [62] laser indoor moving local minima SJPDAF none
Topp et al. [69] laser indoor leg shapes (heuristic) SJPDAF ∼ potential field
Gockley et al. [26] laser indoor leg shapes (heuristic) NN direct & path
Hemachandra et al. [31] laser indoor leg shapes (heuristic) NN ∼ potential field
Arras et al. [2] laser indoor leg shapes (ML) MHT none
Lu et al. [44] laser indoor leg shapes (ML) NN none
Munaro et al. [52] RGB-D indoor height & HOG GNN none
Gritti et al. [28] RGB-D indoor leg shapes (ML) NN & PDAF none
Cosgun et al. [16] laser & RGB-D indoor leg shapes (heuristic) NN ∼ dynamic window
Kobilarov et al. [37] laser & omni-camera outdoor person shapes (heuristic) PDAF direct & path
Navarro-Serment et al. [53] laser outdoor person shapes (heuristic) NN none
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CHAPTER 4
Benchmarks and Evaluation

This chapter describes how the tracking system detailed in Chapter 3 has been

implemented on multiple robots and evaluated in real-world scenarios.

4.1 Benchmarks

To objectively evaluate the performance of our tracking system against exist-

ing and future works, an objectively-evaluated benchmark is required. Some prior

benchmarks for the evaluation of the person detection and tracking module are avail-

able [45], however to the best of our knowledge, they are collected from a stationary

laser scanner and are at a height of 0.8m, which is above the leg-region of many pedes-

trians and thus incompatible with our tracking method. The method of ground-truth

annotation is also ambiguous, as it is unclear under what conditions a person is la-

belled as visible or occluded (an issue described in [48]). Further, the datasets are not

ROS-enabled and the person-detection module used to detect people with the given

laser scanner has not been released, making comparisons difficult on other platforms.

To palliate some of these gaps, and allow thorough evaluation both of our own

and future methods, we collected and will be publicly sharing two new benchmarks

for person detection and tracking, detailed in Table 5–1. These provide 45 minutes of

data recorded onboard moving robots, are fully ROS-enabled and include annotated

people tracks labelled in the laser scans using an objective, unambiguous procedure,

with video data to corroborate ground-truth when necessary.
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4.1.1 Robot Platforms

Two different types of robots were used for benchmark data collection: the

Smartwheeler robot was used in indoor environments, while the Husky A200 was

used in outdoor environments.

The SmartWheeler robot, shown in Figure 4–1, is an intelligent powered wheelchair,

designed in collaboration with engineers and rehabilitation clinicians, aimed at as-

sisting individuals with mobility impairments. The robot is built upon a commercial

power wheelchair base, to which we have added onboard computing, three Hokoyu

UHG-08LX laser scanners, several sonars, an RGB-D sensor, on-wheel odometry, and

a touchscreen for two-way interaction. One of the important tasks for the robot is to

automate navigation in challenging environments (crowded rooms, narrow spaces) to

reduce physical and cognitive load on the wheelchair user [34]. The task of moving

around with another individual, whether a friend or caregiver, is also one that requires

substantial concentration, and wheelchair users often comment that it is difficult for

them to simultaneously control their wheelchair (presumably via joystick) and hold

a conversation, thus having the ability to use autonomous navigation capabilities for

walking side-by-side with (or behind) another person is highly desirable [34].

A Husky A200 from Clearpath Robotics, shown in Figure 4–2, is used for the

outdoor experiments in this work. It is a differential-drive robot which is used for

mapping, localization, route following and autonomous navigation on rugged terrain,

such as sand, gravel and grass. An on-board computer is used to interface low-

level controllers and sensors, as well as to process visual and range measurements.

Typically, an additional computer is mounted externally, on top of the platform for
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applications with high computational requirements. It is equipped with an RGB-

D sensor and two Hokuyo URG-04LX-UG01 laser scanners. One laser scanner is

mounted planar to the ground for detecting peoples’ legs and other obstacles, while

the scanner is at an angle approximately 45◦ off the horizontal for detecting peoples’

upper bodies. The scanner mounted planar to the ground is used to collect the 2D

scans used in this study.

