
Local Policies for Efficiently Patrolling
a Triangulated Region by a Robot Swarm

Daniela Maftuleac1, Seoung Kyou Lee2, Sándor P. Fekete3, Aditya Kumar Akash4,
Alejandro López-Ortiz1, and James McLurkin2

Abstract— We present and analyze methods for patrolling an
environment with a distributed swarm of robots. Our approach
uses a physical data structure – a distributed triangulation
of the workspace. A large number of stationary “mapping”
robots cover and triangulate the environment and a smaller
number of mobile “patrolling” robots move amongst them.
The focus of this work is to develop, analyze, implement and
compare local patrolling policies. We desire strategies that
achieve full coverage, but also produce good coverage frequency
and visitation times. Policies that provide theoretical guarantees
for these quantities have received some attention, but gaps have
remained.

We present: 1) A summary of how to achieve coverage by
building a triangulation of the workspace, and the ensuing
properties. 2) A description of simple local policies (LRV, for
Least Recently Visited and LFV, for Least Frequently Visited) for
achieving coverage by the patrolling robots. 3) New analytical
arguments why different versions of LRV may require worst-
case exponential time between visits of triangles. 4) Analytical
evidence that a local implementation of LFV on the edges of the
dual graph is possible in our scenario, and immensely better
in the worst case. 5) Experimental and simulation validation
for the practical usefulness of these policies, showing that even
a small number of weak robots with weak local information
can greatly outperform a single, powerful robots with full
information and computational capabilities.

I. INTRODUCTION AND RELATED WORK

Large populations of robots are ideal for tasks where the
robot must cover a large geographic area, such as search-and-
rescue, exploration, mapping and surveillance. The robots
can maintain coverage of the environment after the dispersion
is complete. The size of the environment that can be covered
is proportional to the population size, but large populations
require that individual robot be quite simple, without expen-
sive sensors or computation. In this paper, we focus on using
a heterogeneous group of robots; with many small “mapping”
robots that map the environment and build a communication
network, and a smaller (but still numerous) number of more
capable “patrolling” robots with the capability to respond to
events. After deployment of the mapping robots, controlling
the more powerful patrolling robots amounts to a coverage

1Daniela Maftuleac and Alejandro López-Ortiz at Cheriton School
of Computing, University of Waterloo, Waterloo, ONT, Canada.
dmaftule,alopez-o@cs.uwaterloo.ca

2Seoung Kyou Lee and James McLurkin at Computer
Science Department, Rice University, Houston, TX, USA.
sl28,jmclurkin@rice.edu

3Sándor P. Fekete at Department of Computer Science, TU Braun-
schweig, Braunschweig, Germany. s.fekete@tu-bs.de

4Aditya Kumar Akash at Department of Computer
Science and Engineering, IIT Bombay, Mumbai, India.
adityakumarakash@gmail.com

Fig. 1: Triangulated network patrolling experiment with one
patrolling robot (red circle). Blue lines indicate the dual graph of the
triangulation. The blue triangle is the starting point for the patrol.
The patrol policy computes the next adjacent triangle a patrolling
robot should visit. It’s output is shown with the red arrow near the
patrolling robot.

control problem: How should the navigating robots move
in order to ensure small worst-case latency in patrolling all
areas of the surveyed environment? Given the distributed
nature of a swarm, this requires simple local strategies that
do not involve complicated protocols or computations for
coordinating the motion of the mobile components, while
still achieving complete coverage, with small latency to
surveyed locations.

In previous work [3], [8], we showed how complete cover-
age of an unknown region can be achieved by performing a
structured exploration by a multi-robot system with bearing-
only low-resolution sensors. The result is a triangulation of
the workspace that can be exploited for further tasks. As
described in [11] this supports a straightforward approach
to patrolling: Each triangle can be considered a vertex in a
dual graph, with adjacent triangles connected by dual edges.
Thus, any route in the workspace that visits a sequence of
triangles can be traced by a path in the dual graph. This
can significantly reduce the computation on the patrolling
robots – a simple policy that considers the current triangle
and adjacent triangles will suffice. Given well-shaped trian-
gles (which can be achieved by the robot platform described
in this paper), a policy can produce a patrol with provable
properties. Fig. 1 shows an example experiment.

