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Abstract— We present a novel e�cient algorithm for object
classification. Our method is based on the active learning
framework, in which training and classification are performed
in loops, and new ground truth labels are queried from the
supervisor in each loop. Our underlying classifier is from the
family of boosting methods, but in contrast to earlier methods,
our Confidence Boosting particularly focusses on misclassified
samples that have a high classification confidence associated.
We show that weighting these samples more than others leads
to a decrease of overconfidence, for which we give a formal
definition. As a result, our classifier is better suited for active
learning, leading to steeper learning curves and less required
label queries. We show the benefits of our approach on standard
data sets from machine learning and robotics.

I. Introduction

Object classification is one of the most important tasks
for a mobile robot, because for many kinds of interactions
with the environment or with a human user, the robot needs
semantic information about the environment. For that reason,
research in this topic is performed by a large community,
both within robotics and computer vision, and a number
of good approaches have been presented in the past. The
focus of these methods, however, di↵ers slightly with the
application: While in o✏ine learning run time and memory
e�ciency are often less important, robotics is often con-
cerned with online learning, because robots need to make
fast decisions and update their internal representations with
little computational e↵ort. Furthermore, an important aim is
to reduce the amount of required user interaction. In the case
of object classification this means that the required amount
of human-labeled training data should be small. Finally, for
a mobile robot it is very advantageous to have a reliable
measure of confidence along with the classification results,
because often important and safety-critical decisions depend
on them, and a restriction to very confident classifications can
help to avoid accidents, for example in autonomous driving
applications [1], [2].

In this paper, we present a novel learning method that
addresses all these three issues. Our approach is based on
an active learning framework, in which the human user is
involved in the learning process, and learning is done in
cycles of iterated training and inference. As we will show
experimentally, this reduces the amount of required hand-
labeled training data, and at the same time increases the
classification performance. As an underlying classification
method we use a novel online multi-class boosting algorithm.
The motivation to choose this classifier stems from the very
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Fig. 1: Object classification with active online Confidence Boosting: The
image on the left was recorded with an RGB-D sensor [3]. On the right,
we show class label predictions obtained from online gradient boosting [4]
and our online Confidence Boosting. The upper row shows results after
one learning round, the lower row depicts results after 10 rounds of active
learning. As we can see, both classifiers first return a wrong class label
(see arrows in legend), but Confidence Boosting can recover from the error
and finally give a correct label. In this paper, we show that this is because
Confidence Boosting is less overconfident.

fast computation time used for training and inference, and
from the online nature of the algorithm, i.e. it can update its
internal representation and make predictions before having
seen all input data. This is particularly useful in active
learning, because it reduces the run time. However, as we
will show, standard online boosting methods (e.g. Sa↵ari
et al. [4]), are not very useful for active learning, because
they tend to associate wrong classifications with a too large
confidence, i.e. they are often overconfident. This has a
severe e↵ect, because it prevents the classifier from finding
misclassified samples and, as a result, reduces the chance to
obtain ground truth labels from the human for re-learning
these erroneously classified samples. An illustrative example
is given in Fig. 1. Here, the input image shows a light
bulb, but the available information is too low to classify
this object correctly. Both standard gradient boosting and
our Confidence Boosting method report a wrong class label.
However, after 10 rounds of active learning (on a data set
that is di↵erent from this test data), Confidence Boosting is
able to classify the object correctly, while gradient boosting
is not. In our experiments, we will show that this is due to
the reduced overconfidence of our classification algorithm.

A. Related Work

The existing literature on object classification is too large
to be mentioned exhaustively here. Therefore we only name
some of the most recent achievements. These include deep
belief nets [5], convolutional deep belief networks (CDBN)
[6] and fully connected Conditional Random Fields (CRFs)
[7]. Despite their impressive results, these classifiers focus



only on the classification rate, whereas we are are also
interested in the overconfidence of a classifier. Furthermore,
sparse coding techniques have become popular, and in par-
ticular the Hierarchical Matching Pursuit (HMP) algorithm
[3], which we also use to compute descriptors, however with
a classifier that is superior in performance compared to the
linear support vector machine (SVM) used there.

