Speeding up heuristic computation
in planning with Experience Graphs

Mike Phillips' and Maxim Likhachev!

Abstract— Experience Graphs have been shown to accelerate
motion planning using parts of previous paths in an A*
framework. Experience Graphs work by computing a new
heuristic for weighted A* search on top of the domain’s original
heuristic and the edges in an Experience Graph. The new
heuristic biases the search toward relevant prior experience and
uses the original heuristic for guidance otherwise. In previous
work, Experience Graphs were always built on top of domain
heuristics which were computed by dynamic programming (a
lower dimensional version of the original planning problem).
When the original heuristic is computed this way the Experience
Graph heuristic can be computed very efficiently. However,
there are many commonly used heuristics in planning that are
not computed in this fashion, such as euclidean distance. While
the Experience Graph heuristic can be computed using these
heuristics, it is not efficient, and in many cases the heuristic
computation takes much of the planning time. In this work,
we present a more efficient way to use these heuristics for
motion planning problems by making use of popular nearest
neighbor algorithms. Experimentally, we show an average 8
times reduction in heuristic computation time, resulting in
overall planning time being reduced by 66%. with no change
in the expanded states or resulting path.

I. INTRODUCTION

Many of the tasks we would like robots to perform are
highly repetitive, such as transporting objects from one
place to another in a warehouse or clearing the table and
putting dirty dishes in the sink. Many of these tasks also
require motion planning in order to guarantee each motion
is completed in a collision free and efficient manner. With
tasks being relatively similar each time, it is inefficient to
generate each motion from scratch. Instead, we would prefer
for our planners to make use of prior experience to improve
performance.

Planning with Experience Graphs (E-Graphs) was in-
troduced in [1]. This method allows weighted A* based
planners to incorporate previously generated paths and user
demonstrations into the planning process. It does so while
maintaining guarantees on resolution completeness (if a
solution exists from the start to the goal within the user
chosen discretization, the planner will find it) and bounded
suboptimality (the planner’s solutions will be within a user-
chosen factor of the cost of an optimal solution). In motion
planning, A* based methods search from the starting con-
figuration toward the goal state (the reverse is also possible)
by repeatedly choosing a state that has been discovered and
expanding it (applying a set of motions to it and adding the
resulting new states to the set of discovered). These methods

*This research was sponsored by the NSF grant IIS-1409549.
LRobotics Institute, Carnegie Mellon University, Pittsburgh, PA

use a heuristic function which estimates the remaining cost-
to-go from any state to the goal, in order to focus search
effort on states that are likely to lead to the goal quicker.
Experience Graphs construct a special heuristic function for
the A* planner by combining the original heuristic with
previous paths. The result is a heuristic which is goal directed
but biased toward getting there via reusing previous paths
when relevant.

The E-Graph heuristic can build on top of almost any
reasonable user chosen heuristic, but is particularly efficient
to compute when combined with a heuristic computed using
dynamic programming. These tend to be heuristics computed
over lower dimensional versions of the original problem.
For instance, in a robot navigation problem the configuration
space might be position and heading (z,y,6) and a heuris-
tic might be the cost-to-go (ignoring #) for each 2D cell
computed via a single 2D search from the goal. Since the E-
Graph heuristic is also computed by dynamic programming
(Section III-B), it turns out that its computation can be
folded into these dynamic programming-based heuristics
with almost no additional overhead. In previous publications
on Experience Graphs, these types of heuristics were always
used.

However, many commonly used heuristics in robotics are
not computed this way, such as euclidean and manhattan
distance or heuristics based on the dubins car model. For
regular A* searches (without E-Graphs) these types of
heuristics are often efficient to use, in many cases having
O(1) computation time for a pair of states. However, the
naive implementation of the E-Graph heuristic, on top of
these type of heuristics is linear in the size of the E-
Graph when evaluating each state’s heuristic that the search
encounters. This consumes much of the planning time and
for large E-Graphs can be prohibitive.

In this paper, we speed up the E-Graph heuristic com-
putation for general heuristics with no change in planner
behavior, i.e. the planner expands the exact same states in
the same order and produces the exact same paths. We make
use of offline precomputation time and the availability of
efficient nearest neighbor methods, which have also played a
role in speeding up popular sampling-based motion planners
(e.g. RRT, PRM).