What local policies should be used for patrolling the
triangulated region? A natural choice for this task is Least
Recently Visited (LRV), in which each triangle keeps track
of the time elapsed since its last visit from a patrolling

ar
X

iv
:1

41
0.

22
95

v1
 [

cs
.R

O
]

 8
 O

ct
 2

01
4

robot. The patrolling robot policy directs it to move to the
adjacent triangle with the smallest such latency. This amounts
to tracking the visit times of triangles, which are the vertices
in the dual graph, the blue circles in Fig. 1. We show that
this yields a policy that achieves complete coverage, and no
obvious problems in practical experiments [11].

In this paper, we investigate the theoretical properties
of patrolling policies. We present new results that show
using LRV on dual vertices (i.e., LRV-v) can perform quite
badly, by proving that the resulting coverage time can be
exponential in the number n of dual vertices. This is a
new analytical result for our specific class of graphs that
arise from planar triangulations, i.e., planar graphs of max-
imum degree three. We present alternate policies that share
the simple local information requirements of LRV-v, while
achieving latencies that are small even in the worst case.
The policy Least Frequently Visited (LFV) that keeps track
of the frequency of visits is such a candidate. Making this
policy provably good requires a particular twist: instead of
tracking visits to triangles, the dual vertices, we track the use
of edges between triangles, the dual edges. We call these two
new policies LFV-v and LFV-e respectively. We augment
the physical data structure of our triangulated network to
maintain these frequency counts, and show that this data can
be stored and retrieved by patrolling robots with fixed-size
communication messages. This leads to latencies that are
well bounded, even in the worst case: for regions covered by
n triangles, the latency of LFV-e is not worse than O(n ·d),
where d is the dual diameter of the region, i.e., the largest
number of triangles that may have to be visited in a shortest
path. For naturally shaped regions with bounded aspect ratio,
this amounts to an upper bound of O(n1.5). We present
simulation results and hardware experiments with 19 robots
that demonstrate the efficacy of our approach.

A. Assumptions

We focus our attention on approaches applicable to small,
low-cost devices with limited sensors and capabilities. In
this work, we assume that robots do not have a map of the
environment, nor the ability to localize themselves relative
to the environment geometry, i.e. SLAM-style mapping is
beyond the capabilities of our platform. Instead, we assume
that the mapping robots can disperse and triangulate the
environment; see [3] for an illustrative video, and [11] for
a technical paper. We exclude solutions that use centralized
control, as the communication and processing constraints do
not allow these approaches to scale to large populations.
We also do not assume that GPS localization or external
communication infrastructure is available, which are limita-
tions present in an unknown indoor environment. We assume
that the communication range is much smaller than the size
of the environment, so a multi-hop network is required for
communication. Finally, we assume that the devices know
the geometry of their local communications network. This
local network geometry provides each robot with relative
pose information about its neighbors.

B. Related Work

Our results rely on the computational power of many small
robots distributed throughout the environment, which support
many basic algoritms. The patrolling robots use the mapping
robot’s network for navigation, there are many references, we
note that Batalin’s approach is similar to our own [2]. Our
network is composed of triangles, which provide useful geo-
metric properties. Approaches like those of Spears et al. [14]
build a triangulated configuration using potential fields, but
the network does not have a physical data structure, so the
robots never recognize that they form triangles. Our approach
allows us to use triangles as computational elements, which
support practical distributed computations [11]. Geraerts [9]
or Kallmann [10], use a triangulated environment for path
planning, but require global information and localization.
Our approach is fully distributed, using only local informa-
tion and communications.

Optimizing the refresh frequency when patrolling a graph
even by a single, powerful robot with full information
amounts to finding a shortest roundtrip that visits all vertices
– the well-known Traveling Salesman Problem (TSP), which
is known to be NP-hard, even for full information and central
control; see the book [1] for a comprehensive study of
solution methods, and the book [4] for a recent overview of
history and aspects of optimization. Simple approximation
algorithms for the TSP that require a limited amount of
computation do exist, for example, based on building a
minimum spanning tree [6]; however, this still requires global
information or communication, even with only local connec-
tions. Moreover, the problem for multiple robots amounts to
the Vehicle Routing Problem (VRP), for which the additional
task of finding a well-balanced distribution of vertices visited
by the individual robots impedes performance guarantees
for simple heuristics, such as doubling a spanning tree.
This contributes to making the VRP very challenging in
practical contexts. See the book by Toth and Vigo [15] for
a comprehensive overview.