Our approach is formulated as an active learning method.
This research area is experiencing a growing interest in
the area of computer vision and robotics. For example,
Kapoor et al. [8] use active learning for object categorization
using a Gaussian Process classifier (GPC) where labels
are queried for data points that are classified with high
uncertainty. Triebel et al. [9] use a sparse version of the
GPC, the Informative Vector Machine (IVM) to actively
learn tra�c lights in urban tra�c images. In computer vision,
Vezhnevets et al. [10], as well as Wang et al. [11] use active
learning for interactive image segmentation. In contrast to
all these methods, we propose to use a boosting method
as an underlying classifier, because it is more e�cient in
terms of training and evaluation time. In that context, a work
that is very closely related to ours is that of Sa↵ari et al.
[4], which proposes an e�cient multi-class online boosting
algorithm. We extend that approach using a similar idea as
presented in [12], with the di↵erence that here we use it
for online boosting and with more theoretical justifications.
Concretely, we introduce a formal definition of over- and
underconfidence of a classifier on a given data set. This is
related to the intuitive notion of introspection introduced
by Grimmett et al. [1], however with the di↵erence that
our formulation can explicitly quantify the inherent trade-o↵
between a high number of detected misclassifications and
a high number of correct classifications that are not further
used for training.

II. Active Learning

The main di↵erence between standard passive learning
and active learning is that, instead of strictly separating
between a training and a testing phase, the active learner
performs loops of training and testing, thereby incorporating
the information flow obtained from the teacher (e.g. a human
supervisor) into the loop. Fig. 2 shows a schematic flow
chart of a generic active learning algorithm. We note that,
while in general active learning can be used in many di↵erent
contexts, we will use it for object classification in this work.
In the following, we will describe the indivudal components
of our framework in more detail.

A. Components of Active Learning

Similar to standard passive learning methods, in active
learning we start with an initial training set (X0,Y0), where
X0 = {x1, . . . , xN} are the N feature vectors with d di-
mensions, i.e. xi 2 íd, and Y0 = {y1, . . . , yN} are the
corresponding class labels, i.e. yi 2 {1, . . . ,C}. In this paper,
we assume the number of classes C as given, but usually
larger than 2. We note that, in contrast to passive learning,
active learners usually can deal with much smaller initial

Fig. 2: Active Learning flow chart. After an initial training step, the
classifier is presented new test data and reports label predictions and
confidence values (here: uncertainties). These are used to ask a human
supervisor for new ground truth labels, which subsequently are added to
the current training data. Then, the training process is repeated with the
extended training data until a stopping criterion is met.

training data sets, which is one major advantage of active
learning methods. The first step is then to train a classifier
with the initial training set, which we model as a function
f : íd ! íC , i.e. each input feature vector x is mapped to
a prediction vector p 2 íC . We will give more details on
this in Sec. III. Next, a set of K data samples {x⇤1, . . . , x⇤K} is
drawn from the test data set X⇤ and classified using f . Here,
the nature of X⇤ defines the type and complexity of the active
learning problem: if X⇤ is given beforehand and its size does
not change during learning, then we are concerned with pool-
based active learning. If, however X⇤ is a potentially infinite
stream of data, then we have stream-based active learning,
which is significantly harder. In our work, we consider the
pool-based variant, although we aim to extend the approach
to stream-based learning in the future.

The result of the classification of {x⇤1, . . . , x⇤K} are the label
predictions y⇤1, . . . , y

⇤
K , where

y⇤k = arg max
c

(p1, . . . , pC), p = f (x⇤k). (1)

In addition to the label predictions, the prediction vectors
themselves also play an important role, because they can
be used to distinguish test points, where the classifier has a
high chance of correct classification from those where the
classification is likely to be incorrect. We refer to this as the
confidence of the classifier. This can be computed based on
the uncertainty of the classification, and we will give more
details below. Now, the key element of active learning is
the ability of the learner to query new class labels from the
human supervisor. This is usually done by selecting those
test points x⇤i , for which the classifier has a low confidence
and asking a ground truth label ŷi for them. Here, we note
that the number K of new test samples considered can be
used to bound the required human e↵ort by querying only
the least confident ones. For K = 1 this would result in a
query for every sample, but for larger K the benefit becomes
obvious. Then, after the label query, the new data-label pairs
(x⇤i , ŷi) are added to the current training data (X j�1,Y j�1),
where j is the index of the current learning round, and the
learning process starts again until an appropriate stopping
criterion is reached. In our implementation, we use a fixed
number of learning rounds.