The random forest classifier, introduced in Section 3.1, was trained for both

robots on a set of 1700 positive and 4500 negative examples [13]. Positive exam-

ples were obtained by setting up the laser scanner in an open area with significant

pedestrian traffic; all clusters which lay in the open areas and met the threshold in

Sec. 3.1 were assumed to be the result of people and were used as positive training

samples. Negative examples were obtained by moving the sensor around in an envi-

ronment devoid of people; all clusters which met the threshold in Sec. 3.1 were used

as negative training samples.

4.1.2 General Multi-person Tracking

The first benchmark, called General multi-person tracking is designed for eval-

uating performance of general multi-person tracking of pedestrians in natural envi-

ronments. The benchmark is in fact composed of two datasets, one collected from

a stationary robot and one collected from a moving robot. The stationary dataset

includes 7 minutes of tracking data, while the moving dataset includes 5 minutes

of data, and both are fully annotated, including 82 identified people tracks. The

data was recorded onboard the SmartWheeler in the hallways of a university campus
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building during normal opening hours. Each recording includes odometry data pub-

lished at 100Hz and laser data published at 7.5Hz. Video data was also captured,

but was only used to as a reference for annotations of people in the laser scans, and

was not included in the final curated benchmarks (though is available on demand).

All ground-truth people positions were hand-labelled in each laser scan. To

address the issue of whether or not a person should be labelled as visible if they are

partially occluded (an issue raised in [48]), a consistent and objective rule was used:

if a minimum of at least three laser points can be clustered with a Euclidean distance

of 0.13m, and that cluster of points corresponds to a person, then they are marked

as visible in the annotations.

4.1.3 Tracking for Following

The second benchmark, called Tracking for following, is designed to measure

the performance of the detection and tracking modules when applied specifically to

the task of tracking an individual person in the presence of other pedestrians. This

benchmark is also composed of two separate datasets.

In the Following Indoor dataset, the person to be followed was asked to walk

naturally and stop periodically to interact with objects in the environment while

the SmartWheeler followed either from behind or side-by-side, simulating a person-

following situation (for data collection in this benchmark, the robot was manually

controlled). The environment is the same university building as for the General multi-

person tracking benchmark, and includes scenes with natural crowds and clutter, as

well as five instances of pedestrians walking between the SmartWheeler and the

person it was following. Odometry was collected at a frequency of 100Hz and laser
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scans at 15Hz. The position of the person being followed was hand-labelled in every

frame. Altogether, 21 minutes of data were gathered and annotated, including 4.5

minutes of side-by-side following and 16.5 minutes of following from behind.

Figure 4–3 shows an occupancy grid map constructed using the gmapping ROS

package [27] from scans of the university building where the data was collected.

The Following Outdoor dataset was collected with a Clearpath Husky robot

at the Canadaian Space Agency in Saint-Hubert. The laser scanner was mounted

level with the ground, approximately 40cm high. The dataset contains 12 minutes

of data, also fully annotated. Laser scans were collected at a frequency of 10Hz.

Odometry data was collected as well but was ultimately not used as it was found to

be detrimentally inaccurate. The challenge in this dataset is dealing a high degree

of sensor noise, as the laser scanner used is indoor-rated and highly susceptible to

interference from the sun. In this case, the robot was controlled autonomously to

follow the person using the navigation system presented in Sec. 3.3 and an earlier

version of the Joint Leg Tracker presented in Sec. 3. During the experiment, the

tracker failed on two separate occasions and steered the robot such that the person

to be tracked was lost out of frame. Figure 4–4 shows sample images from this

dataset.