Motivated by using a swarm of weak robots, rather than
powerful centralized methods, we favor approaches that
require only local information, which can be maintained by
the dual vertices. The most basic policy is to use a random
walk for each robot. As discussed in detail by Cooper et
al. [5], this has some obvious disadvantages in the worst
case, and may even be of limited quality in the average case.
Better approaches consider available information, such as the
time elapsed since the last visit by a robot. This has been
considered in the context of token passing in decentralized
ad-hoc networks. As Malpani et al. [12] showed, the policy
Least Recently Visited (LRV) ensures that finite refresh times
can be guaranteed. However, one of the theoretical results
by Cooper et al. [5] was to show that there are examples
for which this policy may result in refresh times that are
exponential in the size of the graph. More on this will be
discussed in Section III, where we discuss LRV in the context
of mobile robots.

II. MODEL AND PRELIMINARIES

We have a system of p mapping robots and r patrolling
robots, where p � r. The communication network is an
undirected graph G = (V,E). Each robot is modeled as a
vertex, u ∈ V , where V is the set of all robots and E
is the set of all robot-to-robot communication links. The
neighbors of each vertex u are the set of robots within
line-of-sight communication range rmax of robot u, denoted
N(u) = {v ∈V | {u,v} ∈ E}. We assume all network edges
are also navigable paths. Robot u sits at the origin of its
local coordinate system, with the x̂-axis aligned with its
current heading. Robot u can measure the relative pose of
its neighbors in its reference frame. We model algorithm
execution as a series of synchronous rounds. This simplifies
analysis and is straightforward to implement in a physical
system [13].

The mapping robots use our MATP triangulation algo-
rithm [3], [7], [11], to explore and triangulate the environ-
ment. The exploration proceeds in a breadth-first fashion,
leaving a triangulated network in its wake. Figure 2 shows
an example triangulation of mapping robots. This primal
graph GP = (VP,EP) consists of the p triangulation robots,
VP, constructing the network, and the edges, EP, forming
the triangles. Pairs of triangulation robots with {vi,v j} ∈ EP
are able to communicate with each other, while any mobile
robot r inside a triangle formed by robots vi, v j, vk can
communicate with all three of them. In turn, the set VD of
triangles forms the vertices of a dual graph GD = (VD,ED),
in which two vertices ∆i,∆ j ∈VD are connected by an edge
if the triangles represented by ∆i and ∆ j are adjacent. The
triangulation algorithm guarantees that a dual edge {∆i,∆ j}∈
ED corresponds to the primal edge {vi,v j} ∈ EP, where vi is
the owner of triangle ∆i. This allows us to model computation
on ∆i and communication between ∆i and ∆ j while the actual
computation and communication is on vi and {vi,v j} ∈ EP.
See [11] for details.

III. LOCAL PATROLLING POLICIES

A. Maintaining the Dual Graph

In the following section we focus on the dual graph,
and consider the triangles as computational elements. How-
ever, computation in triangles actually occurs on the primal
vertices (the robots). A crucial property is the following,
established in [11].

Theorem 3.1 The owners of two adjacent triangles must
also be connected.

Thus, a mobile robot in a triangle ∆i can do status checks
on neighboring triangles (i.e., neighbors of ∆i in the dual
graph) by asking the owner of ∆i to query its neighbors in
the primal graph.

In our new algorithms, it becomes important to consider
local patrolling policies that are based on keeping track
of dual edges instead of vertices. This makes it necessary
to store and retrieve information on these dual edges. We
can implement this by making the owner of a triangle also

3

2
2

2
2

5

2

3
4

2
1

4
1 1

2

3
3

3

3
4

1

1

5
A

B

Fig. 2: Notation for triangulation with a dual graph. Black
circles:triangulation robots, red circles:patrolling robots, blue lines
dual graph, black lines: primal graph edges that map to dual
graph edges, thick black lines: subset of dual edges that indicate
connections between owner vertices. The black numbers indicate
the current data stored in each edge. For example, in LFV-e
patrolling (Sec. III-B), this data would be the frequency of visits
for that edge.

the owner of the dual edges to all adjacent triangles. It is
important to observe that these owners of a dual edge are not
the vertices of the corresponding primal edge. Implementing
this on the stationary robots forming the primal graph can
be based on the following result.