B. The Which-Question Problem

One important question in active learning is how to select
the data samples for which semantic information, i.e. in our



case class labels, are requested from the human supervisor.
We refer to this as the which-question problem. In the survey
of Settles [13] the following query strategies are summarized
to address this problem: uncertainty sampling, query-by-
committee, expected model change, expected error reduction,
variance reduction, and density weighting. Among these, the
most used method is the uncertainty sampling, and we also
use it in our implementation. Assume that the entries of the
prediction vector p returned by f for a test sample x⇤ sum
up to 1, i.e.

PC
i=1 pi = 1. Then, each entry pi in p can be

interpreted as the probability that x⇤ has label i. From this,
there are two common ways to compute uncertainty:

he(p) := �
CX

i=1

pi logC(pi) hb(p) := pi2/pi1 , (2)

where i1 and i2 are the indices of the largest and second
largest values of p, respectively. The first measure is the
normalized entropy, where the base of the logarithm is C so
that he always ranges between 0 and 1, and the second is
a variant of the best-vs-second-best (BVSB) method. Both
measures are usually very well suited for active learning,
while BVSB tends to perform slightly better for multi-class
classification tasks such as ours. With these definitions of
uncertainty h, we define the classification confidence as 1�h,
and we will use both terms in the following.

Now, to address the which-question problem, the standard
uncertainty sampling approach uses a confidence threshold
#c and decides to ask for a ground truth label ŷ for all
those data samples which, in the current learning epoch, have
been classified with a confidence lower than #c. This directly
raises two questions: What is a good choice for #c? And how
do we know that the classifier gives meaningful uncertainty
estimates so that uncertainty sampling actually makes sense?
While the first question will be answered in Sec. III-C, the
second one will be addressed next.

C. Under- and Overconfidence
A crucial point with the uncertainty estimates obtained

from the classification is the question, how much one can
rely on these estimates. Formally, our aim is to have a high
correlation between prediction uncertainty and incorrectness
of the classification (a similar idea was used by Zhang et al.
[14]). In [12], this correlation was measured using the point-
biserial correlation coe�cient. However, this turns out to be
too restrictive and only applicable in cases where the number
of correctly and incorrectly classified samples is roughly
balanced. Therefore, we take a di↵erent approach. For a test
set X⇤ of size K we define two functions u and o as follows:

u( f ,X⇤, Ŷ) :=
1

Kc

X

x⇤2X⇤
I(y⇤ = ŷ)h( f (x⇤)) (3)

o( f ,X⇤, Ŷ) :=
1

Kf

X

x⇤2X⇤
I(y⇤ 6= ŷ)(1 � h( f (x⇤))), (4)

where I is the indicator function, Ŷ are the ground truth
labels, and Kf and Kc are the number of incorrectly and

correctly classified test samples, i.e. Kf + Kc = K. Thus, u
is the average uncertainty of the correct classified samples
and o is the average confidence of the incorrectly classified
samples. We will denote u as the underconfidence and o
as the overconfidence of the classifier. Intuitively, if all
incorrect classified samples have the maximum confidence
of 1 assigned, then the overconfidence reaches its maximum
value of 1. This is the worst case for active learning, because
the classifier is unable to give an indication that its predicted
class label is wrong. As a consequence, the algorithm will
never ask ground truth labels for the incorrectly classified
samples, and they can not be used for re-training. Thus, the
classification can not be improved.

Another extreme case is that of maximal underconfidence
u. Here, all uncertainty values h for correctly classified
samples are 1, i.e. the classifier is always fully uncertain,
although the corresponding predictions are correct. The
problem with this case is that active learning will be very
ine�cient, because very often the algorithm queries ground
truth labels for samples that are already correctly classified. It
is important to note that underconfidence and overconfidence
are in this definition completely independent quantities. In
particular, a classifier can be under- and overconfident at
the same time, namely when it is uncertain on the correct
predictions and certain on the wrong ones.

Despite the problems with ine�ciency caused by under-
confident classifiers, we will focus more on the task to
avoid overconfidence, as this has the more severe e↵ect on
active learning. However, the problem here is that we can
not explicitly minimize o using a closed-form expression.
Also, we have to make sure that the overconfidence is
reduced simultaneously with the reduction of the training
error. To do this, we propose to extend a standard online
multi-class boosting algorithm in such a way that it also
takes classification confidences into account. This will be
described next.

