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Abstract

This paper presents a kinematic study of a pseudorigid-body model (PRBM) of MRI-compatible, 

magnetically actuated, steerable catheters. It includes a derivation of a mathematical model of the 

PRBM of the catheter, singularity studies of the model, and a new manipulability measure. While 

the forward kinematics of the model presented here is applicable to PRBMs for other applications, 

actuation method is unique to the particular design. Hence, a careful study of singularities and 

manipulability of the model is required. The singularities are studied from the underlying 

equations of motion with intuitive interpretations. The proposed manipulability measure is a 

generalization of the inverse condition number manipulability measure of robotic manipulators. 

While the PRBM is an approximation of the flexible catheter, kinematic studies of the PRBM still 

provide some insight into feasibility and limitations of the catheter, which is beneficial to the 

design and motion planning of the catheter.

I. Introduction

Recent advancements in robotic catheters for catheter ablation of atrial fibrillation have 

made the procedure more reliable [1], [2]. Magnetic Resonance Imaging (MRI) actuated 

catheters proposed in [3], [4], is a new robotic catheter concept which uses MRI’s superior 

soft tissue visualization for navigation and its strong magnetic field for remote steering.

In this new MRI compatible, magnetically actuated steerable catheter design, the catheter is 

actuated by three mutually orthogonal coils that deflect the catheter using the Lorentz force 

under MRI’s magnetic field. Since the orthogonal coils can only generate torques in the 

plane perpendicular to the magnetic field, the actuator effectively has only two degrees of 

freedom (DOF). However, the catheter, being a flexible mechanism, has a very high 

effective kinematic DOF. So, the catheter is underactuated because the actuation DOF is less 

than its actual kinematic DOF. On the other hand, the surface it operates on is two 

dimensional. Hence, the catheter is kinematically redundant from the task space point of 

view. Therefore, the kinematics of the proposed catheter system exhibits non-traditional 

characteristics. As such, the development of motion planning and control algorithms require 

a better characterization and understanding of the kinematics of the system which is the 

focus of this paper.
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Specifically, this paper further investigates the feasibility of performing ablation with the 

actuation method. Using the pseudo-rigid-body model (PRBM) as an approximated model, 

singularities and manipulability of the catheter are studied. The definitions and relationships 

of different types of singularities are presented. Moreover, a new manipulability measure 

that takes the catheter’s elasticity into account is proposed.

The rest of the paper is organized as follows. First, a review of related work is given in 

Section II. The mathematical model of the PRBM is derived in Section III. Singularities are 

studied in Section IV. Manipulability and its measure are discussed in Section V. Finally, 

the conclusions are presented in Section VI

II. Related Work

Hansen Medical’s Sensei Robotic Navigation System and Stereotaxis’s Niobe Remote-

Controlled Magnetic Navigation System are two commercial robotic catheter systems. Two 

steerable sheaths controlled by a pull-wire mechanism are used to steer Hansen Medical’s 

catheter while two external magnets are used to steer Stereotaxis’ catheter remotely [2].

Various robotic catheter technologies have been proposed in the literature. Catheters 

controlled via pull-wire mechanisms are described in [5]–[7]. An interleaved continuum-

rigid manipulator is proposed in [8]. Modeling of a catheter equipped with a magnet in a 

magnetic field is presented in [9]. A continuum model of the MRI-actuated catheter is 

presented in [10].

The PRBM is an approximate model for compliant mechanisms which offers a trade-off 

between computational complexity and accuracy by reducing the dimensionality of the 

system while retaining its compliant characteristic. It consists of rigid links joined by 

revolute joints. The elasticity of the compliant mechanisms is modeled by torsional springs 

attached to the joints. Modeling of compliant mechanisms via the PRBM has been studied in 

[11]–[13]. The PRBMs have been used to model deflection of catheters in earlier studies 

(e.g., [7], [14]). In [7], a pull-wire ablation catheter is modeled using the PRBM. The paper 

presents a method of finding a set of parameters for the PRBM from a set of 

experimentation data.