We experimentally evaluate these improvements in a chal-
lenging full body motion planning domain for the PR2 robot.
We use the Euclidean distance heuristic which previously
could be less efficient when combined with E-Graphs. We
observe an average speedup of 8 times over the previous
heuristic computation method resulting in overall planning

times taking 66% as long.

II. RELATED WORK

As mentioned earlier, Experience Graph are used to plan
paths faster by reusing previously planned paths [1] or
demonstrations [2]. There are a number of other approaches
that use previous paths to speedup motion planning [3], [4],
[5], [6]. However, the improvements being made in this paper
are specific to the Experience Graph heuristic computation.

A large part of our improvements will make use of exact
nearest neighbor methods which build a data structure that
allows them to avoid looking at all members of the dataset
during queries. The KD-tree (k-dimensional tree) assumes
the data is a set of k-dimensional points and recursively
splits the data in half using axis-aligned hyperplanes in the
vector space [7]. The VP-tree (vantage point tree), makes
fewer assumptions. It works by selecting a pivot from within
the dataset and then choosing a “median radius” around
it such that half of the datapoints are inside and half are
outside according to the distance metric. It then recurses
on the two sets [8]. Here the data is not required to be
in a vector space like the KD-tree, instead there are only
contraints on the distance metric itself. The main constraint
is that it satisfies the triangle inequality. A similar method
is the GH-tree (generalized hyperplane tree) which works
by choosing two pivots from the dataset and splitting the
data in half according to how close they are to both points
(roughly, for each datapoint, is it closer to the first pivot
or the second) and then recursing [9]. The GH-tree makes
the same assumptions on the distance metric as the VP-tree.
LSH (locality-sensitive hashing) is a method which uses a
hash function to group nearby datapoints into the same bin
with high probability [10].

Identifying nearest neighbors quickly is a crucial com-
ponent to sampling-based motion planners such as RRTs
(rapidly-exploring random tree) [11] and PRMs (probabilistic
roadmap) [12]. These methods repeatedly choose random
samples in configuration space and then attempt to connect
them to one or more of the nearest neighbors in this randomly
generated tree or graph. In [13] KD-trees are applied to such
planners to improve performance.

I1I. BACKGROUND
A. Definitions

E-Graphs assume the motion planning problem is repre-
sented as a graph where a start and goal state are provided
(Sstart, Sgoar) and the desired output is a path (sequence of
edges) that connect the start to the goal.

e G(VY E%) is a graph modeling the original motion

planning problem, where V¢ is the set of vertices and
E¢ is the set of edges connecting pairs of vertices in
Ve,

o GE(VE EF)isthe BE-Graph (GF C G). Itis typically a

colleciton of previously planned paths or demonstations.

e c(u,v) is the cost of the edge from vertex u to vertex

v

o cP(u,v) is the cost of the edge from vertex u to vertex
v in graph G¥ and is always equal to c(u,v) when it
exists. If edge (u,v) does not exist in E¥, c¥(u,v) =
Q.

The algorithm is based on heuristic search and therefore
uses a heuristic function h% (u, v) estimating the cost from u
to v (u,v € VY). E-Graphs assume h®(u,v) is admissible
and consistent for any pair of states u,v € V. An admis-
sible heuristic never overestimates the minimum cost from
any state to any other state. A consistent heuristic A (u,v)
is one that satisfies the triangle inequality, h¥(u,v) <
c(u,s) + h%(s,v) and h%(u,u) = 0, Yu,v,s € V¢ and
Y(u,s) € BC.

B. Experience Graphs

This section provides a brief description of how E-Graphs
work. For more details see the prior work where Experience
Graphs were introduced [1].

An Experience Graph G is a collection of previously
planned paths or demonstrations (experiences). Planning with
Experience Graphs uses weighted A* (A* with heuristics
inflated by € > 1) to search the original graph G (which
represents the planning problem) but tries to reuse paths in
GF in order to minimize the exploration of the original graph
G (which is significantly larger than G¥). This is done by
modifying the heuristic computation of weighted A* to drive
the search toward paths in G¥, that appear to lead towards
the goal. Essentially, this comes down to computing a new
heuristic distance from the state in question to the goal where
traveling off of G¥ is penalized but traveling on edges of
G¥F is not. The new heuristic h” is defined in terms of the
original heuristic h“ and edges in G¥ for all states s in the
original graph.

