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Semantic Representation For Navigation In Large-Scale Environments

Romain Drouilly 1,2, Patrick Rives1, Benoit Morisset2

Abstract— Mimicking human navigation is a challenging goal
for autonomous robots. This requires to explicitly take into
account not only geometric representation but also high-level
interpretation of the environment. In this paper, we demonstrate
the capability to infer a route in a global map by using seman-
tics. Our approach relies on an object-based representation of
the world automatically built by robots from spherical images.
In addition, we propose a new approach to specify paths in
terms of high-level robot actions. This path description provides
robots with the ability to interact with humans in an intuitive
way. We perform experiments on simulated and real-world
data, demonstrating the ability of our approach to deal with
complex large-scale outdoor environments whilst dealing with
labelling errors.

I. INTRODUCTION

Autonomous navigation in real world environment is one
of the key challenges to solve for mobile robots. They have
to be able to find the best way from their current position to
target position, whilst adhering to constraints and interacting
with humans. To date, most of the strategies for route
planning rely on metric or topological maps and constraints
are expressed in terms of geometry, assuming the shortest
path to be the best. While it is obviously useful to minimize
the path length, depending on the scenario many other
constraints have to be considered. Robots are required to deal
with challenges that impose to redefine what ”best” means.
To name a few, contrarily to static scenes that represent a
very small class of real-world environments, dynamic scenes
contain moving objects with unpredictable behaviour and are
subject to appearance changes. In such cases, an intelligent
robot needs to consider those aspects when choosing the
best route from one point to another. Other constraints like
minimizing the collision risk or maximizing the stability of
landmarks along the path are also crucial.

A recent trend in robotic mapping is to augment low-level
maps with semantic interpretation of their content, which
allows to improve the robot’s environmental awareness. In
mobile robot navigation, the so-called semantic maps have
already been used to improve path planning methods, mainly
by providing the robot with the ability to deal with human-
understandable targets [1], [2]. However, despite their inter-
esting results, these approaches rely on the ”place” concept
that is well-defined indoors but difficult to define outdoors.

In this work we propose to use high-level semantic inter-
pretation of the scene both for specifying interesting targets
and for choosing optimal path towards a given goal. To do so,
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Fig. 1. Building Process of local submaps. Ego-centered spherical images
are automatically labelled with Random Forest and CRF. Then a Semantic
Graph is extracted from the labelled image.

we introduce a semantic cost function that takes into account
high-level constraints through image annotation. This allows
us to select a path according to criteria that capture scene
features different from metrical data or topology but that
are essential for robot navigation. Additionally, we propose
a new semantic path representation that aims to address
the problem of semantic path description in outdoor envi-
ronments. Both this representation and the route planning
algorithm rely on the hybrid map structure introduced in our
previous work [3]. It uses only object position in images
without the need of 3D scene reconstruction or the use of
the ill-defined concept of ”place” to describe robot positions.

The main contributions of this paper are twofold: a new
framework to select the best route for the robot taking into
account semantic content of the scene; and a new approach
to describe a path in terms of semantics that easily adapt to
both indoor and outdoor environments.

After a concise review of related work in section II, we
present the Semantic Map structure in section III while our
Semantic Route Planning framework and our Path Descrip-
tion methodology are introduced in section IV and V respec-
tively. Then two series of experiments are presented on both
simulated and real-world data in section VI, demonstrating
the effectiveness of our algorithm.

II. RELATED WORK

Semantics have been shown to be useful in inferring
new information about the scene and to improve planning
efficiency [4]. It is useful when the search space is large,
translating the problem in a new space of smaller dimension.



In the specific domain of mobile robot navigation, seman-
tics has been used mainly for place modelling, allowing to
specify high-level goals for robot navigation and description
of trajectories. In [1] semantics is used to represent the
environment as a graph of places. The robot reasons about
space with this graph-based representation of places where
semantics is embedded in the nodes while edges correspond
to accessibility. A navigation framework based on high-level
understanding of the world is proposed in [2]. As in the
previous work, semantics are used both to define places and
robot’s actions related to navigation. Spherical images are
labelled with Random Forest and a place recognition module
is used that is based on SVM. The navigation behaviour
is then described as a sequence of low-level behaviours
organised in a hierarchical way. Similarly in [5] semantic
regions and positions are defined to allow the robot to plan
its path at a high-level. Each node of the graph is connected
to others through edges encoding reachability of a place from
another. Planning is done using metric constraints like the
euclidean distance of two nodes.