Singularity and manipulability are well studied topics in robotics (e.g., [15]–[17]). Due to 

the catheter’s unique actuation method, the definition of singularity, manipulability, and 

manipulability measure have to be adapted for the specific application.

III. Mathematical Model

The derivation of the mathematical model of the catheter’s PRBM is presented in this 

section. First, a parameterization of joint rotations and the forward kinematics are introduced 

in Section III-A. Next, the angular velocity is discussed in Section III-B. Constrained 

equations of motion of the catheter performing ablation is presented in Section III-C. 

Finally, Actuation using the Lorentz force between the magnetic moment of the catheter and 

the MRI’s magnetic field is discussed in Section III-D.
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A. Forward Kinematics

The PRBM consists of n rigid links connecting n spherical joints as shown in Fig. 1. The 

elasticity of the catheter is modeled as torsional springs attached to the joints. This paper 

assumes the torsional stiffness of the catheter to be much larger than bending stiffness so 

that torsional rotations can be neglected, and each joint can be modeled as a 2-DOF 

spherical joint with pure bending.

The rotation of each 2-DOF joint is parameterized by a linear combination of two 

orthogonal axes, i.e., for the i-th joint, ωiθi = ωixθix+ωiyθiy, where  are the two 

orthogonal axes attached to the i-th joint, and θix,  are the rotation angles around 

each axis respectively. The resulting rotation axis, ωi, is a unit vector that specifies the 

direction of rotation, while the angle, θi, specifies magnitude of the rotation. The rotation of 

the i-th joint is illustrated in Fig. 2.

The axes, ωix and ωiy, at each joint are chosen to be mutually orthogonal among themselves 

and the initial direction of the next link. Hence, the bending angle at each joint can be 

described by a rotation around a vector lying in a plane orthogonal to the initial direction of 

the link. So the rotation obey Listing’s Law by construction [18].

Another benefit of using sum of orthogonal rotation axes is that joint torques are linear in 

the joint angles. This can be shown as follows. Consider the rotation of the i-th joint 

depicted in Fig. 2. The joint torque vector resulted from ωiθi bending with stiffness ki has the 

magnitude of kiθi in the direction −ωi, i.e., τi = −ωi kiθi = −kiωiθi = −ki(ωixθix+ωiyθiy), which 

is linear in θix and θiy.

With the parameterization of the 2-DOF rotation, the configuration of the catheter’s tip can 

be calculated using the product of exponentials formula as follows,

(1)

where gst(θ) ∈ SE(3) is the configuration of the catheter’s tip for a given set of joint angles, 

, gst(0) is the initial configuration, and  is the twists 

given by

(2)

with  replaces ωi × qi with a matrix multiplication , and qi is the initial 

location of the i-th joint. Note that while (1) has only n exponents, the catheter has 2n DOFs 

since each rotation has 2 DOFs.

B. Angular Velocities

In this section, the instantaneous spatial angular velocity, denoted by ωs, of the 2-DOF joints 

is examined. The angular velocity is important because it is used in constructing the 

manipulator Jacobian, which is essential in studying the singularities of the catheter. There 
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are two important results in this section. First, the angular velocity can be written as a linear 

combination of velocity axes, which are linearly independent under joint limits. Second, the 

velocity axes span a plane with the normal vector rotated halfway between the initial 

orientation and the rotated orientation of the attached link. Consequently, this plane will be 

referred to as the half-angle plane in this paper. These properties of the velocity axes are 

useful when studying the singularities of the PRBM because it reveals the relationship 

between the angular velocity and the joint angles.

Since the rotation of a single joint is considered in this section, for the sake of simplicity, the 

joint number will be dropped from the subscripts. So, the rotation of the 2-DOF joint is 

denoted by ω(t) = ωxθx(t) + ωyθy(t), where ω now contains both magnitude and direction of 

the rotation, and that the dependence of ω on t is made explicit. The rotation can be written 

as an element in the Lie algebra so(3) as follows,

(3)

The orientation of the link is given by the exponent of , i.e., . The 

instantaneous spatial angular velocity in so(3) is defined as  [15].