N—2
hE(so) = mﬁ'n Z min{e®h® (s;,si41), P (s5,841)}

i=0

ey
where 7 is called the heuristic path (sg...sy-1) and
SN—1 = Sgoas and €¥ is a scalar > 1. As shown in [1], the
heuristic is e¥-consistent and therefore guarantees that the
solution cost will be no worse than ¥ times the cost of the
optimal solution when running A* search to find a path. More
generally, planning with Experience Graphs using weighted
A* search inflates the entire A heuristic by €. Consequently,
the cost of the solution is bounded by ¢-£¥ times the optimal
solution cost.

Equation 1 is computed by finding the shortest heuristic
path (Dijkstra’s algorithm) from s to the goal in a simplified
version of the planning problem where there are two kinds
of edges. The first set (the first term in Eqn. Equation 1).
are edges that represent the same connectivity as h” in the
original planning problem but their cost is inflated by £¥. So
if the original heuristic is euclidean distance then there are
edges between all pairs of states. However, if the original
heuristic is some lower dimensional search then we use the
edge set from that. The second set of edges (the second
term in Eqn. Equation 1) are from G¥ with their costs ¥

[]
start °
goal

(a) GE

©) ef 5 o

Fig. 1. Effect of e¥. The light gray circles and lines show the original
graph. The highlighted states and edges in (a) show the E-Graph. In (b) and
(c) the dark gray circles show states explored by the planner in order to
find a solution. The light dashed line shows the heuristic path from the start
state. Notice that when €% is large, this path travels along the E-Graph and
avoids most obstacles (there are few explored states). On the other hand
when £ is small, the heuristic (in this case euclidean distance) drives the
search into several obstacles and causes many more expansions. It should
be noted that € > 1 is used in these examples.

(0o if the edge is not in GP). As ¥ increases, the heuristic
computation goes farther out of its way to use helpful E-
Graph edges.

Figure 1 shows the effect of varying the parameter ¢Z. As
it gets large, the heuristic is more focused toward E-Graph
edges. It draws the search directly to the E-Graph, connects
prior path segments, and only searches off of the E-Graph
when there are not any useful experiences (such as around
the last obstacle). There are very few expansions and much
of the exploration of the space is avoided. As ¥ approaches
1 (optimality) it ignores G¥ and expands far more states.

IV. ALGORITHM
A. Naive approach

As described earlier, the minimum heuristic path com-
puted to find h¥(s) is composed of alternating path segments
(those using the original heuristic h“ and those using E-
Graph edges).

In the naive implementation (for a general heuristic) after
the goal is given, h¥ is computed for all E-Graph vertices
upfront. To make the writing clearer we will use H” instead
of h¥ for these precomputed values for E-Graph vertices and
goal state (the two represent the same quantity, but when you
see H¥ you know it is the h¥ value of an E-Graph vertex or
goal state). Then during the search, when h¥(s) is queried,

there are two cases, s is either an E-Graph vertex (or goal
state) in which case, the heuristic value was precomputed
and we return H%(s) or s is not on the E-Graph. In this
case, we recognize that the heuristic path for s will be the
heuristic path of one of the E-Graph vertices (or goal) plus 1
additional segment which directly connects s to that vertex.
In particular, it will use the vertex that minimizes h”(s).
More formally,

hE(s) = mingey: (ePhC(s,s)) + HE(s)) ()

Where V' = {VF U s404}. Computing the HY values
can be performed using a single Dijkstra search from the
goal state through a full connected graph G'(V', E’) where,
E' = {(u,v)|Vu,v € V'}. The edge weights are defined as
w(u,v) = min (Zh%(u,v), ¥ (u,v)). Recall that if edge
(u,v) ¢ EF then ¢ (u,v) = oco. Essentially, edge weights
in the fully connected graph are minimum of the inflated
original heuristic and the cost of the corresponding E-Graph
edge.