4.2 Comparison Person Tracking Approaches

Quantitatively comparing to existing methods from the literature is challenging

due to a scarcity of publicly available code. In our search, we were only able to

find one other open-source ROS-enabled method which could be compared to ours:

the ROS leg detector package used in [44]. To adapt the ROS leg detector to our
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benchmarks, all parameters were kept at their default values except the confidence

threshold was lowered, as the tracker would commonly fail to initiate people tracks

with its default value. Also, the clustering distance and minimum required points

per cluster were set to be the same as for our method.

A variant of our algorithm, which we call the Individual Leg Tracker, is also

included in the comparison. It is identical to the Joint Leg Tracker described in

Sec. 3, except that all tracking is performed on an individual-leg level (not pairs of

legs) and it does not use a local occupancy grid map for data association. In this

case, person tracks are deleted when the two leg tracks separate beyond a distance

threshold, one of the leg tracks has too low of a confidence, or one of the leg tracks

is deleted due to its covariance exceeding a threshold.

Minor modifications of all methods were made to allow for repeatable results on

the benchmarks. This was necessary because the tracking methods require coordinate

transformations be made in real-time, which can cause benchmarks results to vary

depending on the exact time these transformations are made. Each method was

therefore set to use the scan header time to perform the transforms and, when they

were not available, to wait for one second of real-time and, if they were still not

available, the current scan was skipped (although, we found this happened only very

rarely). An option was included in each method to never wait for transforms to

become available but instead to always use the most recent ones. This is how the

system is intended to be used in practice and was the variation used for runtime

profiling.
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4.3 Evaluation Metrics

4.3.1 General Multi-person Tracking

We use the CLEAR MOT metrics for quantitative evaluation of the tracking

system [36]. They are commonly used metrics for multi-object tracking, and provide

scorings of valid assignments, ID switches, misses, false positives (FPs) and precision

of matchings cumulated from every frame. These scores can be aggregated into a

combined overall multi-object tracking accuracy (MOTA) score

MOTA = 1−
∑

k(IDk +Missk + FPk)∑
k gk

(4.1)

where IDk, Missk, FPk and gk are number of ID switches, misses, FPs and ground

truth annotations respectively, at time k. However, the aggregation of the scorings

in the combined MOTA score assumes that three types of errors (ID switches, misses

and FPs) are equally unfavorable, which is arguably not true in most applications,

including ours. We therefore report the raw count of each error type alongside the

MOTA score.

Another relevant CLEAR MOT metric is the mult-object tracking precision

(MOTP), which is defined as

MOTP =

∑
i,k d

i
k∑

k ck
(4.2)

where ck is the number of matchings made between estimated people positions and

ground truth positions at time k and dik is the distance between the ith match.

Intuitively, it provides a measure of how precise a target is tracked when it is being

tracked properly. In the context of person-following, a lower MOTP score would be
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beneficial because a more exact location estimate of the person being followed would

presumably allow the following controller to track the person more precisely.

A threshold distance of 0.75m was used for the CLEAR MOT matching to

determine whether a tracked person should be matched to an annotated ground

truth person.

4.3.2 Tracking for Following

For evaluation in the Tracking for following scenarios, the same CLEAR MOT

metrics are used. However, since we are only concerned with the tracker’s ability to

track a particular person (among several), only the ground-truth positions of the tar-

get person were labelled. Other pedestrians were ignored, and only person-tracking

events corresponding to the target person are reported (i.e., FPs were ignored because

they may have been due to unlabelled pedestrians).

Under such an evaluation framework, the relevant metrics are ID switches and

misses. ID switches represent cases where the track of the target person was switched

with someone or something else, and it would no longer be possible to autonomously

follow them. Misses represent cases where the target person was visible in the laser

scanner’s field of view but was not tracked. In such cases, the robot user would not

