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Abstract— Activity recognition of multi-individuals (ARMI)
within a group, which is essential to practical human-centered
robotics applications such as childhood education, is a particu-
larly challenging and previously not well studied problem. We
present a novel adaptive human-centered (AdHuC) representa-
tion based on local spatio-temporal features (LST) to address
ARMI in a sequence of 3D point clouds. Our human-centered
detector constructs affiliation regions to associate LST features
with humans by mining depth data and using a cascade of rejec-
tors to localize humans in 3D space. Then, features are detected
within each affiliation region, which avoids extracting irrelevant
features from dynamic background clutter and addresses mov-
ing cameras on mobile robots. Our feature descriptor is able to
adapt its support region to linear perspective view variations
and encode multi-channel information (i.e., color and depth)
to construct the final representation. Empirical studies validate
that the AdHuC representation obtains promising performance
on ARMI using an Meka humanoid robot to play multi-people
Simon Says games. Experiments on benchmark datasets further
demonstrate that our adaptive human-centered representation
outperforms previous approaches for activity recognition from
color-depth data.

I. INTRODUCTION

In this paper, we address the important but previously
not well studied robot reasoning problem: mobile robot
interpretation of behaviors of each individual in a group of
humans. In particular, we are interested in the physical game
playing scenario in childhood education applications. The
objective of this work is to enable human-centered robotic
systems to simultaneously interpret behaviors of multiple
individuals in Simon Says games, as illustrated in Fig. 1,
with the ultimate goal of deploying such a robotic system
to simultaneously communicate and interact with multiple
people in real-world human social environments.

The proposed approach also has significant potential for
use in a large number of other real-world human-centered
robotics applications, in which robots need the critical ability
to understand behaviors of multiple individuals. For example,
a robotic guard that observes multiple individuals should be
able to recognize each person’s movement to detect abnormal
patterns; a service robot requires the capability of perceiving
behaviors of each individual in a group to provide effectively
for human needs; a self-driving robotic car needs to be able
to distinguish each pedestrian’s behaviors to better ensure
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Fig. 1. A motivating example of ARMI: a Meka humanoid robot is used
to play Simon Says games with a group of three individuals. The objective
of ARMI is to recognize activities of each individual in a group, such as the
walking activity performed by the female. Our solution is based on a new
representation, which coherently and efficiently localizes people and extracts
adaptive, human-centered LST features in xyzt space. Our representation is
able to (1) identify feature affiliations, i.e., which features are from whom,
(2) avoid extracting irrelevant information from dynamic background and
foreground obstacles, especially when a camera is moving with the robot,
(3) address the false descriptor size problem through estimating the depth
of a feature’s support region and adapting its size to compensate for linear
perspective view changes.

safety; a medical robot needs to understand the motions of
each patient in a group to evaluate treatment progress in
physical therapy applications.

Although several approaches are discussed in the robotic
perception literature to address the task of single-person
action reasoning [1], [2], [3] and group action recognition
[4], [5], [6], [7], interpreting the actions of each or a
specific individual within a group has not been previously
well investigated. We name this essential problem activity
recognition of multiple individuals (ARMI), as depicted in
the Simon Says game in Fig. 1. In real-world human social
environments, including schools, hospitals, business, etc.,
a human-centered robot can experience complex, dynamic
environments with multiple humans present. The capability
of performing ARMI in these settings, within complicated
scenes with camera motions, occlusions, background clutter,
and illumination variations, is therefore extremely significant.

Among different approaches for representing humans and
their behaviors [2], [4], [5], [6], [7], local spatio-temporal
(LST) features are the most popular and promising represen-
tation. Human representation approaches based on LST fea-
tures are generally invariant to geometric transformations; as
a result, they are less affected by variations in scale, rotation
and viewpoint. Because LST features are locally computed,
they are inherently robust to occlusions. Use of orientation-



based descriptors provides the representation with additional
robustness to illumination variations. Recently, the popularity
of using affordable structured-light cameras to construct 3D
robotic vision systems, in which human representations are
developed and valuable depth information is encoded into
LST features, continues to attract increasing attention from
computer vision [2], [8] and robotics communities [3].