The related problem of interpreting route from descrip-
tion has also received significant attention. For example a
framework combining automatic semantic place labelling
and human route description interpretation is presented in
[6]. To handle the possible ambiguity that occurs due to
perception errors, a probability distribution over the possible
paths is built, and the best path is chosen computing the MAP
of the distribution. In [7], a machine translation technique
from natural language input is used to infer a most likely
path within a Voronoi graph where the nodes of the graph
correspond to different places like room, hall or doorways.

All these works offer high-level description for path
planning. They model space as a set of semantic places
connected topologically through robot’s actions or metric
constraints. However, all these works rely on the attribution
of a label to each place to localize the robot. This is not
feasible in outdoor environments where there is no clear
separation between different places which is an issue that
we specifically address in the proposed framework.

III. SEMANTIC MAP FOR NAVIGATION

In this paper we address two problems: finding the best
route according to high-level criteria and describing it using
surrounding objects all along the trajectory. To address these
problems, we rely on the map structure illustrated in fig 1
and a localization scheme described in our previous work
[3]. For the sake of completeness we briefly review them in
the following paragraph.

A. Hybrid Metric-Topologic-Semantic Map

Our map consists of a set of local submaps connected
to each other in a graph whose edges are pairwise pose
estimates. Those submaps are built from data captured by
our multicamera stereovision system, described in [8]. It
allows to capture ego-centered spherical views of the scene
augmented with depth data. From the sequence of images
acquired, we keep only reference keyframes as detailed in

[9]. That comprises the RGB-D level of submaps. Atop of
this layer lies the label layer which is the result of the
automatic annotation of the spherical views [3]. The scene
parsing process occurs in two steps: first Random Forests
are used to estimate the probability distribution over classes
for each pixel. Then a Fully Connected Conditional Random
Field corrects results taking into account neighbourhoods.
Given a labelled image, a set of contiguous pixels with the
same label is called a semantic area, denoted as Ai. It can
contain several instances of each class depending of the
perspective viewpoint. The contiguous semantic areas are
connected to each other through edges Ei j encoding their
relative position in image, constituting a semantic graph
G = {A,E}. This representation, is powerful as it encodes
in a very compact way both the structure and the semantic
content of the scene.

B. Semantic Content-based Localization

Following a route needs to solve the robot localization
issue. An efficient algorithm for localization in our map has
been developed in [3], where localization is formulated as a
content request problem and allows to localize an image or
a set of objects. The semantic graph is first extracted from
the current annotated image. Then, the localization consists
in comparing it with those of the submaps to estimate
similarities. The comparison is done with an interpretation
tree [10] matching one by one the nodes of the current
semantic graph to those of the reference semantic graph using
nodes properties and context. The similarity score σ between
two semantic graphs G1 and G2 is measured as follows:

σ(G1,G2) = exp1− N
Nm (1)

where Nm is the number of nodes matched between the two
graphs denoted as A12 = AG1

⋂
AG2 and N the total number

of nodes in the current semantic graph. The submap with the
highest score σ corresponds to the most probable location.

IV. SEMANTIC-BASED ROUTE PLANNING

A route is defined by a set of adjacent local submaps in
the global graph. Once submaps corresponding to the current
and the target positions of the robot are found, the route
planning problem consists in finding the best path in the
graph to go from one to the other. We want to optimize this
path with respect to semantic criteria, therefore we need to
use semantics to weight edges between nodes. To do this,
we define a heuristic cost function that computes the weight
of an edge depending on the semantic scene content. Two
adjacent submaps share objects that are visible from the two
viewpoints. The cost function relies on these objects. The
highest is the weight, the more penalized will be the path.
Several scene features are used to build the cost function,
listed as follows:

a) Number of shared objects: To navigate within our
map, the robot needs landmarks all along the way. If the
environment changes considerably between two submaps, the
risk for the robot to be lost is higher as it may not be able to
localize itself. Therefore the higher is the number of objects



shared between two submaps the more it should be preferred.
However this number strongly depends on the number of
objects visible in a given scene. Therefore we compute the
number of objects shared relatively to the total number of
objects visible in the current scene. The Shared Objects Score
S is:

S(G1,G2) = 1−σ(G1,G2) (2)

b) Object class: objects can be more or less helpful
landmarks for navigation depending on their class. Cars are
dynamic objects and therefore not well suited to characterize
a place while buildings are stable landmarks. We give a
weight to all classes according to their expected usefulness
for purpose of navigation. The lowest is the penalizing
weight, the more useful is the object. For an edge between
two adjacent submaps, we compute the Class Score C as the
average of the class weight of each shared object:

C(G1,G2) =
1

Nm
∑

i∈A12

w(ci) (3)

where Nm is the number of objects as stated before, wi the
weight of the object i that is a function of the class ci.
Averaging over all objects allows to mesure the dynamics
of the scene, that is what we want to penalize.

c) Object observability: Another important feature is
the length of the path along which an object is visible. It
is preferred that they remain observable on a long range so
that the robot can use them as landmarks. Each object is
indexed in a table with the number of submaps where it is
observable. Taking the maximum of this table as omax for
normalization, we compute the Observability Score O of an
edge as follows:

O(G1,G2) =
1

Nm
∑

i∈A12

(1− exp(1− omax

oi
)) (4)

where oi is the individual observability of each object.
d) Object Spatial Repartition: It is important to observe

objects in all directions in the spherical image in order to
constrain the pose, all ideally by finding the same amount
of objects in all directions. We model this ideal repartition
by a uniform probability distribution of finding objects
with respect to the direction of observation, denoted as P.
Then the image is cut in four parts corresponding to front,
right, left and back. We count the number of objects in
each direction and divide by the total, building the actual
repartition function, denoted as Q. The penalty of using the
actual repartition instead of the ideal repartition is computed
using the Kullback-Leibler divergence of Q with respect to
P:

KL(Q||P) =
4

∑
i=1

(P(i).log(
P(i)
Q(i)

) (5)

where the sum is performed on the four parts of the image.
Finally the Repartition Score R is computed as:

R = 1− exp(−KL(Q||P)) (6)

Fig. 2. Illustration of the path description for two consecutive images in the
case of translation (a) and composed movement (b). The spherical image is
illustrated by a blue circle with a cross highlighting the four quarters. Each
object appearing in a different quarter allows to describe the movement of
the robot. In example (a), the generated constraints are: move forward
until green object ∈ Qle f t and orange ∈ Qright

Finally the cost of a path p, made of N edges ei is defined
as follows:

Fs(p) =
N

∑
i=1

S(ei)+C(ei)+O(ei)+R(ei) (7)

Summing over all edges allows to implicitely take into
account the length of the path. With all the weights in the
global graph having been computed, the best path, from
the semantic perspective, is found using the well-known
Dijkstra’s algorithm.

V. SEMANTIC ROUTE DESCRIPTION

Once the best route is selected within the graph, it
can be useful to automatically describe it for human-robot
interaction. Many works have addressed the problem of
describing the route in terms of high-level behaviour of
the robot and semantic places sequence (see section II).
Despite slight differences between them, all these works rely
on the concept of place that is straightforward indoors, but
difficult to define outdoors. In this part, we propose another
approach to describe the route at a high level without using
places so that our work can easily adapt to any diverse
environment. Additionally, our approach naturally alleviates
labelling errors by preferring stable objects for which label
confidence is higher.

A. Route Description Language

A route is given as an ordered sequence of local submaps
S = {si}. As previously stated, semantic edges connecting
submaps encode the object set shared by the two correspond-
ing submaps and they can be described in terms of objects
features.

To describe the path at a high level, the transition ti→i+1
between si and si+1 is decomposed in two elements:
• The movement type: turn or move
forward/backward

• Its amplitude: do movement until
Each image is cut in four quarters Qi corresponding to front,
back, right and left. The front is set in the center of the
spherical image, corresponding to the image of the first
camera on the camera ring of our sensor. A given orientation
is described semantically by giving the quarter where each
object center belongs to. This results in a set of Orientation



Fig. 3. Index of the objects present for each submap. Observability
correspond to the length of arrows. Object 1 and 4 are interesting as they
are observed many times while object 3 and 5 are not.

constraints of the form {object 1 ∈Q f ront ,object 2 ∈
Qright ,object 3 ∈ Qback, ...}.

To estimate the relative movement between two images,
the quarters where objects lie are compared in two con-
secutive images as in fig 2. Rotation shifts objects in the
same direction while translation induce different apparent
movements.

The amplitude of each action is then set by giving stop
conditions, expressed as a set of Stop constraints of the
form {building ∈Q f ront ,tree ∈Qle f t , ...}. In fig 2 b for
example, robot turns left until blue object ∈ Qle f t , purple ∈
Qright and yellow ∈Qback. Stop conditions can use observed
objects or any change in the shared objects set. For example
a new object appearing in the field of view or an object
disappearing can be used to add constraints to the set of
Stop constraints.