Briefly, Dijkstra’s algorithm find the shortest cost from a
source node in a graph to all other nodes the graph. All
nodes are put into a priority queue based on their current
shortest cost from the source (initially the source itself has
cost 0 while all other nodes have infinite cost). The algorithm
repeatedly removes the lowest cost node v from the queue
and “expands” it. This means it tries to reduce the costs of
all of its neighbors (if the cost of v plus the edge cost to a
neighbor w is less than the current cost of u, then the cost
of u is updated). When a node is removed from the queue,
its cost is known to be optimal. The algorithm terminates
when the queue is empty (or when all remaining nodes in
the queue have infinite cost, indicating that the remaining
nodes are not reachable from the source).

Algorithm 1 shows all of the naive method. ONSTARTUP
refers to computation done before we are told the start and
goal, when the planner initializes. At this point, only the
E-Graph edges and the parameter ¢” are known. These are
true precomputations that do not impact planning times. The
naive method does not make use of this. The AFTERGOAL
method is called at the start of the planning episode once
the goal has been given. This is where the naive method
computes Dijkstra search on G’ with sg404; as the source.
Notice that this takes O(|V’|?log|V'|) since the graph G’
is fully connected (using a binary heap for the Dijkstra
priority queue). Finally, the GETHEURISTIC function is
called on every state encountered by the search. For the naive
method this implements Equation 2. Notice that each call to
GETHEURISTIC takes O(]V’|) which is expensive as the E-
Graph gets larger.

We will accelerate the both AFTERGOAL and GETH-
EURISTIC functions in the following sections.

B. Replacing the Dijkstra Search

The Dijkstra search computed at the start of the planning
episode can be expensive (as it scales with the size of the E-
Graph). By doing some extra work on planner initialization,

Algorithm 1 Naive method

Algorithm 2 Improved method

1: procedure ONSTARTUP()

2: procedure AFTERGOAL()

3 Run Dijkstra’s Algorithm on G’ with source Sgoal
4: HE(s) = the cost of s in the Dijkstra search

5: procedure GETHEURISTIC(s)

6 hE(s) = ming ey (ePRC(s,s") + HE(s"))

we can reduce the time spent at the start of each planning
episode. When the planner initializes, we assume we already
know the E-Graph and the parameter €. If this is not
true, than the following procedure will have to be repeated
whenever either changes.

On planner initialization (ONSTARTUP in Algorithm 2),
we will be computing the all-pairs shortest paths on the graph
G" which is the same as G’ but without the goal vertex (since
it is not known yet). To do this we create an adjacency matrix
with the two types of edges that are used in G’. We then run
the Floyd-Warshall algorithm to compute d(u, v)Vu,v € VE,
i.e. the shortest path from any « to v in G”. This runs in
O(|VF|?), which is large, but since it just happens once on
planner initialization, it does not affect planning times. In
fact, this could be computed once offline and the d(u,v)
values could be written to file for future use.

When a planning episode starts (and we are given the
goal), we need to compute HZ(s) but we will make use
of the precomputed d(u, v) values to do this more efficiently
than the Dijkstra search from the naive method. Instead, each
HE(s) is computed by finding the E-Graph node the goal
connects to first along its heuristic path to s. More formally,

HE(s) = mingcye (€2h (sgoar, 8') + d(s,8)) , Vs € VE
3)

The computation of all H¥ values now takes O(|V¥|?)
instead of the naive O(|VE|2log|VE]).

1) Dijkstra with an unsorted array: An alternative to the
above precomputation approach is to run Dijkstra’s algorithm
using a different data structure. While Dijkstra’s is often
run with a binary heap, resulting in the O(|VF|2log|VF|)
runtime. For graphs with high connectivity (ours is fully con-
nected) it is actually faster to use an unsorted array instead. It
results in a runtime of O(|V|?). This will make AFTERGOAL
take the same asymptotic runtime as the method we just
posed, without having to run the all-pairs shortest path
precomputation (ONSTARTUP can go back to being empty).
However, in practice, we still found the version that uses the
precomputations to run slightly faster, and therefore, present
those results in our experiments.

C. Making GETHEURISTIC sub-linear

Each time the naive method evaluates the heuristic for a
state, it looks at every node in the E-Graph to find the one
that minimizes Eqn. 2, which takes O(|V¥|) time.