Despite their advantages, existing representations based on
LST features have several shortcomings. First, because local
features ignore global spatial structure information and lack
affiliation information, they are incapable of identifying the
activities of multiple persons in the same scene. Representing
behaviors of each individual in a group is considerably more
challenging than representing the group as a whole, which
requires modeling feature affiliation, i.e., to which individual
each feature is affiliated. Second, since representations based
on LST features represent local variations, in complex scenes
a large proportion of detected features often fall on the
cluttered background, especially when the camera is moving,
as is common with mobile robots. In this case, irrelevant
features from backgrounds usually decrease the ability to
represent human activities themselves [9]. Third, existing
LST feature descriptors are generally not adaptive to linear
perspective view variations, i.e., the size of the feature’s
support region does not adapt to the distance to the camera,
which results in decreased feature description capability. For
example, the values of local features extracted from the same
point on a human can vary significantly when the human is
positioned at different distances from the camera. We name
this problem the false descriptor size issue.

In this paper, we address the problem of simultaneously
recognizing activities of each individual in a group from 3D
point cloud sequences, by proposing a novel representation
based on Adaptive Human-Centered (AdHuC) LST features
that can address the above three shortcomings. Specifically,
we construct affiliation regions of each human performing
actions in xyzt space (3D spatial and 1D temporal). Then,
features are detected locally within an individual’s affiliation
region, which are assumed to be affiliated with the human.
As a result, our human-centered feature detection technique
explicitly models feature affiliation to solve the ARMI task
and avoids detecting irrelevant local space-time features from
background clutter. For feature description, we define a new
depth measure to represent the true depth of a feature support
region; we adaptively resize the support region based on this
depth to compensate for linear perspective view changes, and
we implement a novel normalized multi-channel descriptor
to quantize our features. Our feature extraction approach is
based on the depth of interest concept, which enables us to
coherently localize humans, construct affiliation regions, and
extract features to construct our AdHuC representation.

Our contributions are threefold. First, we propose a novel
multi-channel feature detector to detect human-centered fea-
tures from 3D point cloud sequences, which can represent
activities of each individual in a group of humans and deal
with background clutter and camera movements. Second,
we introduce a new multi-channel descriptor that is able

to compensate for the linear perspective view change and
solve the false descriptor size problem. Third, we introduce a
novel, coherent framework to simultaneously perform human
localization and feature extraction, in order to construct the
AdHuC representation to address ARMI at the feature level.

II. RELATED WORK

We review representations that can be adopted by robotic
systems to represent people. We also review feature detectors
and descriptors to construct human representations based on
local features to recognize activities from 3D visual data.

A. Human Representation in 3D Space

Several representations of humans in 3D space were pro-
posed in the past few years. A naive 3D human representation
approach is based on the human centroid trajectory in 3D
space [10]. Although this representation provides a compact
description of humans in a large space, it cannot be used to
represent fine-grained human behaviors with limb motions.

Another category of human representations is based on
human shape information, including the 3D human silhouette
history [11]. Similar representations were also implemented
based on 3D body-part models [12]. However, the robustness
of these human representations is heavily restricted by the
performance of human segmentation and body part tracking,
which are also extremely challenging research problems due
to background clutter, occlusion and camera motions.

In recent years, skeleton-based 3D human representation
has received an increasing attention, since skeleton data are
directly available from structured-light 3D sensors, such as
the Kinect and PrimeSense. For example, [13] proposed a
3D representation based on the joint rotation matrix with
respect to human torso. A representation based on actionlet
ensemble was introduced in [14] to recognize activities from
skeletal data. Other skeleton based 3D human representations
were implemented using histograms of oriented displace-
ments [15], covariance of 3D joints [16], etc. Since these
representations completely rely on the skeleton data from
color-depth cameras, they typically do not work in outdoor
environments due to the sensing limitation of structured-
light sensors. Also, skeleton data acquired from color-depth
sensors can become inaccurate and very noisy when camera
motions, background clutter, and occlusion are present.

B. Local Spatio-Temporal Features

A most widely used human representation is based on local
spatio-temporal features, which are typically extracted using
two procedures: feature detection and description.

1) Feature detection: LST features are detected by cap-
turing local texture and motion variations. Laptev et al. [17]
detected LST features from color videos based on general-
ized Harris corner detectors with spatio-temporal Gaussian
derivative filters. Dollar et al. [18] detected such features
using separable filters in space and time dimensions from
color videos. Recently, Zhang and Parker [3] extended [18] to
detect features in color-depth videos. These methods extract
LST features from the entire frame; as a result, they detect a



large portion of irrelevant features from background clutter
and are incapable of distinguishing features from different
individuals in a group.