For a 1-DOF joint with a fixed rotation axis ω0, the orientation is given by , 

and  can be calculated from

(4)

In this case, , so the angular velocity’s direction is , which is the same 

of the rotation axis and it is independent of the rotation angle.

However, for the 2-DOF joints parameterized by θx and θy, the partial derivative ∂R/∂θ does 

not have a simple form such as in the 1-DOF case. This is because  does not commute with 

. Fortunately, in [19], Hausdorff had shown that,

(5)

The right hand side of (5) is an element of the Lie algebra because it consists of sums of 

iterated commutators. Thus,  is also an element of so(3). Let

(6)

where the elements of  are calculated from (5). After some simplification we arrive at
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(7a)

(7b)

(7c)

where  denotes the magnitude of rotation. The angular velocity can be 

expressed in  as a linear combination of the velocity axes, denoted by wx and wy, 

, as follows,

(8)

With the closed form expression of ωs, we can show that it is indeed contained in the “half-

angle” plane.

Theorem 1—For , (i) neither wx nor wy is identically zero, (ii) they 

are linearly independent and (iii) they are orthogonal to the half-angle vector,

for 

Proof: The proof of the first two parts can be found in Appendix B. While the third part can 

be proven using simple trigonometric identities

C. Equations of Motion

Equations of motion of the PRBM are presented in this section. Assuming the catheter 

moves with low acceleration and velocity, the inertial force is negligible. The catheter in 

contact with a surface is described by a constraint h(θ) = 0. The constrained equations of 

motion of the catheter is given by

(9)

where C(θ) is the viscous damping coefficient matrix, Kθ is the conservative force due to the 

springs, ▿h(θ)λ is the force exerted by the surface to keep the joint angles on the constraint 

surface, and τ is the joint torque vector. Friction and disturbances are not considered in 
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singularity and manipulability studies, so the joint torque vector is the actuation torque 

vector. The term ▿h(θ) forms a basis for the constraint forces while λ specifies the relative 

magnitude of the forces. The magnitude of the constraint force is such that the joint velocity 

in the direction orthogonal to the constraint is zero, in other words,  [15].

The equations of motion of the catheter’s tip on the surface is derived next. First, let the 

position of the tip on the surface be denoted by x. The surface constraint, h(θ), can be written 

to explicitly include the tip position. Let’s denote it simply by h(θ, x). Then, the joint 

velocity can be decomposed into tip velocities and internal motion, denoted by  and vN 

respectively, as follows,

(10)

where  and  are the extended Jacobian of the constraint h(θ, x) [14], [15]. The equations 

of motion in the task-space is obtained from (9) and (10),

(11)

where

We have , because  that satisfies (10) do no work on the constraint 

surface. For the sake of simplicity for the subsequent sections, (11) shall be written as

(13)

where  and . The rows of f(θ) and g(θ) 

associated with  are denoted by f1(θ) and g1(θ), while the rows associated with vN are 

denoted by f2(θ) and g2(θ) respectively.

D. Actuation

The MRI-actuated catheter is actuated by the Lorentz force from the magnetic moment 

generated by the coils and the MRI’s magnetic field. The actuation wrench containing the 

Lorentz force is mapped into the joint torque vector through the body manipulator Jacobian 

as follows
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(14)

where  is the joint torque vector,  is the body manipulator Jacobian, 

 is the magnetic moment of the actuator, and  is the MRI’s magnetic field. 

The actuation torque m×b can be simplified to exclude the direction of m that is aligned with 

b using the Singular Value Decomposition as follows,

(15)

In the equations above,  is the SVD of . The components associating with the zero 

singular value of Σ are dropped in . Finally, define B = −U0Σ0 and . 

Henceforth, u is considered as the input to the system when performing calculations. The 

magnetic moment can be calculated from u using the right pseudo-inverse, i.e., 

. The joint torque vector can now be written as

(16)

where Ju is the bottom half of . A detail calculation of Ju is provided in Appendix A. 