III. Online Confidence Boosting

In principle, there are two di↵erent ways to achieve
classification results with little overconfidence: either we use
a classifier that is already known to be less overconfident
than others, or we modify an existing algorithm so that
it is less overconfident. If we follow the first idea, then a
good choice for a classifier is the Gaussian Process classifier
(GPC), as was shown earlier [1], [15], because due to its
capability to marginalize over a range of potential models, its
uncertainty estimates are more reliable because they correlate
more with actual misclassifications (see [1] for more details).
One major problem however, is its huge demand in run time
and memory. Even though there are sparse and more e�cient
variants such as the Informative Vector Machine (IVM) [16],
the method is still hardly applicable for typical data sets in
mobile robotics. Furthermore, as we are investigating active
learning here, we have even stricter requirements on the run
time, because the user is involved in the learning process,
and learning should be done during operation of the robot.



Algorithm 1: Online Multi-class Gradient Boost [4]
Data: training data (X, y) with C classes
Input: number of weak learners M, loss function `,

agreement function a
Output: weak learners f1, . . . , fM

1 Initialize( f1, . . . , fM)

2 for n = 1, . . . ,N do
3 wn  1
4 gn  0
5 for m = 1, . . . ,M do
6 fm  UpdateWeakLearner( fm, xn, yn,wn)

7 pnm  fm(xn)
8 ↵nm  a(pnm, yn)
9 gn  gn + ↵nm

10 wn  �r`(gn)

Therefore, we decided to use a classification framework
that is known to be e�cient and e↵ective, and that can be
modified so that it is less overconfident. A recently developed
method with these requirements is the Online Multi-Class
Gradient Boost (OMCGB) algorithm of Sa↵ari et al. [4] (see
Algorithm 1), which we describe next.

A. Online Multi-Class Gradient Boost

In addition to the training data, the OMCGB algorithm
requires three di↵erent parameters as input: a fixed number
M of weak learners, a loss function ` : í! í, and an agree-
ment function a : íC ⇥é! í, which quantifies the amount
of agreement between a class label prediction f (xn) and the
corresponding ground truth label yn. After initialization of
the weak classifiers, the algorithm loops over all training data
points and updates all weak classifiers for every new training
sample (xn, yn). This online behaviour of the algorithm is
very attractive for our active learning framework, because
it avoids a recomputation of the underlying representation
whenever a new ground truth label is queried from the user
and added to the existing training set. As in o✏ine boosting
methods, every training sample xn has an assigned weight
wn, which is first initialized to 1. Then, every weak classifier
is first updated with the new sample, its weight wn and its
ground truth label yn. Note that the weak learner itself also
must be an online algorithm, because otherwise the overall
boosting method would not be online. In our experiments we
used online random forests as weak classifiers.

The next step (line 7) is to obtain a label prediction pnm

for the new training sample. Then, the agreement with the
ground truth label is computed. In standard OMCGB, this is
defined as

ag(pnm, yn) = p(yn)
nm � 1/C, (5)

i.e. it is directly related to the prediction for class yn, here
denoted as an upper index into the prediction vector pnm.
The resulting agreement ↵nm is then accumulated, and a new
weight wn is computed for the sample from the negative
gradient of the loss function of the sum of agreements. In [4],

two di↵erent loss functions are investigated, but with little
performance di↵erence, so we decided to use the standard
exponential loss `(g) = exp(�g) known from AdaBoost.
Concretely, the computation in line 10 results in higher
weights for samples that disagree with the ground truth and
lower weights for those that do agree.