Chakraborty et al. [9] proposed the selective LST feature,
where interest points are extracted from the entire image
and then features are pruned using surrounding suppression
and space-time constraints. Our feature detector is inherent-
ly different from these feature selection methods; features
irrelevant to humans are not detected (that is, no selection
is performed), which significantly reduces the number of
irrelevant features and thus decreases computational require-
ments, especially when the camera is in motion in robotics
applications.

2) Feature description: Nearly all LST feature descriptors
applied to represent human activities in videos are based
on image gradients. Dollar et al. [18] concatenated image
gradients within a fixed support region into a single feature
vector. Zhang and Parker [3] extended [18] to describe multi-
channel features with a fixed support region in xyzt space.
Scovanner et al. introduced the SIFT3D [19] descriptor to
quantize gradients in space-time dimensions. Klaser et al. [1]
introduced the HOG3D descriptor to describe xyt gradients
in a fixed support region. The support regions of these LST
descriptors have a fixed, nonadaptive size and are not capable
of handling the linear view perspective changes.

An approach was introduced in [2] to adapt support region
size: detect features from entire frames and then assign each
feature depth with the minimum depth value of the feature
point within a time interval. This detect-assign approach
suffers from the false descriptor size issue, because as most
LST features are detected around the edges of moving body
parts, a large proportion of local features fall outside of the
blob of human pixels with incorrect depth values within the
time interval. This could improperly treat these features as
belonging to either the incorrect background or foreground
objects, which would yield improper support region sizes.
Inherently different from [2], we first analyze the depth to
construct a feature affiliation region for each human, then
detect features within each affiliation region. Since feature
depth is constrained by affiliation regions, our descriptor is
able to appropriately address the false descriptor size issue.

III. OUR APPROACH

Our objective of introducing the adaptive human-centered
representation is to affiliate LST features with proper humans
(i.e., human-centered) and adapt to linear perspective view
changes (i.e., adaptive), in order to efficiently address ARMI
in practical human-centered robotic applications.

A. Mining Depth Information

We previously introduced an approach of analyzing depth
information to discover depth of interest, which is a highly
probable interval of human or object instances in the depth
distribution of 3D point cloud sequences [20]. This concept
is used as a foundation of our coherent framework for human
localization and feature extraction. Each instance in a depth
of interest is referred to as a candidate.

The input to our method is a sequence of 3D point clouds
[21] or color-depth images acquired by a color-depth camera
or computed from stereo cameras. When the camera operates
on the same ground plane as humans (e.g., installed on mo-
bile robots), ground and ceiling planes are typically viewable.
Because points on the ground always connect candidates on
the floor, it is important to eliminate this connection in order
to robustly localize depths of interest that contain separate
candidates of interest. Since a ceiling plane usually consists
of a significant amount of irrelevant 3D points that gradually
change depth, removing these points is desirable to increase
processing efficiency, which is important for onboard robotic
applications. To remove these planes, we apply the RANdom
SAmple Consensus (RANSAC) approach [22], which is an
iterative data-driven technique to estimate parameters of a
mathematical model.

With ground and ceiling planes removed, a local maximum
in the depth distribution is selected as a depth of interest:
a depth interval centered at that maximum generally has a
high probability to contain candidates that we are interested
in. The correctness of our approach can be supported by the
observation that, in 3D point clouds, any candidate contains
a set or adjacent sets of points with a similar depth value.
Since the 3D scene observed by a robot is typically dynamic
and its underlying density form is unknown, we employ the
non-parametric Parzen window method [23] to estimate the
depth distribution and select candidates.

B. Affiliation Region Construction

Affiliation region is defined in xyzt space as a temporal se-
quence of cubes in 3D (xyz) space, such that each affiliation
region contains one and only one individual with the same
identity, which is denoted as Ah = {x, y, z, t, sx, sy, sz},
with cube center (x, y, z) and size (sx, sy, sz) at time point
t, and human identity h. The goal of introducing affiliation
regions is to set constraints on locations where features can
be extracted and to associate the features with the human in
an affiliation region. To construct affiliation regions, humans
are localized in xyz space in each 3D point cloud frame, then
locations of the same human across frames are associated.

Human localization is performed based on depth of inter-
est. To preserve human candidates in each depth of interest,
a cascade of rejectors is used to reject candidates that contain
only non-human objects:

1) Height-based rejector: after a candidate’s actual height
is estimated, as illustrated in Fig. 2(b), it is rejected if
its height is smaller than a min-height threshold (e.g.,
the NAO robot), or larger than a max-height threshold.

2) Size-based rejector: After estimating the actual size
of a candidate, the candidate is rejected if its size is
greater than a max-size threshold. However, to allow
for occlusion, we do not reject small-sized candidates.