B. Description Compression

Many objects are visible along the path but they are not
all equally important in describing the route. Some objects
are visible for a very short time and are not useful to
navigate. Additionally, the constraints sets can be similar
for successive poses on a long range if the same objects
are observed and the movement is constant. Then we may
compress the route description using only objects visible on
a long range and keeping the same set of constraints. It is
worth noting that using only objects with good observability
increases the robustness of our approach. In fact, errors
in the labelling process produce objects with very small
observability and these objects are filtered by this selection
process. As each object is tracked along the path, it is
easy to know how long a given object will be visible. To
choose the best constraint we refer to the index used to
compute the observability score (see fig 3). For a given set
of constraints, we keep only those referring to objects with
the best observability. Instead of computing new constraints
at each step, the existing constraints are checked. While they
are valid no new constraint is added to the set.

VI. EXPERIMENTS

We propose two separate series of experiments to evaluate
our semantic route planning and our automatic description

Fig. 4. Map of the simulated world. The four paths are highlighted by the
four dashed lines. The black line is the path 1 along which robot meets lots
of cars and objects. Following path 2, the blue line, the robot meets lots of
objects among which cars and a few sign panels. The third path, materialised
in orange, allows the robot to see several sign panels and a few cars. Along
the last path, in green, robot sees only a few objects, mainly sign panels.
The light blue point is the starting position and the red dot the target one.

framework. For both, we first use a simulated world in which
a virtual multi-camera sensor captures 360o views of the
environment. We use simulated data as it is more convenient
to generate specific cases to highlight the performance and
the particular aspects of our algorithm. Then, we show that
our algorithm is fully functional in a real-world environment
using a challenging dataset where images are automatically
labelled with our previous approach presented in [3].

A. Semantic-based route planning in a virtual world

Our first set of tests is performed on a dataset acquired
with a virtual multi camera sensor. Our aim is to evaluate
the behaviour of our algorithm depending on environmental
features such as the number and class of objects.Our virtual
world corresponds to an urban environment with buildings,
roads, side-walks, trees, cars, sign panels and ground signs.
In our first experiment, the robot is placed at a position from
where four paths are possible to reach the target position
(see fig 4). Along the first path, the robot encounters many
objects, mainly cars, so that it could understand that the scene
is highly dynamic. Along the second path, the robot can see
a lot of objects with several cars and a few sign panels. The
third path is characterized by a high number of sign panels
and only a few cars. By this way there is a lot of objects and
their mean class value is high. Finally the fourth path offers
only a few objects to see, mainly sign panels. To be coherent
with an urban scenario, the number of buildings and trees are
more or less the same along each path.

Results of the first experiment are shown in the table I.
The sum of the four scores for all the edges along each
path are reported together with the relative score of each.
The preferred path is the third one, as this path offers the
best compromise between number of objects and dynamic of
the scene. There is a large number of objects and most of
them are static so the robot can progress safely. In contrast,
the first path contains more objects but a significant part of
them are cars and the robot strongly penalizes it. Additionally
objects are seen on a short period of time producing a



high Observability score. However, as this path contains the
bigger number of objects its Repartition Score is the best.
Although a small number of objects are visible, the last path
has a low score as there are no dynamic objects and the linear
sections are long enough to provide a small Observability
score.

TABLE I
RESULTS FOR SIMULATED WORLD.

Score S C O R Relative total score
Path 1 19 102 93 148 100
Path 2 21 85 91 153 98
Path 3 18 81 88 149 92
Path 4 19 81 90 158 95

The experiment shows that robot prefers paths with low
dynamic, longer straight sections and more objects. However,
the number of objects could conflict with the requirement
for a minimum number of dynamic objects. In fact the
Repartition Score(penality) decreases with the number of
objects but the Class Score increases. It comes from the
fact that areas with large number of objects contain more
dynamic objects. Then the choice of the best path is a
question of tradeoff between different scores. The tuning of
the parameters wi allows us to adapt the robot’s behaviour
to different environments. This result is very close to what
it is expected from human behaviour.

B. Semantic-based route planning in the real-world

Our second set of experiments is performed with a chal-
lenging real-world images dataset acquired on the INRIA
campus. The environment is semi-urban, with a lot of trees
and buildings, cars, side-walk, sign panels and ground signs
on the road. Due to the configuration of the campus it is not
possible to choose between multiple paths to go from one
point to another. Consequently our test consists in evaluating
the path weight given different starting positions in order
to reach the same target. We also reporte the lenght of
each path, computed as the sum of distances between each
consecutive submaps. The path 1 and 2 are illustrated in fig
5 by blue and red lines respectively. The first one is a quasi-
straight line from the starting to the target position. They are
two sections with a cars parked in front of building on one
or two sides of the road. Along the second path the robot
moves in a constantly changing environment with several
turns, alternating places with trees, buildings and cars parked
in several places. Places with cars are highlighted in fig 5
by dotted circles.