be able to lock into the target person to initiate following.
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Figure 4–1: The SmartWheeler robot. Visible are two front Hokuyos laser scanners
(the rear Hokuyo is hidden), the Kinect RGB-D sensor, six sonars and the touch
screen.
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Figure 4–2: The Husky A200 from Clearpath Robotics. Visible are two Hokuyo laser
scanners an RGB-D sensor. Only the laser scanner mounted on the front bumper
was used in this work.
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Figure 4–3: Occupancy grid map showing some of the data collection area for the
Tracking for following benchmark in the university campus building. The map was
constructed using the gmapping ROS package from [27]. Note that such maps are
not provided a priori on the tracking benchmarks.
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Figure 4–4: The person tracking and following system implemented on a Clearpath
Husky during the collection of the Following Outdoor dataset. The robot au-
tonomously followed the participant in an approximately 500m loop on gravel and
grass at the Canadian Space Agency in Saint-Hubert. Two tracking failures occurred,
one of which is shown in the centre-left image, which were caused by extensive sensor
noise, as the laser scanner used is indoor-rated and highly susceptible to interference
from the sun.
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CHAPTER 5
Results and Discussion

This chapter describes, discusses and compares the results of all person-tracking

methods on the benchmarks presented in Chapter 4.

5.1 Benchmark Results

Results from all datasets described in Chapter 4 are shown in Table 5–2. The

Joint Leg Tracker achieves the best results in the Tracking for following tasks by a

large margin. It suffers from only 7 ID switches in the 21 minutes of the Following

Indoor dataset and makes virtually no ID switch errors in the Following Outdoor

dataset (assuming the 2 ID switches which were caused by the person being tracked

moving out of frame for a significant amount of time to not be preventable). It

also achieves the lowest MOTP on all datasets, meaning that when a person is

being tracked properly, it provides the most precise estimate of their location. This

would presumably improve the performance of the following controller, which uses

the location estimate to perform closed-loop control.

Its performance when applied to the General multi-person tracking benchmark

is also favourable but by a lesser margin. It causes significantly less of every type of

error on the Stationary Robot dataset compared to the others and achieves similar

results to the Individual Leg Tracker on the Moving Robot dataset.
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Figure 5–1: Joint Leg Tracker’s cumulative estimated positions of people on the
General multi-person tracking, stationary dataset. The estimated positions are shown
in multi-coloured markers on the ground-plane. Further, the simulated model of the
SmartWheeler used for data collection is shown in the top-middle of the figure. The
figure also shows the lastest laser scan in red, as well as the local grid occupancy
map in grey and black.

The leg detector is outperformed in almost all respects by the other tracking

methods and is generally unable to track anyone persistently in the challenging

benchmark environments, as is shown by its high number of ID switches in all cases.

Fig. 5–1 shows an example output of the Joint Leg Tracker on the General

multi-person tracking, stationary dataset. It is evident in this figure that very few

FPs appear on or near stationary objects in the environment suggesting the local

grid occupancy map is effective at preventing these types of errors.
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5.1.1 Runtime

The average-case runtime of the Joint Leg Tracker is faster than the maximum

scanner frequency in all cases when run on an Intel Core i7 CPU. In the Following

Indoor dataset, which has frequent open areas containing many distinct objects to

be tracked, the slowest single update is slower than the scan frequency by a factor of

approximately four, though the average runtime over the entire dataset is still better

than real-time. The bottleneck in these cases tends to be the tracking and data

association step, which is implemented in Python. In the future we plan to test a

C++ implementation and, if this does not achieve worst-case, real-time performance,

limit the number or distance of clusters which are tracked.

5.2 Discussion

The overall CLEAR MOT scores presented in the benchmarks are significantly

lower than those presented in [45]. However, the results are not directly compara-

ble because of the different sensor configurations and environments. For example,

the laser sensor used in the General multi-person tracking benchmark has a lower

scanning frequency (7.5Hz vs 37.5Hz) and a shorter range (8m vs 80m) than the

laser sensor from the benchmarks in [45]. The shorter range naturally increased the

number of misses since pedestrians would enter and leave the field of view quicker

and with fewer detections, and would therefore spend proportionally more time being

tracked as non-persons before person tracks were initiated.
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Table 5–1: Overview of benchmarks.
Avg. estimated robot Annotated Avg. dist. to