3) Surface-normal-based rejector: This detector is applied
to reject planes, such as walls and desk surfaces, which
cannot be humans.

4) HOG-based rejector: This rejector is based on a linear
SVM and the HOG features, as proposed by Dalal and
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Fig. 2. Computation of the height and centroid of an occluded candidate.
Fig. 2(a) shows a raw color-depth frame. The actual height of a candidate is
defined as the distance between its highest point to the ground, as shown in
Fig. 2(b). The candidate centroid is drawn with a blue dot in the center of
the 3D cube in Fig. 2(b). When the candidate is projected to a color image
of size 96×64, it is placed in the center of the image according to its real
size, instead of the blob size, as shown in Fig. 2(c).

Triggs [24]. As illustrated in Fig. 2, by using the actual
height rather than a candidate’s blob height, we obtain
a more reliable rejection result.

In our cascade, simple rejectors are first used to reject the
majority of candidates before more complex approaches are
applied, which can significantly increase detection accuracy
while radically reducing computation cost.

To associate human localization results across frames, an
efficient loose-tight association method is introduced. Loose
association is based on localized human candidate positions:
if the distance of a human candidate in the current frame to a
human in the previous frame is smaller than a predetermined
threshold, they are loosely matched. Then, tight association
is performed to further match loosely-associated human lo-
calization results. We create a color-based appearance model
for each localized human, which is learned and updated in
an online fashion using an online AdaBoost algorithm as by
Grabner et al. [25].

Our affiliation region construction has several advantages:
(1) Our color-based appearance model is an accurate human
representation, since the background is masked out in color
images, as demonstrated in Fig. 2(c). (2) Since our human
appearance model is updated online, it adapts to appearance
changes caused by occlusions and body configuration varia-
tions. (3) Human localization, based on depth of interest and
rejector cascade, avoids computationally expensive window
scanning over the entire frame and is able to localize humans
using a moving robotic vision system, which is critical for
mobile robots with computational constraints.

C. Human-Centered Multi-Channel Feature Detection

Given a sequence of color-depth frames containing depth
d(x, y, z, t) = z(x, y, t) and color c(x, y, z, t) data in xyzt
space, and the affiliation regions {A1, . . . ,AH} constructed
for H humans in the camera view, our goal is to detect multi-
channel LST features that are affiliated with people, which
are called multi-channel human-centered features. Different
from previous feature detection methods that detect interest
points from entire frames without extracting the affiliation
information [2], [3], [6], [18], we detect our human-centered
features within the affiliation region of each individual, and
associate the extracted feature’s affiliations with the human.

To incorporate spatio-temporal and color-depth informa-
tion in xyzt space, we implement a cascade of three filters: a
pass-through filter to encode cues along depth (z) dimension,
a Gaussian filter to encode cues in xy space, and a Gabor
filter to encode time (t) information; then, we fuse the color
and depth cues. Formally, within the affiliation region Ah of
individual h, we convert color into intensity i(x, y, z, t) and
compute a multi-channel saliency map by applying separable
filters over depth d(x, y, z, t) and color i(x, y, z, t) channels
in Ah. Depth and intensity data are processed using the same
procedure. First, the data are filtered in the 3D spatial space:

ds(x, y, z, t) =
(
d(x, y, z, t) ◦ f(z, t; δ)

)
∗ p(x, y;σ) (1)

where ∗ denotes convolution and ◦ denotes entry-wise matrix
multiplication. A pass-through filter f(z, t; δ) with parameter
δ is applied along the z dimension:

f(z, t; δ) = H(z + δ)−H(z − δ) (2)

where H(·) denotes the Heaviside step function. A Gaussian
filter p(x, y, t;σ) is applied along the xy spatial dimensions:

p(x, y;σ) =
1

2πσ2
e−

x2+y2

2σ2 (3)

where σ controls the spatial scale along x and y dimensions.
Then, a Gabor filter is used along the t dimension:

dst(x, y, z, t) = ds(x, y, z, t) ∗ g(t; τ, ω) (4)

where the Gabor filter g(t; τ, ω) with parameter τ satisfies:

g(t; τ, ω) =
1√
2πτ
· e−

t2

2τ2 · ei(2πωt) (5)

We use ω = 0.6/τ throughout the paper.
After processing intensity data, we use the same proce-

dure to obtain ids(x, y, z, t). Then, we compute the spatio-
temporal multi-channel saliency map as:

R(x, y, z, t) = (1− α)·i2st(x, y, z, t) + α·d2st(x, y, z, t) (6)

where α is a mixture weight to balance between intensity and
depth cues. The saliency map generally represents variations
of textures, shapes and motions, since any region undergoing
such variations induces responses.