B. Extension to Confidence Boosting

As can be seen from Eq. (5), the agreement ag used
by standard gradient boost is only related to the prediction
itself, but not to the confidence of the prediction. To build
a classifier that takes both prediction and confidence into
account, we propose to use this agreement function:

ac(pnm, yn) = (�1)⇠
 
1 � h(pnm)

(C � 1)⇠

!
, (6)

where ⇠ = I(arg max
i

p(i)
nm 6= yn). (7)

This means, that we measure agreement by the amount
of confidence, which is equal to one minus uncertainty.
In case of a correct classification, i.e. when ⇠ = 0, the
agreement simply amounts to the confidence of the current
weak classifier fm. However, if the classification is incorrect,
we actually have a disagreement, and we express this with the
– slightly modified – negative confidence. Our modification
is the term (C�1), by which we divide the uncertainty. This
has empirically shown to improve the classification results
substantially. To summarize, our agreement function is high
if the classification is correct and certain, and it is low if
we have an incorrect, but certain classification. Also note
that if the uncertainty is zero, i.e. when we completely trust
the classification, then the agreement is 1 for correct and
�1 for incorrectly classified samples. Thus, in this case, our
agreement function is even simpler than the original one
given in Eq. (5).

C. Adaptive Thresholding

As mentioned in Sec. II-B, active learning with uncertainty
sampling requires to specify the confidence threshold #c to
decide for which samples a ground truth label should be
queried. Usually, this threshold is a fixed parameter of the
algorithm that does not change during the learning process.
However, apart from the fact that it is in general di�cult to
find a good value for #c, having a fixed value often leads
to a poor performance either in terms of e�ciency or in
terms of classification rate. The reason is that there is an
inherent trade-o↵ in the choice of #c. If it is small, then the
number of label queries is low, thus increasing e�ciency
in the next learning round, but with a potentially lower
classification rate. In contrast, if #c is large we have a higher
chance of finding those samples, for which the classifier was
wrong, which is good to correct for misclassifications, but
it also increases the risk of re-learning already correctly
classified samples. In addition to this, #c should also be
chosen according to the level of over- and underconfidence
of the classifier. For example, if the classifier tends to be
overconfident, then a higher value of #c should be used to
increase the chances to find misclassifications. To address



this issue, in our implementation we use an adaptive method:
In every training epoch we compute confidence histograms
for correctly and incorrectly classified samples from the
previous epochs. Then we start a search at #c = 0 with a
positive step size until the fraction of false samples with a
confidence below #c equals the fraction of correct samples
with a confidence above #c. As we will see later in the
experiments, this method provides a good compromise, and
it uses a similar idea than the equal-error-rate in a precision-
recall graph.

IV. Experimental Results

To evaluate our algorithm, we performed three di↵erent
experiments on six di↵erent data sets. The first experiment
investigates how much Confidence Boosting actually reduces
the overconfidence in the class label predictions. In the sec-
ond, we analyze the impact of Confidence Boosting within
the active learning framework. And in the last experiment, we
compare the learning curve and the run time of Confidence
Boosting with those of a Gaussian Process Classifier, which
is known to perform particularly well in active learning. All
data sets and experiments are described in more detail next.

A. Data Sets

We used four data sets from the UCI machine learning
repository, and two sets from robotics. The UCI data sets
are ‘USPS’, ‘Pendigits’, ‘Letter’, and ‘DNA’. We used these
because they were also used for evaluation by Sa↵ari et al.
[4], and our aim is to compare Confidence Boosting with
gradient boosting. The robotics data sets we used were an
RGB-D set provided by Lai et al. [17], and the 3D point
cloud data from Paul et al. [15]. From the first one, for which
we use the identifier ‘RGBD’, we extracted 89 pre-segmented
objects of 17 object classes, resulting in a total of 58372
RGB-D images. Then, we computed Hierarchical Matching
Pursuit (HMP) descriptors [3] on the depth channel. The
dictionary needed for the HMP features was learned on 5
classes out of 17, mainly for memory reasons. Then, the
data was split into a training set of 90% of the data and
an evaluation set of the remaining 10 %. The other robotics
data set, which we denote as ’Begbroke’, consists of 3D
point clouds from a car park with 6 classes. The data was
segmented automatically, and features were computed for
each segment (see [15]). In total, there were 1496 segments,
out of which we took 1000 for training and the rest for
evaluation. We used this data to be able to compare with
the multi-class GP classifier used in [15], both in terms of
run-time and classification performance.

B. Reducing Overconfidence

To measure how much Confidence Boosting actually re-
duces overconfidence, we computed histograms over the
confidences for correctly and incorrectly classified samples,
both for gradient boosting and for Confidence Boosting.
Fig. 3 shows the resulting histograms for gradient boosting
(GB) and Confidence Boosting (CB) on the ‘DNA’ data
set. The plots on the left show the confidence histograms

Fig. 3: Confidence histograms of gradient boosting and Confidence Boost-
ing on the ‘DNA’ dataset. The left plots show the histograms for the correctly
classified samples, the right ones show the histograms for the incorrect
samples. Confidence Boosting shifts all histograms to the left, resulting in
an overall decreased confidence. Note however that the false samples are
shifted even further, which leads to a lower overconfidence.