Benchmark Dataset Duration speed when moving (m/s) people tracks person followed (m)
General multi-person tracking Stationary Robot 7m11s n/a 45 n/a

Moving Robot 5m01s 0.9 37 n/a
Tracking for following Following Indoor 21m24s 0.9 1 1.33± 0.57

Following Outdoor 12m00s 0.6 1 1.68± 0.30

Table 5–2: Benchmark results. Bolded values indicate best results for the given metric.
Runtime

Dataset Tracker Valid ID Switch Miss FP MOTA MOTP (m) Worst/Avg (Hz)
Stationary Robot leg detector 427 51 1605 28 19.2% 0.28 19/25

Individual Leg 569 10 1504 61 24.4% 0.23 14/25
Joint Leg 703 8 1372 11 33.2% 0.16 15/25

Moving Robot leg detector 149 15 481 294 -22.5% 0.27 19/25
Individual Leg 160 2 483 88 11.2% 0.17 12/24
Joint Leg 163 2 480 97 10.2% 0.15 11/24

Following Indoor leg detector 15425 196 3425 n/a n/a 0.15 18/25
Individual Leg 17295 73 1678 n/a n/a 0.13 4/19
Joint Leg 18554 7 485 n/a n/a 0.09 4/19

Following Outdoor leg detector 4835 1721 1172 n/a n/a 0.09 22/25
Individual Leg 5348 121 819 n/a n/a 0.11 15/25
Joint Leg 6073 21 104 n/a n/a 0.09 18/25

1 Due to the two cases where the person followed was lost out of frame for a significant amount of time, it is reasonable to expect a
minimum of two ID switches in this dataset.
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CHAPTER 6
Conclusion

6.1 Summary

This work presents a novel method for detecting, tracking and following people

using laser scanners mounted at leg-height. The system integrates a novel Joint Leg

Tracker algorithm with local occupancy grid maps and a method of tracking all scan

clusters, including non-human clusters, to improve tracking in cluttered areas. It

is fundamentally different from previous approaches, such as [2, 44], which require

both legs remain visible to the laser scanner for tracking. Empirically, it has shown

to be effective in the target application of autonomous person following and presents

advantages in general multi-person tracking as well. The tracking method has also

been verified in practice on two separate robot platforms: the SmartWheeler and a

Clearpath Husky. It has additionally been integrated with an autonomous following

navigation system for the Clearpath Husky deployment.

6.1.1 Contributions

The contributions of this work include the novel Joint Leg Tracker algorithm,

which has shown to achieve state-of-the-art performance for person tracking using

planar laser scanners on a set of objectively-evaluated benchmarks. This work also

provides a public release of the benchmarks to facilitate quantitative evaluation of

methods developed in the future. Further included is a validation of the presented ap-

proached on two separate robots: the Smartwheeler and a Clearpath Husky. Finally,
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this thesis also describes how the tracking system can be advantageously integrated

with an autonomous person-following control system.

6.2 Limitations

Although we believe, and have shown in objective benchmarks, that this work

presents a significant improvement over existing systems, it does suffer from several

limitations which are discussed in this section.

6.2.1 Hardware Requirements

The algorithm necessitates the robot being equipped with a planar laser scanner.

They tend to be fairly common on many of today’s mobile robotic systems as they

are often used for mapping and navigation [38, 27]. Thus, many of today’s robots

should be capable of running the algorithm with no physical modification, however,

some still will require alteration and outfitting with the sensor.

Further, the provided software implementation of this work contains a confidence

calculation module which was trained on a Hokoyu UHG-08LX laser scanner with

an angular resolution of 1/3◦. It is currently unknown how laser scanners of other

resolutions would affect the confidence calculation, but we suspect they would require

retraining of the random forest classifier used by it to achieve optimal performance.