Theorem 3.2 Any dual edge has two owners that are con-
nected in the primal graph.

For a proof, observe that any dual edge involves two trian-
gles, whose owners are adjacent by Theorem 3.1. Moreover,
it also follows that any primal vertex can only be the owner
of a small number of dual edges, which bounds memory and
communication usage. This allows us to model information
stored in a distributed fashion on triangles and edges, and
reason about communication via the dual graph.

B. Basic Policies

We consider a number of different local policies that allow
patrolling all triangles of the environment. The objective is
to minimize maximum latency, i.e., the longest refresh time
(RT) between consecutive visits of the same triangle.

Our previous work described a local patrolling policy that
moves each patrolling robot into the adjacent triangle with
the largest refresh time. We refer to this policy as LRV-v,
for least recently visited vertex). This design makes sense,
as the objective is to keep refresh times small. While simple,
this policy produces complete coverage [12].

The LRV policy has been studied in various contexts.
Fig. 13 demonstrates that it exhibits relatively good behavior
in practice. The experiment starts with one navigating robot;
we add others as time proceeds. As we deploy more navi-
gating robots, the maximum RTt(∆i) decreases, as expected.

An alternative to considering the time since the last visit to
a triangle is to keep track of the frequency of visiting. The
rationale behind this is that an even distribution of visits
should make the maximum latency close to the average.
Thus, we obtain the policy LFV-v, for least frequently visited
vertex.

Keeping track of visits to dual vertices (i.e., triangles) is
natural, but not the only possible choice. Instead, we can

Θ(n)

Fig. 3: Graph with n vertices with a chain of Θ(n) gadgets. A
single gadget is colored in red for illustration purposes. Patrolling
takes exponential time in the worst case [5].

Fig. 4: A polygonal region with holes triangulated (red lines) with
the dual graph GD of the triangulation (blue lines).

track visits to dual edges, giving rise to the policies LRV-e
and LFV-e. As it turns out, the crucial outcome of this paper
is that both LRV-v and LFV-e have worst-case exponential
latency, so they should be used only with care. While precise
proofs on the worst-case behavior of LFV-v have yet to be
established, we present evidence that it may also be bad. On
the positive side, the worst-case behavior of LFV-e can be
bounded, making it the unique policy of choice when trying
to bound worst-case behavior.

C. Worst-Case behavior of LRV-e and LRV-v

It is known that the worst-case behavior of LRV-e in
arbitrary graphs can be exponential in the number of nodes in
the graph, provided we allow a maximum degree of at least
4. That is, for every n there exists a graph with n vertices in
which the largest refresh time for a node is exp(Θ(n)) [5].
Fig. 3 depicts one such graph (with vertices of degree 4),
which filters a fixed percentage (1/3 to be precise) of all
left-to-right paths that go past the diamond-like gadgets. If
we connect Θ(n) such gadgets in series, we will require a
total of (3/2)Θ(n) paths, starting from the left for at least one
of them to reach the rightmost point in the series.

Given that our scenario is based on visiting (dual) vertices,
it is natural to consider the worst-case behavior of LRV-v for
the special class of planar graphs of maximum degree 3 that
can arise as duals of triangulations. Until now, this has been
an open problem. Moreover, it also makes sense to consider
the worst-case behavior of LRV-e for the same special graph
class, which is not covered by the work of Cooper et al. [5].

Theorem 3.3 There are dual graphs of triangulations (in
particular, planar graphs with n vertices of maximum degree
3), in which LRV-v leads to a largest refresh time for a node
that is exponential in n.

Proof: Consider the graph GD in Fig. 4 colored in
blue, which contains Θ(n) identical components connected
in a chain. We prove the claimed exponential time bound by
recursively calculating the time taken to complete one cycle
in the transition diagram shown in Fig. 5.