RGBD Begbroke USPS Letter Pendigits DNA
pGB 0.1326 0.3106 0.1978 0.1854 0.2804 0.1475
aGB 0.1064 0.2391 0.1653 0.1395 0.2192 0.1258
pCB 0.0981 0.1715 0.1624 0.1416 0.1682 0.0895
aCB 0.0960 0.1629 0.1515 0.1338 0.1684 0.0871

TABLE I: Overconfidence averaged over 100 runs. We compare passive and
active Gradient Boost (pGB and aGB) with passive and active Confidence
Boost (pCP and aCB).

for the correct classified samples, the right ones for the
incorrect samples (red bars depict either over- or under-
confident regions). As we can see, Confidence Boosting
tends to shift both histograms to the left, which means
that in general classification is more uncertain. This implies
that more false classifications are uncertain as well. Thus,
increasing the uncertainty in general reduces overconfidence,
but it also increases underconfidence. However, as we can
see, Confidence Boosting shofts the histograms for the false
samples more than the correct ones. A quantitative result
is shown in Table I. Note that, e.g. for the ‘DNA’ data
set, the overconfidence is lower both for passive and for
active learning when using Confidence Boosting. Although
this does not hold for all data sets (see, e.g. ‘USPS’), one can
say that in general the tendency is that Confidence Boosting
reduces the overconfidence.

To visualize the trade-o↵ between over- and underconfi-
dence, we use a plot type similar to a precision-recall curve.
On the x-axis, we plot for a given number of di↵erent con-
fidence thresholds ✓1, ✓2, . . . the fraction of false classified
samples that have a confidence below the thresholds. On
the y-axis, we plot for the same thresholds the fraction
of correct classified samples for which the classification
was more confident than ✓i. Ideally, this curve stays close
towards the upper right corner of the plot. Fig. 4 shows
an example of such a plot for the ‘Pendigits’ data set,
both for gradient boosting and for Confidence Boosting.
We see that Confidence Boosting gives the opportunity to



Fig. 4: Left: Trade-o↵ curves for gradient boosting, Confidence Boosting,
and the GPC on the ‘Pendigits’ data set. Higher curves correspond to less
overconfident classifiers, curves that are further to the right represent a
lower underconfidence. We see that Confidence Boosting generally improves
over- and underconfidence compared to gradient boosting, and it is even
less underconfident than the GPC. Right: Average run times of Confidence
Boosting (blue) and the GPC (red) for each epoch (note the log scale).

RGBD Begbroke USPS Letter Pendigits DNA
pGB 0.2704 0.2668 0.1536 0.2628 0.1589 0.1410
aGB 0.1824 0.1463 0.1123 0.1876 0.0983 0.0867
pCB 0.1248 0.0568 0.0898 0.1161 0.0559 0.0811
aCB 0.1165 0.0517 0.0726 0.0840 0.0341 0.0724

TABLE II: Average classification errors over 100 runs.

‘detect’ more false classifications while at the same time
not loosing too many correct classifications. The plot also
shows how to choose a good confidence threshold #c for
active learning. While our adaptive method chooses the one
where the false and the correct classification rates are equal,
one could focus more on e�ciency by not loosing many
correct classifications (towards the right part of the graph)
or on classification quality by including more false classified
samples into the training set (towards the upper part).

C. Impact of Confidence Boosting for Active Learning

To quantify the e↵ect of Confidence Boosting in the active
learning framework, we ran active learning on all 6 data
sets, once with standard gradient boosting and once with
Confidence Boosting. We repeated this 100 times with the
training sets randomly shu✏ed to obtain results that are
independent on the data ordering. The mean classification
errors are given in Table II. Apart from the fact that active
learning performs better on all data sets than passive learning,
where training data was selected randomly and not based on
its confidence, we see that Confidence Boosting results in
lower classification errors. In particular, Confidence Boosting
with active learning performs best on all data sets.