Next, our human-centered LST features are detected as
local maximums of R on the surface z = z(x, y, t) within
Ah in xyzt space, and each feature is affiliated with human
h. Since Ah only contains a single individual, the detected
features are affiliated with the human and are distinguishable
from features belonging to other individuals. As a result, our
human-centered features are able to address the ARMI task.
In addition, because the region for detecting our features is
bounded byAh in a depth of interest, irrelevant features (e.g.,
from the background) are never detected. This characteristic
is particularly impactful in mobile robotic applications, since
it provides (1) an increased description power to accurately
represent humans, (2) an improvement in feature detection
efficiency, and (3) the ability to handle the moving camera
challenge in human representation based on local features.
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Fig. 3. Feature support regions that have the same size in 3D (xyz) physical
space have different projected sizes when they are mapped onto 2D (xy)
images, due to linear perspective view changes, as illustrated by the yellow
and blue support regions. Accordingly, our adaptive multi-channel feature
descriptor adapts support region sizes to their depth to compensate for this
linear perspective view variation.

D. Adaptive Multi-Channel Feature Description

Here we introduce a new multi-channel feature descriptor
using a support region that is adaptive to changing linear
perspective views, and thereby addresses the false descriptor
size issue. For each LST feature point (x, y, z, t, h), which
falls in the affiliation region Ah={xh, yh, zh, th, sx, sy, sz}
and is detected with the 4D scale (σ, σ, δ, τ) in xyzt space,
we extract a support region S = (x, y, zs, t, σs, δs, τs, h) of
size (σs, σs, δs, τs) in x, y, z and t dimensions, respectively.
To compensate for spatial linear perspective view changes,
i.e., objects closer to a camera appearing larger, we propose
adapting the spatial size of a support region to its depth.
Estimating the true depth is a challenging task, since detected
feature points can fall out of human blobs and consequently
have incorrect depth values, resulting in the false descriptor
size issue.

In order to address this issue, we propose a new approach
to estimate the support region’s depth, based on Ah that is
computed using depths of interest. To this end, we formally
define several important concepts and mathematically formu-
late our depth estimation statement as a proposition followed
by a formal mathematical proof.

Definition 1 (Depth affiliation indicator): Given the affil-
iation region of an individualAh={xh, yh, zh, th, sx, sy, sz}
and a depth value z, the depth affiliation indicator is defined
as a function such that:

h(z) = 1(z ≥ zh −
sz
2
) · 1(z ≤ zh +

sz
2
) (7)

where 1(·) is the standard indicator function.
Definition 2 (Support region’s depth): Given a local fea-

ture point (x, y, z, t, h) detected using the scales (σ, σ, δ, τ)
in Ah={xh, yh, zh, th, sx, sy, sz}, the depth of the feature’s
support region S is defined by:

zs(S) =
1

τ

τ−1∑
j=0

z(x, y, t− j) · h(z(x, y, t− j))

+zh · (1− h(z(x, y, t− j)))
(8)

Proposition 1: Given the affiliation region of an individ-
ual Ah, for all feature points detected in Ah, the true depth
of their support regions satisfies h(zs(S)) = 1.

Proof: Among a temporal sequence of τ depth values
z(x, y, t − j), j = 0, . . . , τ − 1, assume τ1 ∈ [0, τ ] out of τ
depth values satisfy h(zi) = 1, i= 1, . . . , τ1; the remaining
τ − τ1 depth values satisfy h(zk) = 0, k = 1, . . . , τ − τ1.
Then, the support region’s depth zs(S) satisfies:

zs(S) =
1

τ

(
τ1∑
i=1

zi +

τ−τ1∑
k=1

zh

)
≤1

τ

(
τ1

(
zh +

sz
2

)
+ (τ − τ1)zh

)
=
sz
2

τ1
τ

+ zh

≤sz
2

+ zh

(9)

Similarly, we can prove that zs(S) also satisfies:

zs(S) =
1

τ

(
τ1∑
i=1

zi +

τ−τ1∑
k=1

zh

)
≥1

τ

(
τ1

(
zh −

sz
2

)
+ (τ − τ1)zh

)
= zh −

sz
2

τ1
τ

≥zh −
sz
2

(10)

In summary, zh − sz/2 ≤ zs(S) ≤ zh + sz/2. Therefore
h(zs(S)) = 1

Proposition 1 shows that the location of the support region
S is bounded by Ah. Thus, zs(S) encodes the true depth of
the support region S in Ah, in general. Based on zs, we
adapt the spatial support region size as follows:

σs =
σ0σ

zs
, δs =

σ0δ

zs
(11)

where σ0 characterizes the support region’s relative spatial
size. Since its temporal size is not affected by spatial linear
perspective view variations, we define τs = τ0τ , where τ0
characterizes the relative temporal size. An example of our
adaptive feature description is illustrated in Fig. 3.