The limitations of the laser scanner can be compared to those of a camera,

which are a common alternative sensor for performing person detection and tracking

in other works [61]. Cameras benefit from lower cost and possibly being less intru-

sive to install, however laser scanners have higher accuracy in depth measurements,
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wide field of views and the aforementioned existing presence on many of today’s mo-

bile robots. Thus, from a hardware procurement perspective, the preferred sensor

depends on the context and use cases.

6.2.2 Laser Scanner Height

The algorithm requires the laser scanner be mounted at approximately leg-

height. This is due to its necessity of two distinct tracked clusters for initiating

a person track. If, for example, the laser scanner is mounted at waist-height or

above, then there may only exist one tracked cluster and the system would therefore

be unable to initiate a person track. This issue could potentially be remedied in

future work by re-training the confidence calculation using samples from different

laser scanner heights, and modifying the tracking algorithm to only require one scan

cluster to initiation a person track.

6.2.3 Ground-Plane Assumption

Another limitation of the presented algorithm is that it assumes the robot is

operating on an approximately planar area, with the laser scanner mounted roughly

level to the ground plane. If the laser scanner were mounted at a downwards angle

or the operating area were heavily sloped, ground returns in the laser scan would

likely degrade performance of the tracker.

6.2.4 Data Association

Another potential limitation of the presented system is the GNN data association

method. While it is computationally faster than more sophisticated methods, such

as the MHT and the JPDAF, quantitative experiments exist demonstrating better

assignment performance of these more sophisticated data association methods in
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other application areas. For example, meta-results reported by [9] suggest that the

JPDAF and the MHT generally track targets better in high-clutter environments

with many false positive detections when used in the task of radar tracking. However,

quantitative comparisons specifically in the area of people tracking in 2D laser scans

would be beneficial because it is a fundamentally different domain. For example,

false positive detections are produced systematically by objects in the scan, rather

than randomly over the scanning area, as is often assumed in radar tracking, and

can therefore be accounted for explicitly (e.g., as in our tracker or in [46]).

6.2.5 Evaluation Metrics:

While the CLEAR MOT evaluation metrics were the primary method of evalu-

ation used in this work, other methods exist which have been used by other recently-

published works in the target tracking literature. These include trajectory-based

measures [70], configuration-based measures [64], and a global missmatch method [7].

As outlined in [48], some of the drawbacks of CLEAR MOT metrics include

inconsistent penalizing of tracking errors in some situations with groups of people,

or its lack of penalizing ID switches in quick interactions from multiple people [50].

However, we believe that despite these drawbacks, it is nonetheless a reasonable

choice for quantitative evaluation because all other available alternative methods

suffer from drawbacks of their own. For example, a previously used trajectory-

based metric [70] lacks granularity, only discriminating tracks with three metrics:

“mostly tracked”, “fragmented” and “mostly lost”. Another example is that the

configuration-based approach of [64] provides non-intuitive measurements of FPs
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and misses and has nine metrics for describing results, which can make comparisons

between tracking methods difficult [36].

6.3 Impact and Future Work

The system development and experiments completed thus far indicate that we

have achieved a portable and reliable system. Moving forward, we intend to verify

the usefulness of the system on the SmartWheeler with the target user population.

One goal will be to determine if the system is capable of allowing a smart wheelchair

user to comfortably carry on a conversation with a companion while autonomously

following them side-by-side in busy environments. Additionally, we plan to test the

following from behind functionality, comparing it with side-by-side following, to the

determine conditions in which each approach is favourable.

In the following subsections, we further discuss some potential areas for future

work related to this thesis.

6.3.1 Fusion with Complimentary Sensors

One failure mode of the current system is that it can lose track of people due

to occlusions and cannot reidentify them again when they re-enter the field of view.

To address this, we plan to examine ways the current system can be advantageously

fused with information from camera or RGB-D sensors. One possibile approach

would be to use the camera to learn colour features for recognizing tracked people

and then use these features to perform person re-identification when new tracks are

initiated.