We monitor the movement of a robot from this situation
onwards. Let a robot take at least one unit of time to traverse
an edge. Moreover, let Tn denote the time taken to complete

u v u v

u v

Step 1
Step 2

Step 3

u vu v

u v

Step 1 Step 2

Step 3

Fig. 5: Two possible alternating paths for the LRV-v strategy on
each component of the graph GD.

one cycle of GD, i.e., the time taken by a robot to start from
and return to the first vertex of the first component of GD.
From the possible paths illustrated in Fig. 5, we can observe
that the vertex u is visited only during the beginning and end
of the cycle, while the vertex v is visited twice in this cycle.
It is not hard to check that the summation of visits to all
edges in one component during one cycle is 26. Using this
we can see a simple recursion as follows:

Tn ≥ 26+2 ·Tn−1, T0 = 0

Solving this equation, we get

Tn ≥ 26 · (2n−1)

Utilizing the fact that vertex u of the first component is
visited only at the beginning and end of a cycle in GD, we
see that it is visited after Tn ≥ 26 ∗ (2n− 1) units of time,
which is exponential in the number n of nodes of graph GD,
as claimed.

As it turns out, the same negative result can be established
for LRV-e, making both versions of LRV unsuitable for
avoiding bad worst-case behavior.

Theorem 3.4 There are dual graphs of triangulations (in
particular, planar graphs with n vertices of maximum degree
3), in which LRV-e leads to a largest refresh time for a node
that is quadratic in n.

Proof: This proof follows the exact arguments as the
proof of theorem 3.7 for the same graph GD represented in
Fig. 11. As illustrated in Fig. 6, each of GD’s components is
traversed initially following the colored oriented paths from
step 1 and further alternating the paths from step 2k and

Step 1

Step 2k

Step 2k+1

Fig. 6: LRV-e strategy on each component of the graph GD.

Freq

1 1

Freq

Fig. 7: A path being traversed from left to right with its frequency
histogram below. Initially all nodes have frequency zero. Then half
way through the path traversal nodes to left have frequency 1 and
nodes to the right are still at zero.

2k+1. In other words, the first time a component is traversed,
the path changes direction and goes back to the start. The rest
of the times when the component is traversed, the direction
does not change. Thus, in order to traverse the ith component
in the chain, we need to traverse the first i−1 components
in the chain.

D. Worst-Case behavior of LFV-v and LFV-e

In the following, we provide evidence that a small poly-
nomial upper bound on the worst-case latency is unlikely
for LFV-v. We start by showing some interesting properties
of graphs explored under LFV-v. It would seem at first that
paths in the graph must be in nonincreasing frequency. This
is so as we always select the neighbor of lowest frequency.
However, if all node’s neighbors have the same or higher
frequency, then the destination node will have strictly larger
frequency than the present neighbor (see Figs. 7 and 8).

Lastly we observe that it is possible to create dams or
barriers by having a flower configuration in the path (see
Fig. 9). We reach the center of the flower and then take the
loops or petals, thus increasing the count of the center (see
histogram on Fig. 9). Then the robot moves past the center
node of the flower, which forms a barrier that impedes the
robot from traversing from right to left past the center of
the flower, until the count of the nodes to the right of the
path has risen to match that of the barrier. With these three
basic configurations in hand, we can combine them to create
a graph in which the starting node s has δ (s) neighbors,
δ − 1 of which lead via staircases with barriers to the last
neighbor of s which revisits s (see Fig. 10). That is for each

1

Freq

2

3

4

5

1

Freq

2

3

4

5

Fig. 8: A path with a corresponding staircase pattern in the
histogram.

Freq

u

u

Fig. 9: A path with a “flower” configuration which creates a barrier.

s

staircasesδ − 1

Fig. 10: A configuration in which the frequency of the starting
point s is much larger than the majority of its neighbors.

time we go from s to one of the first δ−1 neighbors we then
climb a staircase up to the last common neighbor of s. Then
from that neighbor we enter each staircase from the “high”
side until stopped by a barrier, which makes us return to the
neighbor of s, eventually revisiting s from this last neighbor.
This shows the following theorem.