We will accelerate this process by using popular nearest
neighbor methods. The methods we will be considering are
ones which can return exact nearest neighbors. In general,

1: procedure ONSTARTUP()
Build adjacency matrix for E-Graph vertices
Run Floyd-Warshall to compute d(u,v)Vu,v € VE
procedure AFTERGOAL()
HE(Sgoal) =0
HE(s) = ming v (ePR% (sg0ar, 8') + d(s,5)) ,Vs € VE
Build nearest neighbor data stucture NN
procedure GETHEURISTIC(S)
v = getNearestNeighbor(NN, s)
return eZhC (s,v) + HE (v)

VX IDINE LY

—

these methods require the distance function to be a metric
F and therefore must satisfy three constraints Vu, v, w.

o Flu,u)=0

o Flu,v) = F(v,u)

o Flu,v) < F(v,w) + F(w,u)

For a state s’ in the E-Graph we compute the heuristic
upfront when getting the goal, as described in the previous
section. These states are then put into the nearest neighbor
data structure NN as the following vector.

During planning, when we call GETHEURISTIC on a state s
we need to find a state s’ such that it minimizes Eqn. 2. To
do this we represent s as vector

-f-6

and do a look up in NN according to the following distance
metric:

F(u,0) = ePnC (i, 01) + g — 0o 4)

This metric satisfies all the required conditions since the
two terms both respect the triangle inequality (recall h® is
consistent).

Now that we have a metric, we can employ a wide variety
of exact nearest neighbor methods such as VP-tree, GH-tree,
and KD-tree. All of these work by recursively splitting the
dataset in half based on a pivot element or other criteria.
These methods can achieve exact nearest neighbor lookups
in logarithmic time under certain contitions regarding the
distribution of the data. Though in general they perform
faster than linear search mostly on large datasets.

At the end of the AFTERGOAL function of Algorithm 2,
the nearest neighbor data structure NN is built using the
metric F. Then in the GETHEURISTIC function, we simply
query NN for the nearest neighbor to s and return the
distance.

D. Using optimized KD-trees

Some optimized implementations of KD-trees require the
distance metric to be of the form:

dist(x,y) = fi(z1,y2) + fo(x2,y2) + . .+ fu(Tn, yn) (5)

where z1,...,2, and y1,...,y, are all scalars.

FLANN (fast library for approximate nearest neighbors)
is a popular nearest neighbor library that does this [14].

Euclidean distance is supported under this form by squar-
ing it and therefore effectively removing the square root
(which does not affect the order of nearest neighbors).
However, our metric F does not fit the form if hC is
euclidean distance since we then have:

A lrge —yps]

(6)

dist(z,y) = /(21 — 1) + (22 — yo)?
and the first term couples z1, za,

To support these optimized libraries, we develop an addi-
tional method for handling these constraints.

We assume that the original heuristic h“ can be written
in the form of Eqn. 5. Then we will build the KD-tree
using only h¢ (note this means the KD-tree can be built in
ONSTARTUP in Algorithm 3). Then in GETHEURISTIC the
nearest neighbor (according to h%) is found using the KD-
tree and in a post-processing step, we make a linear pass
through the E-Graph nodes to find the one that minimizes
h¥. The trick is that we will use the knowledge that we have
about the minimal elements according to h“ to terminate the
linear pass early. In practice, the linear pass only looks at a
small fraction of the E-Graph nodes before deciding we have
the optimal one.

More specifically, in function GETHEURISTIC of Algo-
rithm 3, we will be maintaining four variables

o hE_,: is the best (lowest) value of h¥(s) computed so
far (from E-Graph vertices inspected)

e HF :alower bound on H® among E-Graph vertices
we have not yet inspected

e h¢ : a lower bound on h%(s,s’) among E-Graph
vertices s’ we have not yet inspected

e HE . astopping condition, when HY > HE_ itis
no longer possible for any remaing E-Graph nodes to

reduce hf

The first thing in Get Heuristic is to evaluate h(s) using
Sgoaz and initialize hbest to this value. This also initializes
HE . 100, the H” value of s4,q,. We then find the K nearest
neighbors in the KD-tree (recall the KD-tree only uses h®)
and evaluate h (s) using each, and updating hZ _, as needed.
The E-Graph nodes returned from the KD-tree are sorted, so
nn, has the lowest h@ distance to s of all E-Graph nodes.
We now set hﬁw using nnx knowing that all remaining E-
Graph nodes we inspect must have an h" distance to s that
is at least as large as the one from mng. Therefore, it is
beneficial to set K > 1 in order get a better lower bound
(though not as large as |V¥| since that would defeat the
point).