The progress of the learning process for ‘Pendigits’ is
depicted in Fig. 5 (left). Here, the means and standard devi-
ations of the classification error are shown as a function of
the generated label queries. We see that Confidence Boosting
leads to better results and requires less label queries at the
same time. For comparison we also show results on passive
learning where the training data was as large as the one for
active learning was at the end. Thus, even though passive
learning uses the same amount of data, the active learner is
better after some learning epochs. Fig. 5 (center) explicitly
shows the number of label queries per epoch for three
di↵erent data sets. Again, Confidence Boosting produces less
queries than Gradient Boosting. We relate this to the fact that
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Fig. 7: Normalized confusion matrices for active gradient boosting (GB) and
Confidence Boosting (CB) on the ‘Begbroke’ data set (see text for details).

Confidence Boosting results in a higher correlation between
uncertain and incorrect classified samples, which enables
the classifier to find more incorrect samples for re-training
while at the same time not loosing many correct classified
samples. The right part of Fig. 5 shows a comparison of
our results from Table II with those reported in [4] and
[17]. Note that [4] perform learning on the same data for
a number of rounds, which can not be compared to our
active learning epochs. Therefore we only compare to the
first round reported in [4]. Some qualitative results of our
approach are shown in Fig. 6.

D. Comparison to the GPC

In [1], [15] it was shown that a GPC tends to be much less
overconfident than other classifiers such as a Support Vector
Machine (SVM) or LogitBoost. However, here we show that
Confidence Boosting mitigates this issue at least for boosting
methods, and we relate that not only to the fact that the
confidence is used to compute the sample weights, but also
to the choice of the weak classifiers, namely random forests.
We argue that with this combination we have a very e�cient
classification framework that also reduces overconfidence in
a way that it comes close to that of a GPC. To back-up
this claim quantitatively, we ran a multi-class GPC on the
same data sets using an own implementation based on [18].
Unfortunately, for most data sets GPC training could not
be done e�ciently, therefore we only report results on the
‘DNA’ data set. Fig. 4 (left) shows that the GPC is only
slightly less overconfident than Confidence Boosting. The
classification error of the GPC for ‘DNA’ after 10 epochs
was 0.0552, which is slightly better than active Confidence
Boosting (see Table II), but at the cost of a much higher run
time (see Fig. 4, right).

We also compare our results on the ‘Begbroke’ data with
those reported in [15]. For that, we computed the same
normalized confusion matrices as in [15], although without
the underrepresented ‘Background’ class (see Fig. 7). The
figure shows that our active Confidence Boosting method
reaches a classification performance that is almost as good
as that of the GPC, but with a much faster computation time.



Fig. 5: Left: Learning curves for the ‘Pendigits’ data set. The x-axis shows the number of label queries generated by active learning. Both Gradient Boosting
and Confidence Boosting improve with more samples, but Confidence Boosting reaches lower errors and requires less label queries. For comparison, the
passive counter parts are shown where the same number of data points was used for training as the active learner has at the end. Center: Number of new
label queries used per epoch for ‘Pendigits’, ‘USPS’ and ‘Letter’. All curves start with a pool of 250 samples. We see that in each epoch less additional
queries are needed than in the previous one and that Confidence Boosting needs less label queries than gradient boosting. Right: Comparison of active
learning with the results reported in the literature. Active Confidence Boosting always performs best.
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Fig. 6: Qualitative results of our experiments. We show three di↵erent objects from the RGBD data set, for which we computed HMP descriptors on the
depth information, i.e. colour is not used for classification. After 10 rounds of active learning, Confidence Boosting (CB) returned the correct label, while
gradient boosting did not. Note that CB even distinguishes the lime correctly from a lemon although there was no colour information used, i.e. even such
small di↵erences in shape can be detected with our approach.

V. Conclusions

Object classification still remains a di�cult problem. How-
ever, active learning seems to be a very useful technique to
tackle this problem, even though it raises the questions of
training e�ciency and low overconfidence of the classifier.
While the latter can be handeled well using a Gaussian
Process classifier, this same method is often too slow for
online applications. In contrast, our proposed extension of
online multi-class gradient boosting is at the same time very
e�cient and reduces overconfidence over standard boosting,
coming close to that of the GPC. The result is an e�cient and
high performing active learning method, which gives good
results even on challenging state-of-the-art data in robotics.
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