Note that the actuation torque vector is linear in u and B is full-rank by definition.

IV. Singularities

This section presents singularity studies of the PRBM catheter. Since the main application of 

the catheter is to perform ablation of atrial fibrillation, the task space is assumed to be a 

smooth surface. Using (9) and (16), one can show that the singular configurations of the 

PRBM catheter are of the Redundant Input/Impossible Output type according to [20]. There 

are multiple causes of such singularities. They are discussed in this section in a bottom-up 

fashion.

A. Singularities in The Joint Space

The input-output relationships between actuation and joint velocities are studied in this 

section. Joint torques due to joint springs are not considered here to separate the effect of 

joint springs from the geometrical properties of the catheter and the surface. Joint springs 

will be considered in Section V where manipulability is discussed. The equations of motion 

for singularity studies in the joint space is obtained by combining (9) and (16) and removing 

Kθ as follows,

(17)

First, A configuration is said to be actuation singular if there exists a nonzero actuation, u, 

that causes zero joint torques. This is made explicit in the definition below.
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Definition 1—A configuration is said to be actuation singular if  has u ≠ 0 

as a solution.

Moreover, a configuration is called joint-space singular if there exists a nonzero actuation 

that results in zero joint velocities.

Definition 2—A configuration is said to be joint-space singular if there exists u ≠ 0 that 

satisfies (17) with .

It is easy to see that actuation singularity implies joint-space singularity.

Before we proceed, some more definitions have to be made. The joints that are directly 

affected by the coils, i.e., the joints between the coils and the base, are called actuated joints, 

while the rest are called unactuated joints. The links that connect them are called actuated 

links and unactuated links respectively.

Two theorems that predict the singularity of a configuration is presented next. The first one 

deals with actuation singularity. It states that when the actuated joints are not bent in a 

specific pattern, then the actuator Jacobian, , is full-rank and the configuration is not 

actuation singular.

Theorem 2—A configuration is not actuation singular if there exists a pair of the actuated 

joints with joint angles θix ≠ −θ(i+1)x and θiy ≠ −θ(i+1)y.

Proof: A sketch of proof is as follows. The columns of  are linearly independent if and 

only if there exists a pair of actuated joints with joint angles θix ≠ −θ(i+1)x and θiy ≠ −θ(i+1)y. 

This is due to the dependency of the velocity axes on the joint angles as described in Section 

III-B. Since B is full-rank by construction,  is also full-rank. So, the only solution to 

 is u = 0. The complete proof is given in Appendix C

The next theorem states that if the unactuated links are not all perpendicular to the surface 

then the constraint force cannot annihilate actuation torques.

Theorem 3—Suppose a configuration is not actuation singular, it is not joint-space 

singular if there exists an unactuated link that is not perpendicular to the surface at the 

contact point.

Proof: Since Kθ is omitted in (17), the constraint force is given by 

, so (17) can be written as
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Note that only ▿h is in the null space of [I – (▿hTC−1▿h)−1▿h▿hTC−1]. If there exists an 

unactuated link that is not orthogonal to the surface then ▿h has nonzero components 

associated with the unactuated joints where the rows of  are all zeros. Then ▿h cannot be 

in the range space of . The complete proof is given in Appendix D.

The two theorems above tell us that the singularity is easily avoided if the actuated joints is 

bent with θix ≠ −θ(i+1)x and θiy ≠ −θ(i+1)y, and the unactuated links are not perpendicular to 

the surface. Three examples of joint-space singularity are presented next. The first example 

is a trivial case of actuation singularity at θ = 0.

Example 1—Consider the catheter in Fig. 3(a) when all joint angles are zeros and the 

magnetic filed is along the x-axis. In this case Ju and B are

 is rank-1 and  for , or equivalently, m = [0 – 1 0]T. 

Therefore, the configuration is actuation singular.