We then set the stopping condition HE, = hE _, —h& .
which basically says that for an uninspected E-Graph state
b to provide a lower hf.,, H¥(b) must be lower by at least
h¢ to make up for the fact that we know h%(s,b) is at
least that large. We prove the correctness of this stopping
condition shortly.

Algorithm 3 Using optimized KD-trees

1: procedure ONSTARTUP()
Build adjacency matrix for E-Graph vertices
Run Floyd-Warshall to compute d(u,v)Vu,v € VE
Build K Dtree of E-Graph vertices with metric h&
procedure AFTERGOAL()
HE(sgoal) =0
HE(s) = ming ey (PR (sg0a1, ') + d(s,5)) , Vs € VE
Create S a list of EGraph nodes sorted by HZ
procedure GETHEURISTIC(S)
hbést = sEhG(s Sgoal)
nni ...nng = get NN (K Dtree, K, s)

m e e e e e
W XRAIN R T OO0 XN BN

hg{;st =min (hE _,, mini—1..k (ePRE (s,nn;) + HE (nny)))
hl%y =ePhCG (s,nng)
— G
H’qu - thest low
fori=1,2,...,|S| do
Mremp = ePh% (s, S(i)) + HF (S (1)
if hE,., < hi,, then
th%st = thmp c
20: Hmal hbest hlow
21: = HE(S())
22: if H%w > HE . then
23: break
24: it h? , <exp(hl, + HE,) then
25: break

26: return hbeS .

At this point we start iterating through S which contains
all E-Graph nodes sorted by their H¥ values in increasing
order (computed in AFTERGOAL). At each iteration we see
if we can update hf” , using the next E-Graph node. If so,
we also update HE according to its definition, which will
lower the stopping condition, making it possible to terminate
ever earlier.

Then we update the HF iow Dased on the current E-Graph
vertex since we know we are iterating through H” values
in increasing order, every E-Graph vertex remaining to be
inspected has an H” at least as large as the vertex we just
inspected. We then see if it is possible to terminate early. We
have an optimal termination condition Hf > Hmw and a
bounded suboptimal condition hZ, < exp (hlow + HE).
For exp > 1 we can often terminate earlier knowing that
we are within a factor of e p times the optimal hbest

We will now prove that the two termination conditions are
optimal and bounded suboptimal, respectively.

Theorem 1 (Optimal termination): When the main loop
of GETHEURISTIC(S) terminates due to HE, > HE .
hE ., is minimal.

Proof: Assume for sake of contradiction that after
terminating the loop using the optimal condition, there is
some E-Graph node b* which would have led to k%, lower
than the hf,, found using b, the node that provided the
current best value. Since we terminated,

bes

Hlow 2 Hfmz
Since we iterate through the E-Graph nodes in increasing
order by H¥, HF (b*) > So,

low

H®(b*) > HE

max

—_ hG

. E _1E
Since H,. = h Tow>

max best

HE (V) = hi — hi;

low
HEb*) + ePnC(s,0") > hE , — hS, + P (s,b)
hl)Eezt Z thest - h’ﬁ)w + EEh’G(s? b*)

Since b* has not been evaluated, it cannot be among
the nearest neighbors found by the KDtree and therefore,
—hG . +eEhC(s,b*) > 0. Therefore, we can safely remove
these two terms from the right hand side.

Ex E
hbest Z hbest

Contradiction. []

If instead of finding the best E-Graph node which min-
imizes hf,,, we find a vertex that only computes hf
within a user-chosen factor of minimal, the algoritm often
terminates significantly faster. The chosen factor will affect
the theoretical bound on the costs of solutions found by the
planner.

Theorem 2 (Bounded suboptimal termination): When the
main loop of GETHEURISTIC(S) terminates due to hf , <
exp(hC + HE,), hE ., < exphf,, where hE*, is the
minimal possible value of hZ ..