We implement an extended HOG3D descriptor that slight-
ly differs from the original [1] to incorporate multi-channel
information and deal with adaptive supporting size. HOG3D
approximates orientations of 3D gradients in a support region
using a regular polyhedron with congruent regular polygon
faces as bins. Tracing each gradient along its direction up to
the intersection with a face identifies the bin index. Then, a
feature is described as a histogram h that counts the number
of gradients falling in the bins. Since the size of our feature’s
support region is adaptive, it can contain a different number
of gradients; thus, histogram normalization is necessary. In
addition, in order to incorporate information computed from
both intensity and depth channels, we employ the standard
practice of concatenation of the per-channel descriptors [3],
[8], leading to our final descriptor:

h =

{
hi
Mi

,
hd
Md

}
(12)

where hi is the histogram using Mi intensity gradients, and
hd is the histogram based on Md depth gradients.



IV. IMPLEMENTATION

For affiliation region construction, the width of depth of
interest is set to 1.0 m; the min-height threshold is set to 0.4
m; the max-height threshold is set to 2.3 m; and the max-
size threshold is set to 4.0 m2. Our HOG-based rejector is
modified from [24] and trained with the H3D dataset [26],
using all positive and a subset of negative samples; the loose
association threshold is set to be 0.5 m. For human-centered
LST feature detection, we assign scale parameters σ=5, δ=
0.25 m, and τ =3. For adaptive multi-channel LST feature
description, we assign parameter values σ0 = 8 and τ0 = 5.
When a color-depth camera is employed (e.g., Kinect), the
depth value is in [0.5, 8.0] m. A standard feature pooling
scheme [1], [2], [8], [27], [28] is applied for human activity
recognition, which subdivides each support region into Nx×
Ny×Nt = 4×4×3 cells.

Following the common practice [1], [2], [8], [28], human
activity recognition is performed using a standard bag-of-
features learning framework and a codebook is created by
clustering 200,000 randomly sampled features using k-means
into 1000 codewords. For classification, we use non-linear
SVMs with χ2-kernels and the one-against-all approach [1],
[8], [28]. The recognition method and our AdHuC represen-
tation are implemented using a mixture of Matlab and C++
in Robot Operating System (ROS) on a Linux machine with
an i7 3.0G CPU and 16Gb memory.

V. EXPERIMENTS

To evaluate the performance of our AdHuC representation
on activity recognition of multiple individuals, we conduct
comprehensive experiments using a physical Meka robot in
a Simon Says gaming scenario. In addition, to demonstrate
our representation’s impact, we compare our approach with
methods in previous studies using publicly available bench-
mark datasets.

A. ARMI in Multi-Human Simon Says Games

The goal of this task is to enable a Meka humanoid robot
to simultaneously interpret behaviors of multiple individuals
in a Simon Says game. Simon Says is a multi-player game,
where one person plays “Simon” and issues instructions that
should only be followed if prefaced with “Simon says”.

1) Experiment Settings: The Meka M3 mobile humanoid
robot is applied in the experiments, which is equipped with
two 7-DOF elastic arms with 6-DOF force torque sensors,
two 5-DOF hands, and a torso on a prismatic lift mounted
on an omnidirectional base. In particular, its sensor head has
two PrimeSense cameras (short and long range cameras), one
Point Grey Flea3 high-speed wide-angle camera, and one
Point Grey Bumblebee XB3 stereo camera, as illustrated in
Fig. 4(a). The 3D robotic vision, based on structured light
sensors (i.e., PrimeSense) and stereo cameras (Bumblebee
XB3), allows the robot to acquire color-depth and 3D point
cloud data in both indoor and outdoor environments.