Theorem 3.5 There exists a configuration for LFV-v in
which some neighbors of the starting vertex have a frequency
count of k, while the starting point has a frequency count of
k δ . Moreover, the value of k can be as high as Θ(n/δ).

This result provides some indication that the worst-case ratio
between smallest and largest frequencey labels of vertices
may be exponential, which would arise if we could construct
an example in which Ω(δ) linear ratios as in Theorem 3.5
between neighbors occur. From this it can be shown that at
most δ d steps are required to explore the graph, where d and
δ are the diameter and the maximum degree of the graph.

Theorem 3.6 The highest frequency node in a graph with
unvisited nodes has frequency bounded by δ d .

Proof: Consider a path from an unvisited node to the
node with highest frequency. The path is of length at most
the diameter d of the graph. In each step the increase in
frequency is at most a factor δ over the unvisited node hence
the frequency of the most visited node is bounded by δ d .
However, there is no known example of a dual of a triangu-
lation graph displaying this worst-case behavior.

Theorem 3.7 There exist graphs with n vertices of maximum
degree 3, in which the largest refresh frequency for a node
is Θ(n2).

Proof: Consider the graph GD of Fig. 11 as described
in its caption which consists of a chain of Θ(n) cycles
of length 4 connected in series. As illustrated in Fig. 12,
each component is traversed initially following the colored
oriented paths from step 1 and further alternating the paths
from step 2k and 2k+ 1. In other words, the first time a
component is traversed, the path changes direction and goes
back to the start. The rest of the times when the component

Fig. 11: This figure depicts (1) a rectangular polygonal region in
black lines (2) its triangulation GP in red lines and (3) the dual
graph of the triangulation GD shown in blue lines.

Step 1

Step 2k

Step 2k+1

Fig. 12: LFV-v strategy on each component of the graph GD.

is traversed, the direction does not change. Thus, in order to
traverse the ith component in the chain, we need to revisit
the first i−1 components in the chain.

Thus, LFV-v may also display bad worst-case behavior.
Fortunately, the following was proven by Cooper et al. [5]
for the worst-case behavior of LFV-e.

Theorem 3.8 In a graph G with at most m edges and
diameter d, the latency of each edge when carrying out LFV-
e is at most O(m ·d).

This allows us to establish a good upper bound on LFV-e in
our setting.

Corollary 3.9 Let GD = (VD,ED) be the dual graph of a
triangulation, with |VD| = n vertices and diameter d. Then
the latency of each vertex when carrying out LFV-e is at
most O(n ·d).

Proof: Since GD is planar, it follows that n ∈ Θ(m),
where m = |ED| is the number of edges of GD. Because
patrolling an edge requires visiting both of its vertices, the
claim follows from the upper bound of Theorem 3.8.

We note that this bound can be tightened for regions with
small aspect ratio, for which the diameter is bounded by the
square root of the area.

Corollary 3.10 For regions with diameter d ∈ O(
√

n), the
latency of each dual vertex when carrying out LFV-e is at
most O(n1.5).

IV. EXPERIMENTAL RESULTS

In order to validate and test our results, we performed a
number of simulations, as well as experiments with a real-
world platform. Fig. 14 shows the r-one platform, developed
at Rice University.

An example simulation tun is shown in Fig 13a. Fig. 13c
gives results from a real-world patrolling experiment with
1−3 robots.

Fig. 14: Snapshot of the r-one robot used in the experiments.

With one robot in the simulation, the LFV-e policy pro-
duces a closed path that resembles a Hamiltonian path, shown
in Fig. 13b; as such a path is a theoretical lower bound,
which is achievable only in exceptional cases, it is intuitively
clear that we are getting excellent results. As we add more
patrolling robots, the consolidated Hamiltonian-like path is
perturbed and the variance of the maximum refresh time
increases, shown in the red line (after 10K iterations) in
Fig. 13c. Analyzing the paths of multiple robots show that
there is some overall rebalancing in addition to finding new
individual subtours. This corresponds to handling the two
aspects of balancing loads and finding tours, which are both
computationally hard in an offline setting. It can be seen
that the LFV-e policy carries out more delicate operations,
leading to a greate amount of initial perturbation. However,
it is clear from the aggregated results shown in Fig. 13c
that eventually, LFV-e yields superior results. Shown is the
average maximum RT∆i(t) for larger numbers of patrolling
robots. The solid black line shows the lower bound for
an optimal set of patrols. Assuming all of the patrolling
robots are on their own Hamiltonian path, we can compute
this lower bound by |H(G)|