Proof: Suppose that b* is the node which computes
hE*,. Also assume that b* is found in the main loop since
if it iS 847 OF one of the neighbors returned by the KDtree,
then we are optimal and trivally satisfy the bound. We know
that h{ < ePh%(s,b*). We also know that if we have not
actually evaluated b* yet then HEZ, < HF(b*). Therefore if
we have terminated using the bounded suboptimal condition,

higw + Higy < €%h(s,0%) + H (0")
hlciw + Hl%w S hl)Eezt
exn(higw + Higy) < exphiis
hpest < €k (higy + Hig,) < exphiiy
th;st S EKDthést

|

Terminating with bounded suboptimal termination means
that the heuristic values returned may overestimate the true
minimal distance to the goal by an additional € i p. This will
then raise the overall suboptimality bound of planning with

Experience Graphs to € - ¥ - exp.

V. EXPERIMENTAL RESULTS

Planning with E-Graphs has already been compared ex-
tensively against other approaches in [1]. In this paper,
we focus on merely improving its performance when using
general heuristics especially those not computed by dynamic
programming. Therefore, in these experiments we tested the
improved heuristic computation using euclidean distance.
This is one of the most common heuristics used in robot
motion planning and before the algorithms presented in this
paper, its use with E-Graphs was avoided due to its inefficient
computation, especially as the E-Graph gets large.

The domain we chose is 11 DoF (degree of freedom) full
body planning for the PR2 robot. The planner has control

of the robot’s base movement (z,y,6), prismatic spine for
adjusting the height of the upper half the robot, and 7 DoF
control over the right arm.

Fig. 2. An example start and goal state in the kitchen domain

Fig. 3. The E-Graph used for the experiments. Several configurations are
shown. To not crowd the image, the rest of the E-Graph is shown as the
red and blue line which shows where the gripper of the robot at each state.

Both the start and goal states are fully specified config-
urations randomly placed throughout a simulated kitchen
environment with two rooms and a narrow doorway con-
necting them (Fig. 2). Random goal states always have the
right hand reaching onto the surface of a cluttered table. We
initialized the E-Graph with five demonstrations that visit
the main areas of the environemnt (Fig. 3). The resulting
E-Graph had 942 vertices in it. We then ran 100 planning
episodes to compare the naive heuristic computation against
the improved version with different nearest neighbor data
structures. Specifically, we ran the VP-tree, GH-tree, and
KD-tree. The KD-tree implementation we used is from
FLANN [14] and therefore we had to use the method de-
scribed in Section IV-D (we used K = 5 nearest neighbors).
All of these methods are running the same E-Graph planner,
with the only difference being how the heuristic is being
computed. The naive method follows Algorithm 1, VP-tree
and GH-tree follow Algorithm 2, and the KD-tree approaches

follow Algorithm 3).

The E-Graph parameters used were ¢ = 2 and ¢f =
10 providing a suboptimality bound of 20 (the theoretical
bound is higher by a factor of exp for KD-tree methods
using the bounded suboptimal termination criteria). While
the theoretical bound is quite large, in practice the solutions
costs are much lower than this. While computing true optimal
paths in such a high-dimensional space (for the purpose of
comparison) is very difficult, we estimate the found solutions
have costs no worse than 2 or 3 times the optimal cost.

TABLE I
PLANNING TIMES USING DIFFERENT HEURISTIC
COMPUTATION METHODS

mean median

planning mean planning median % time

time hE time time hE time | on hE
naive | 1.09 &= .72 | 0.39 £ .25 0.19 0.09 47%
vp 0.73 £ .50 | 0.05 £ .03 0.115 0.01 12%
gh 0.78 &£ .53 | 0.08 £ .05 0.13 0.03 23%
kd(l) | 0.84 £ .55 | 0.15 £ .10 0.14 0.055 31%
kd(2) | 0.77 £ 54 | 0.06 & .03 0.125 0.015 16%
kd(3) | 0.73 £ .50 | 0.05 & .03 0.115 0.01 13%