To evaluate our new AdHuC representation’s performance
on ARMI, we collected a dataset in the Simon Says scenario.
In the experiment, the Meka robot played “Simon” and

(a) Meka robot and its sensor head (b) Observed 3D scene

Fig. 4. 3D scene observed by structured light sensor on an Meka humanoid
robot in Simon Says games. In the game, Meka issues an instruction “Simon
says: wave your hand”; the male player correctly follows this instruction,
but the female player fails to follow it.

issued six activities that human players need to follow,
including bending, clapping, flapping, kicking, walking, and
waving. Two or three subjects participated in each experi-
ment, performing different activities. The subjects were free
to perform activities with either hand/foot and stand at any
depth in the camera view. A total number of 522 instances
were collected using a long-range PrimeSense sensor with a
640×480 resolution at 30 Hz. Our Simon Says experiments
were conducted in a complex, realistic indoor environment
with the challenges of dynamic background (TV and monitor
screens), human-shape dynamic foreground obstacles (Nao
robot), partial occlusions, illumination variations, and camera
motions with the Meka robot, as shown in Fig. 4(b).

For evaluation purposes, the following all-in-one setup is
applied: we divide all data instances into 50% training and
50% testing, both containing activities from all game partici-
pants. Recognition performance is evaluated using accuracy,
computed over all activities performed by all individuals in
the testing dataset.

2) Qualitative evaluation: To perform a qualitative eval-
uation on the ARMI task, we begin by providing an intuitive
visualization of our AdHuC representation’s performance,
as depicted in Fig. 5(h). To emphasize our representation’s
impact, we compare our representation with seven approach-
es from previous studies, including Harris3D (color/depth)
[17], Cuboid (color/depth) [18], DSTIP [2], DLMC-STIP
[27] and 4D-LST [3] representations, using the original im-
plementation of their detectors and descriptors, as illustrated
in Fig. 5.

It is observed that previous representations based on LST
features are not able to extract feature affiliation information.
In addition, previous methods based only upon color cues
usually detect irrelevant features from dynamic background
(e.g., TV) or foreground obstacles (e.g., NAO robot), while
methods based on depth usually generate a large number of
irrelevant features due to depth noise. Although the DSTIP
method [2] avoids extracting irrelevant background features,
it also fails to capture useful information from humans, espe-
cially in multi-human scenarios. As shown in Fig. 5(h), our
AdHuC representation is able to identify feature affiliation,
avoid extracting irrelevant features, and adapt descriptor sizes
to compensate for linear perspective view changes.



(a) Color-Harris3D [17] (b) Color-Cuboid [18] (c) Depth-Harris3D [17] (d) Depth-Cuboid [18]

(e) DSTIP [2] (f) DLMC-STIP [27] (g) Color-depth 4D-LST [3] (h) AdHuC (color-depth)

Fig. 5. Comparison of our AdHuC representation with the state-of-the-art representations based on color-depth LST features. In Fig. 5(f), features with
different colors are from different depth layers (eight layers in total). In Fig. 5(h), different feature colors denote different feature affiliations. The exemplary
images are fused to clearly represent the start and end positions of the humans.

TABLE I
COMPARISON OF ACCURACY (%) AND EFFICIENCY ON THE ARMI TASK IN THE MULTI-PLAYER SIMON SAYS GAMES

Approach Bend Clap Flap Kick Walk Wave Overall Frame rate
Color-Harris3D [17] 74.2 73.1 73.4 71.8 78.2 76.6 74.5 ∼ 0.267 Hz
Color-Cuboid [18] 78.4 74.9 79.2 76.5 79.6 76.4 77.5 ∼ 0.144 Hz

Depth-Harris3D [17] 73.3 64.2 66.6 65.4 72.4 69.7 68.6 ∼ 0.206 Hz
Depth-Cuboid [18] 74.5 66.4 63.2 65.7 73.7 72.4 69.3 ∼ 0.141 Hz

DSTIP [2] 85.4 73.9 87.2 74.8 85.2 76.9 80.6 ∼ 0.041 Hz
DLMC-STIP [27] 75.3 67.2 69.9 70.8 75.2 70.5 71.5 ∼ 0.035 Hz

Color+Depth 4D-LST [3] 84.0 75.6 87.3 76.4 80.3 79.6 80.5 ∼ 0.134 Hz
Our AdHuC representation 86.7 78.4 89.4 80.8 84.9 82.3 83.8 ∼ 3.267 Hz

3) Quantitative evaluation: We also conduct experiments
to quantitatively evaluate our representation’s performance
(i.e., accuracy and efficiency). The recognition performance
is presented in Table I. It is observed our AdHuC representa-
tion obtains a promising accuracy of 83.8% with a frame rate
of around 3.3 Hz on the ARMI task in Simon Says games.
This highlights our AdHuC approach’s ability to accurately
and efficiently distinguish different activities performed by
multiple individuals in 3D scenes, through estimating feature
affiliations.