Results are presented in table II. The best path according
to semantic criteria is the first one, even if it is slightly longer.
This could be understood looking at the repartition of objects
along the path. In the path 1 there are a lot of cars but they
are concentrated in a two places. That way, they appear as
a few semantic areas and the robot considers the dynamics
of path 1 lower than dynamics of path 2, where cars are
spread all along the trajectory and are identified individually.
Furthermore, the first path is a straight line and it is possible

Fig. 5. Example images of the real paths. The blue line (bottom) correspond
to path 1 and the red line (top) to path 2. Cars are localized by dotted circles.

to track objects on a long range. It results in a considerably
better observability than in path 2. These results validate our
approach in real outdoor environments, showing its ability
to discriminate between the two routes in a human-friendly
way. It shows that path length is not the best choice for
navigation as the most dynamic path would have been chosen
with classical approaches.

TABLE II
RESULTS FOR REAL WORLD.

Score S C O R Relative score Relative length
Path 1 49 53 58 91 92 100
Path 2 49 65 65 93 100 97

C. Automatic Route Description

We have evaluated the performances of our automatic
route description framework through two parameters: the
correctness of the produced descriptions and their com-
pactness. Obviously, it is not possible to report the full
description of a long path, so for the sake of simplicity,
the correctness has been evaluated on a small simulated
scene. Then the compactness, defined as the number of
constraints sets used for a given number of keyframes, has
been evaluated on a subset of the INRIA dataset, representing
two very different paths, each composed of 200 keyframes.

1) Correctness of the description: The path consists of a
straight line represented at fig 6. The dataset consists of 100
reference images. Along the path the robot generates three
sets of constraints at the positions illustrated by the three
numbers. The doted lines highlight objects used by robot.

The generated constraints are:
• Orientation: building (1) left, sign
(1) front,
Move forward until: car (1) left,

• Orientation: building (1)left, sign
(2) front, car (1) left
Move forward until: building (1) not
visible, sign (2) right

• Orientation: building (2) back, sign
(1) back, building (3) front, sign



Fig. 6. Top: spherical view of the scene taken from position 2. Bottom:
schematic view of the environment. Path 1 in simulated data. Robot is
materialized by a crossed circle with an arrow, cars are red, trees green,
building brown, panels blue. The robot uses 3 sets of constraints to describe
the path at the position highlighted the figures.

(2) right, sign (3) right
Move forward until: end

As expected, the path is described with a few constraints
and is understandable by human. Despite the simplicity of
the example, the result shows the ability to produce human-
like description of a path, which is our goal.

2) Compactness of the Description: To evaluate the com-
pactness of the descritpion, two different paths have been
chosen in INRIA dataset. For each, constraints sets have been
generated according to environment features. The results are
best viewed in the video1. For the first route, a quasi-straight
line visible at fig 7 left, the robot has generated 7 constraints
sets for 200 reference images. For the second path, visible
at fig 7 right, the robot has generated 17 constraints sets
for 200 reference images. The compactness are respectively
7/200 and 17/200. The large difference between those two
results can be explained by the presence of many occlusions
in the second case, that prevent from tracking objects on long
range and then actualise constraints sets regularly. However,
even if the compactness is lower than in the previous case,
the number of constraints is still low. These results show
that despite imperfect images annotations, it is possible
to produce compact human-like descriptions of trajectories
selected according to high-level criteria, in real-world scenes.

VII. CONCLUSION AND FUTURE WORK
A new approach to automatically select the best route has

been presented. The use of semantic content of the scene
to choose among several possible paths has been shown
to be useful in complex environments where many factors
influence robot behaviour. Both simulated and real-world
dataset have been used to show the utility of the system.
Furthermore a convenient approach for high-level route de-
scription has been introduced based on semantic graphs. Both
contributions extend the state-of-the-art methods to outdoor
environments and open new perspectives towards intelligent
navigation and human-robot interaction.

1http://youtu.be/JtuGG LS1Jg

Fig. 7. The two paths used to test automatic route description. At the top
is the path 1, below is the path 2.

Extensions of our work can be sought in several direc-
tions. Objects are tracked locally in successive images and
occlusions can temporally hide an object. Tracking objects
not only in successive images but in several neighbours can
overpass this problem. Path description and planning would
benefit from these improvements. Finally, taking into account
the long-term evolution of the environment by monitoring
changes can improve path planning process providing the
robot with more information about dynamic aspects of the
scene.
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