Another failure mode is that false positive and false negative detections can

occur when objects in the surroundings are confused with people. Again, fusion
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with a camera or RGB-D sensor could reduce some of the these cases. Both of the

sensors capture colour images which can be applied to person detection modules

(e.g., [63]) to detect and track people outside the range of the laser scanner, as well

as to prune false positive detections within range. Further, RGB-D sensors provide

a high-resolution depthmap, which has shown to be highly capable of distinguishing

between people and other objects [52].

6.3.2 Incorporating a priori Occupancy Grid Maps

False negative and false positive detections could potentially be further reduced

if this method were to utilize pre-built maps of static obstacles in the environment.

This has proven to be beneficial in previous work concerned with laser-based person

tracking [49].

To provide an example, a naive way to integrate a priori maps could be to use

them in place of the local occupancy grid maps in the Joint Leg Tracker. This would

require first localizing the robot accurately on the map, which could be done using

an existing particle filter localization implementation in ROS [24]. Then, the a priori

maps could potentially be more accurate than the locally constructed maps and our

system might require fewer frames to perform track initation and track deletion.

Further in this line of work, the algorithm could incorporate information from

large-scale maps built as the robot is in operation. For example, one could use large-

scale SLAM systems, such as [38, 27], to build occupancy grid maps in real time,

then use this information to supplement the tracking algorithm when revisiting prior

locations. This would allow the system to not be dependant upon a priori maps but

still benefit from large-scale maps constructed during operation.
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6.3.3 Linear Assignment Problem

This work uses the Munkres algorithm to solve the linear assignment problem in

the GNN data association method [40]. However, another method by R. Jonker and

T. Volgenant [33] has shown to improve assignment runtime efficiency in practical

applications in other works [21]. Thus, it would likely be beneficial to integrate this

algorithm in a future iteration of this work. It is worth noting, however, is that the

algorithm from R. Jonker and Volgenant scales with the same complexity (O(n3))

but its improvements over Munkres in empirical applications have nonetheless been

lauded [21] due to a lower constant-multiple of the complexity.

6.3.4 Application to Clinical Locomotion Analysis

The work presented in this thesis is also under investigation for its potential to

help automatically assess patients’ locomotion patterns following an injury in the

context of a rehabilitation therapy [42]. Previous approaches to this assessment

utilized fixed motion-capture systems, such as in [6] and [41]. Since the presented

approach instead uses a laser range scanner, it benefits from greater portability, less

cost and allowing its users to be tracked naturally as they appear without the need

for added markers.

At the clinical level, the system is being prepared for characterizing the locomo-

tion behavior of stroke patients both in a rehabilitation hospital and in natural living

spaces. The latter deployment in natural living spaces is particularly promising, as

this is the type of study which was not feasible with a fixed motion capture system.

Thus, it is hoped that the present tracking approach is able to capture behaviors not

observed in clinical settings.
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6.3.5 Application to Security, Entertainment and Marketing

We envision this work also has the potential for more wide-ranging beneficial

applications in areas such as security, entertainment and marketing.

A prototype physical security robot has been designed and presented in previous

works [20]. It is a mobile robot which monitors indoor building environments and has

the capability of interacting with the people and objects it detects in its surroundings.

The prototype relies upon 2D laser scanners as well as vision for perception and uses

a laser-based person detection and tracking method. This, and other mobile security

robots, may benefit from the improved tracking performance of our method.

Minerva [67] is an example of an interactive tour guide robot which could en-

hance the experience of museum visitors. It used laser and vision sensors to estimate

the position of itself and people in a building as well as for navigation when leading

people in guided tours. The robot could potentially have operated more effectively in

these populated environments if it had had more accurate information regarding the

locations and identities of people in its surroundings. Thus, it may have benefited

from an implementation of our method.

Finally, our system could be used to improve retail sales and marketing by

tracking the motion patterns of shoppers as they walk through stores [17]. This

information could then be used for decision support and optimizing processes such

as inventory selection and store layout.
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