In Table I we present the results of our experiments. All
methods succeeded on 94 of the 100 trials given a 30 second
time limit. The rows show the different methods. For the KD-
tree, the number afterward indicates the suboptimality bound
used (e p). Naive, VP-tree, GH-tree, and KD-tree(1) are all
optimal and therefore result in the planner expanding the
exact same states (mean number of expands was 492) and
producing the same path. The KD-tree using suboptimality
bounds of 2 and 3, resulted in negligible difference in the
number of expansions (less than 1% change; mean number of
expands was 491). The table presents the mean and median
of total planning time (columns 2 and 4) as well as the
mean and median of the planning time that went toward
computing heuristics (columns 3 and 5). We also report
the average percentage of planning time that went toward
computing heuristics (column 6). The confidence intervals
shown with the means are at the 95% confidence level. We
can see that the VP-tree performs the best in all measures
among the optimal methods. Though if the KD-tree method
is given a suboptimality bound of 3, it performs just as well.
Overall we can see that the amount of planning time that
goes toward heuristic computation drops from 47% using
the naive method down to 12% when using the VP-tree.
Heuristic computation time was reduced by a factor of 8
and on average planning times dropped by 33%.

It is important to note that these improvements to heuristic
computation time and planning times come at no cost (other
than a slightly more complicated implementation and larger
memory footprint). The exact same states are expanded, and
the same paths are found, just in less time.

The methods that perform precomputation (all but naive)
took an additional 1.8s for the planner to initialize. This
is a one time cost when the planner is launched (all of

the 100 trials could then be run). While this time is not
particularly large, it could become worse if the E-Graph were
much bigger. Additionally, any time the E-Graph changes
(e.g. a new path is added or the environment changes), the
precomputations would need to be re-run. If the precompu-
tations would have to be run often, we suggest not using the
precomputations and instead running the Dijkstra search in
AFTERGOAL with an unsorted array (Section IV-B.1). We
found that this makes all methods slower by 0.02s but it
avoids the need for precomputation.

VI. CONCLUSIONS

In this work we presented a more efficient way to compute
general heuristics for E-Graphs, especially for those which
are not computed using dynamic programming. Planning
with Experience Graphs can now be done more efficiently
with heuristics like euclidean distance, which are ubiquitous
in robot motion planning. Our improvements make use of
nearest neighbor methods which have also been used to
speed up sampling-based motion planners. Future work is to
experiment with other heuristics like the Dubins car model.

REFERENCES

[1] M. Phillips, B. J. Cohen, S. Chitta, and M. Likhachev, “E-graphs:
Bootstrapping planning with experience graphs,” in Robotics: Science
and Systems, 2012.

[2] M. Phillips, V. Hwang, S. Chitta, and M. Likhachev, “Learning to
plan for constrained manipulation from demonstrations,” in Robotics:
Science and Systems, 2013.

[3] J. Bruce and M. Veloso, “Real-time randomized path planning for
robot navigation,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2002.

[4] N. Jetchev and M. Toussaint, “Trajectory prediction: Learning to map
situations to robot trajectories,” in IEEE International Conference on
Robotics and Automation, 2010.

[5] X.Jiang and M. Kallmann, “Learning humanoid reaching tasks in dy-
namic environments,” in /[EEE International Conference on Intelligent
Robots and Systems, 2007.

[6] D. Berenson, P. Abbeel, and K. Goldberg, “A robot path planning
framework that learns from experience,” in /ICRA, 2012.

[7]1 J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for
finding best matches in logarithmic expected time,” ACM Trans. Math.
Softw., vol. 3, no. 3, pp. 209-226, Sept. 1977.

[8] P. N. Yianilos, “Data structures and algorithms for nearest neighbor
search in general metric spaces,” in Proceedings of the Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, ser. SODA 93, 1993,
pp- 311-321.

[9] J. K. Uhlmann, “Satisfying general proximity / similarity queries with
metric trees,” Information Processing Letters, vol. 40, no. 4, pp. 175
- 179, 1991.

[10] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” in Proceedings of the 25th International
Conference on Very Large Data Bases, ser. VLDB °99, 1999, pp.
518-529.

[11] J.J. K. Jr. and S. M. LaValle, “Rrt-connect: An efficient approach to
single-query path planning,” in /CRA, 2000.

[12] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566580, 1996.

[13] A. Atramentov and S. LaValle, “Efficient nearest neighbor searching
for motion planning,” in Robotics and Automation, 2002. Proceedings.
ICRA °02. IEEE International Conference on, vol. 1, 2002, pp. 632—
637 vol.1.

[14] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration,” in International Conference on
Computer Vision Theory and Application VISSAPP’09). INSTICC
Press, 2009, pp. 331-340.