Example 2—Consider the catheter in Fig. 3(b) when θ1x = −θ2x = π/4 while other joint 

angles are zeros and the magnetic filed is along the x-axis. In this case Ju and B are

 is rank-1 and  for u = [0.5348 1]T, or equivalently, m = [0 1.0477 0.4340]T. 

Therefore the configuration is actuation singular.

Example 3—Consider the catheter in Fig. 3(c) when θ2x = π/2 while other joint angles are 

zeros and the magnetic filed is along the z-axis. Let surface contact configuration be
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 and ▿h are given by

 is full-rank, so there is no actuation singularity. However,  is possible with u = [0 

1]T, and the configuration is joint-space singular

B. Singularities in The Task Space

Similar to the joint-space singularity study, the equations are obtained from (13) by omitting 

the spring torques. The equations used to study the singularity is simply

(18)

Also similar to the joint space, a singular configuration in the task space is the configuration 

which there are nonzero u that causes no tip velocity.

Definition 3—A configuration is said to be task-space singular if there exists u ≠ 0 and vN 

that satisfies (18) with .

Note that joint-space singularity implies task-space singularity naturally, but the converse is 

not true. An example of a task-space singular configuration is presented next.

Example 4—Consider the catheter in Fig. 3(d) when θ1x = θ2x = θ3x = θ4x = π/12 while 

other joint angles are zeros. Let surface contact configuration be

 and ▿h are given by
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 is full-rank, so there is no actuation singularity. Moreover,  and ▿h are linearly 

independent, so there is no joint space kinematics singularity. However,

Hence, the configuration is task-space singular.

V. Manipulability Measure

The ability of the catheter to overcome its own stiffness is essential to the feasibility of the 

ablation procedure. In this section, the effect of joint springs on feasible tip velocities is 

studied. Even if the configuration is nonsingular, tip velocities in some directions may not 

be possible due to spring torques being larger than actuation limits. The ability to move in 

all directions is called manipulability and a configuration with such property is called a 

manipulable configuration. A formal definition is given below.

Definition 4

Let the set of all feasible actuation be denoted by U. A configuration is manipulable if 

 contains  in its interior.

A Manipulability measure is a measurement of how easy it is for a manipulator to change 

the position or orientation of the end-effector at a given configuration. One common 

manipulability measure in robotic manipulation is the inverse condition number of the 

manipulator Jacobian, which is the ratio between the minimum and the maximum singular 

values of some Jacobian. This gives the ratio between the minimum and the maximum end-

effector velocities under a unit joint velocity vector [15].

The manipulability measure presented in this paper is inspired by the inverse condition 

number manipulability measure. Some modifications are made to accommodate different 

characteristics of the catheter. First of all, joint velocities of traditional manipulators can be 

controlled directly and independently of one another. However, for the catheter, the joint 

torques can be controlled indirectly through the magnetic moments. Hence, the 

manipulability measure is calculated with the magnetic moments considered as the inputs 

instead of the joint velocities.

A consequence of taking joint spring torques into account when calculating manipulability 

measure is that instead of a unit joint velocity vector, a bound on u has to considered. This is 

because the relative size between actuation and spring torques is a major factor to the 

manipulability of the catheter. Heat dissipation during an ablation procedure is limited for 

safety reasons, so the currents are bounded by the maximum power. Hence, the set of 

feasible actuation is, denoted by U, is U = {u : uTQu < Pmax} where Q is a positive definite 

matrix.

The image of the boundary of U, denoted by ∂U, under g(θ) is an ellipse centered at the 

origin, and f(θ) shifts the ellipse from the origin. If the configuration is manipulable, then 
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 is contained in the shifted ellipse. The minimum and the maximum distance to the 

shifted ellipse are denoted by  and  respectively. The manipulability measure is 

given by

(19)

where

(20a)

(20b)

(21a)

(21b)

Example 5

Consider the same case as in Example 4 with θ1 = θ3 = θ5 = θ7 = π/12 while other joint 

angles are zeros. The magnetic field is now b = [0 0 1]T and the configuration is nonsingular. 