r , where |H(G)| is the length of
a Hamiltonian cycle of the dual graph G (the number of
triangles), and r is the number of patrolling robots. Despite of
these differences between LRV-v and LFV-e, it is remarkable
that both policies performed well, with a clearly evident
linear speedup according to increasing number r of robots.
(Refer to the theoretically optimal lower bound mapped by
the black hyperbola.)

Our hardware experimental setup is shown in Fig 1,
and the data for a experiment is shown in Fig. 13e. The
experiment started with one patrolling robot in the blue
triangle. At 22 minutes into the experiment, we added two
more robots, one in the blue triangle, and the other in the
triangle to its left. The horizontal lines show the average
refresh time in the last 10 minutes of patrolling. The LRV-v
averages are 984 for one robot and 365 for three, and the
LFV-e averages are 750 for one robot and 485 for three. Units
are robot rounds. These data match our simulation results
nicely. The experiment starts with one navigating robot; we
add two more robots at 10k iterations, and then another
5 at 20k iterations. As we deploy more navigating robots,
the maximum RT∆i(t) decreases, seen in the red line. Note
that here, too, LFV-e has the longest initialization before it
discovers all of the triangles, the variance in the max refresh
time is the smallest, once the patrolling routine has settled
down.

R
e
fr

e
s
h

 T
im

e

Min

Max

1 2 3 4 5 6 7 8 9

1

2

3

X coordinate
Y

 c
o
o
rd

in
a
te

(a) Simulation environment

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

X coordinate

Y
co

or
di

na
te

(b) Patrol trace for one robot

0 0.5 1 1.5 2 2.5 3
x 104

0

1000

2000

3000

4000

Iterations

M
ax

im
um

 R
ef

re
sh

 T
im

e

LRV−v
LFV−e

(c) Sample experimental trial

2 4 6 8 10 12 14
0

100

200

300

400

500

600

700

800

Number of Patrolling Robots
A

ve
ra

ge
 M

ax
im

um
 R

ef
re

sh
 T

im
e

(d) Average max refresh time data

0 5 10 15 20 25 30 35
0

500

1000

1500

2000

2500

Time(Minutes)

M
ax
im
u
m
R
ef
re
sh

T
im
e

LRV−v
LFV−e

ThreePatrolling
Robots

OnePatrolling
Robot

(e) Robot experiment

Fig. 13: (a) Our simulated environment contains 193 triangles. The color of each triangle indicates the refresh time of the triangle. The
black triangle in the middle of the triangulation has the maximum refresh time. (b) An example cyclic path from a single patrolling
robot. The color of each path segment indicates the age, darkest color is the most recent path segment. This path produces a worst-case
coverage with the tight bound on variance, as can be seen in the red trace of Fig. (d). (c) Maximum Refresh Time using LRV-v and
LFV-e. Simulations start with one robot, and we put two and six additional robots at 10000 and 20000 iterations. Solid black lines indicate
the lower bound of maximum refresh time of each patrolling robot, called baseline. (d) The trend of path length of each patrolling robot
according to the number of patrolling robots. The black line shows the lower bound for a perfect set of disjoint patrolling cycles. The
dotted line shows the best performance of a single robot. We ran the simulations using one to fifteen patrolling robots, 8% of the number
of triangles. (e) Data from our patrolling experiment. Our experimental setup is shown in Fig 1. It consisted of 16 triangulation robots,
and one or three patrolling robots. The experimental data is very similar to our simulation results.

V. CONCLUSION

We have demonstrated how a combination of a weak
stationary swarm with a set of mobile robots with limited
capabilities can perform well for purposes of patrolling and
surveillance of a region. The simple policy LRV (based on
purely local information without any sophisticated commu-
nication between devices) allows complete coverage of the
mapped area, but may lead to exponential refresh times for
all portions in specific worst-case examples; the alternative
policy LFV is of similar simplicity can protect against this
worst-case behavior, provided it is applied to crossed edges
of triangular subregions instead of the subregions themselves.
In realistic simulations as well as real-world experiments,
both policies perform quite well. Most remarkably, they
display linear speedup for the visiting frequencies of the
surveyed subregions, implying that even simple local policies
on weak robots can vastly outperform single, powerful robots
with full information and strong computational capabilities.