We also compare our AdHuC representation with previous
methods. Since previous approaches are not able to identify
feature affiliations (and thus cannot address the ARMI task),
we combine the used representation approaches with a most
commonly applied baseline HOG-based human localization
technique [4], [6], [7], [24], which employs a sliding window
paradigm and a sparse scan using 800 local windows. The
comparison is presented in Table I. It is observed that our rep-
resentation outperforms the tested baselines and obtains the
best overall accuracy. In addition, our algorithm significantly
improves computation efficiency, as it obtains the highest
frame rate. The comparison results indicate the importance
of avoiding extracting irrelevant features from background in

TABLE II
AVERAGE RECOGNITION ACCURACY ON THE MHAD DATASET

Approach Accuracy
Harris3D + HOG/HOF + SVM [29] 70.07%
Harris3D + HOG/HOF + 3-NN [29] 76.28%
Harris3D + HOG/HOF + 1-NN [29] 77.37%

Depth cuboid detector and descriptor [18] 88.72%
Color cuboid detector and descriptor [18] 90.53%

Harris3D + HOG/HOF + MKL [29] 91.24%
Our AdHuC representation + SVM 97.81%

improving feature discriminative power and computational
efficiency.

B. Empirical Studies on Benchmark Datasets

To further evaluate our representation’s performance, we
conduct additional empirical studies on single-person activity
recognition and compare our representation with approaches
in previous studies, using two public color-depth benchmark
datasets:

• Berkeley MHAD dataset [29] is a multi-model human
activity dataset that contains 11 activities performed by
12 subjects in 550 instances. We make use of the rear-



TABLE III
AVERAGE RECOGNITION PRECISION ON THE ACT42 DATASET

Approach Precision
Harris3D + Color-HOG/HOF [30] 64.2%

Depth layered multi channel STIPs + HOG/HOF [27] 66.3%
Harris3D + Depth-HOG/HOF [30] 74.5%

Harris3D + Comparative coding descriptor [30] 76.2%
Color cuboid detector and descriptor [18] 70.9%
Depth cuboid detector and descriptor [18] 78.8%

Harris3D + Super feature representation [30] 80.5%
Our AdHuC representation 85.7%

view Kinect data, which were captured with a resolution
of 640×480 at a frame rate of 30 Hz. Following [29],
the first seven subjects are used for training and the last
five for testing; accuracy is used as evaluation metric.

• ACT42 dataset [30] is a large multi-Kinect daily action
dataset containing 14 actions performed by 24 subjects
in 6844 instances. The data from view four are adopted,
which were captured with a resolution of 640×480 at 30
Hz. Following [30], eight human subjects are adopted
for training and the remaining for testing; precision is
applied as evaluation metric.

Experimental results using our AdHuC representation and
comparisons with previous methods over MHAD and ACT42

datasets are presented in Tables II and III, respectively. It is
observed that our representation achieves the state-of-the-art
performance and significantly outperforms previous methods
on single-person activity recognition from color-depth visual
data. This highlights the importance of constructing human-
centered representation to avoid noisy, irrelevant features.

VI. CONCLUSION

In this paper, we introduce the novel AdHuC representa-
tion to enable intelligent robots to understand activities of
multiple individuals from a sequence of 3D point clouds in
practical human-centered robotics applications. To construct
our representation, an affiliation region is estimated for each
human through estimating depths of interest and a cascade of
rejectors to localize people in 3D scenes. Then, our algorithm
detects human-centered features within the affiliation region
of each human, which is able to simultaneously recognize
feature affiliations, avoid computing irrelevant features, and
address robot movement. In addition, a new adaptive multi-
channel feature descriptor is introduced to compensate for
the linear perspective view variation and encode information
from both color and depth channels to construct a final
adaptive human-centered representation. Extensive empirical
studies are performed to evaluate our AdHuC representation
on a Meka humanoid robot in multiple player Simon Says
gaming scenarios. Furthermore, our AdHuC representation is
compared with methods in previous studies on single-person
activity recognition, using MHAD and ACT42 benchmark
datasets. Experimental results demonstrate that our AdHuC
representation significantly improves accuracy and efficiency
of human activity recognition and successfully addresses the
challenging ARMI problem.
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