REFERENCES

[1] David L. Applegate, Robert E. Bixby, Vasek Chvátal, and William J.
Cook. The Traveling Salesman Problem: A Computational Study.
Princeton University Press, 2006.

[2] Maxim Batalin and Gaurav S. Sukhatme. Using a sensor network for
distributed Multi-Robot task allocation. In IEEE International Con-
ference on Robotics and Automation, pages 158–164, New Orleans,
Louisiana, April 2004.

[3] Aaron Becker, Sándor P. Fekete, Alexander Kröller, Seoung Kyou
Lee, James McLurkin, and Christiane Schmidt. Triangulating un-
known environments using robot swarms. In Proc. 29th Annu.
ACM Sympos. Comput. Geom., pages 345–346, 2013. Video avail-
able at http://imaginary.org/film/triangulating-unknown-environments-
using-robot-swarms.

[4] William J. Cook. In Pursuit of the Traveling Salesman: Mathematics
at the Limits of Computation. Princeton University Press, 2012.

[5] Colin Cooper, David Ilcinkas, Ralf Klasing, and Adrian Kosowski.
Derandomizing random walks in undirected graphs using locally fair
exploration strategies. Distributed Computing, 24(2):91–99, 2011.

[6] Yehuda Elmaliach, Noa Agmon, and Gal A. Kaminka. Multi-robot
area patrol under frequency constraints. Ann. Math. Artif. Intell., 57(3-
4):293–320, 2009.

[7] Sándor P. Fekete, Tom Kamphans, Alexander Kröller, J.S.B. Mitchell,
and Christiane Schmidt. Exploring and triangulating a region by a
swarm of robots. In Proc. APPROX 2011, volume 6845 of LNCS,
pages 206–217. Springer, 2011.

[8] Sándor P. Fekete, Seoung Kyou Lee, Alejandro López-Ortiz, Daniela
Maftuleac, and James McLurkin. Patrolling a region with a structured
swarm of robots with limited individual capabilities. In International
Workshop on Robotic Sensor Networks (WRSN), 2014.

[9] Roland Geraerts. Planning short paths with clearance using explicit
corridors. In IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 1997–2004. IEEE, 2010.

[10] Marcelo Kallmann. Path planning in triangulations. In Proceedings
of the IJCAI workshop on reasoning, representation, and learning in
computer games, pages 49–54, 2005.

[11] Seoung Kyou Lee, Aaron Becker, Sándor P. Fekete, Alexander Kröller,
and James McLurkin. Exploration via structured triangulation by a
multi-robot system with bearing-only low-resolution sensors. In IEEE
International Conference on Robotics and Automation (ICRA), 2014.
Available at http://arxiv.org/abs/1402.0400.

[12] Navneet Malpani, Yu Chen, Nitin H. Vaidya, and Jennifer L. Welch.
Distributed token circulation in mobile ad hoc networks. IEEE Trans.
Mob. Comput., 4(2):154–165, 2005.

[13] James McLurkin. Analysis and Implementation of Distributed Algo-

rithms for Multi-Robot Systems. Ph.D. thesis, Massachusetts Institute
of Technology, 2008.

[14] W. M. Spears, D. F. Spears, J. C. Hamann, and R. Heil. Distributed,
Physics-Based control of swarms of vehicles. Autonomous Robots,
17(2):137–162, 2004.

[15] Paolo Toth and Daniele Vigo. The vehicle routing problem. Siam,
2001.

	I Introduction and Related Work
	I-A Assumptions
	I-B Related Work

	II Model and Preliminaries
	III Local Patrolling Policies
	III-A Maintaining the Dual Graph
	III-B Basic Policies
	III-C Worst-Case behavior of LRV-e and LRV-v
	III-D Worst-Case behavior of LFV-v and LFV-e

	IV Experimental Results
	V Conclusion
	References