Each link has unit length and U is assumed to be a unit ball centered at the origin. For 

stiffnesses k = 1 for all joints, the corresponding manipulability measure is μ = 0.0284, but 

for stiffnesses k = 0.1, the manipulability measure is μ = 0.8274. Note that stiffer joint 

springs yield lower manipulability measure.

VI. Conclusions

In this paper, a mathematical model of the PRBM of MRI-actuated catheters is presented. 

Different types of singularities are defined. Two theorems on joint space singularities are 

presented. A manipulability measure for the catheter is introduced. Examples illustrating 

different singularities and manipulability are given. Future works include investigating the 

relationship between singularities and manipulability of the PRBM to the flexible catheter 

and their applications in planning and control, as well as in the design process, of the 

catheter.
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Appendix A: Actuator Jacobian Calculation

The calculation of Ju is presented next, starting from the calculation of . Recall that the 

actuator is attached to the k-th link. The Manipulator Jacobian in the body frame is of the 

form

where for each i = 1, … , k,

and gi(θ) is defined as

The last 2(n–k) columns of the Jacobian are zeros because the actuation does not effect the 

upper joints. Recall that for g ∈ SE(3), the inverse adjoint transformation can be calculated 

as follows,

So, for gi = (Ri, pi) defined above, the column vectors of the manipulator Jacobian are given 

by

where wix and wiy are the rotational velocity axes of joint i-th as in (8). So, the actuator 

Jacobian Ju, which is the bottom half of , is given by

Appendix B: Proof of Velocity Axes Theorem

For simplicity, define a matrix with wx and wy as the first and the second column as follows,
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When θx = θy = 0, W is given by

which is clearly nonsingular. When θx ≠ 0 but θy = 0,

The second column is linearly independent of the first column, and it is not identically zero 

for all 0 < ∣θx∣ < 2π. When θx = 0 with θy ≠ 0, we have

The first column is linearly independent of the second column, and it is not identically zero 

for all 0 < ∣θy∣ < 2π.

Now consider the case when θx, θy ≠ 0 and . Suppose there exists θx and 

θy such that wx and wy are linearly dependent, then there exists  such that wy = αwx. 

Then from the third row of W we have

which implies −αθy = θx. Substituting this into either the first or the second row of W leads 

to 1 = 0. Therefore, wx and wy are linearly independent. Moreover, neither of them is 

identically zero when θ ∈ (0, 2π). This can easily be seen in the third element of wx and wy.

Appendix C: Proof of The Actuation Singularity

The actuator Jacobian, derived in Appendix A is given by,
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If Ju is full-rank then the configuration is not actuation singular. This is true if and only if 

there exists two plane spanned  and  for all actuated joints that are not 

coplanar. We will show that this is equivalent to θix ≠ −θ(i+1)x and θiy ≠ −θ(i+1)y or 

equivalently, ωiθi ≠ −ωi+1θi+1. Without loss of generality, let i = 1 and the initial direction of 

link-1 be denoted by v. The normal vector of link-1 after the rotation is 

and the normal vector of link-2 with ω2θ2 = −ω1θ1 is . 

So, the two plane spanned by (w1x, w1y) and (w2x, w2y) must be coplanar. The uniqueness of 

the joint angles is guaranteed by Listing’s Law.

Appendix D: Proof of Joint-Space Singularity Theorem

The constraint force can be written in terms of external force acting on the tip of the 

catheter,

with the manipulator Jacobian,

The columns of  are calculated as follows,

with gi(θ) given by

That is, gi(θ) is the configuration of the tip frame given the joint angles from joint i to n. We 

can express it in a more meaningful way as gi(θ) = (Ri, pi) ∈ SE(3), where Ri and pi are the 

orientation and the position of the tip written in the spatial frame. So, the columns of  are 

given by
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Only the top part of  (or more precisely, the left half of ) is multiplied to f. Using 

Jacobi identity, the joint torques of the i-th joint are then

Dot notation is used in the equation above to avoid using transposes. Jacobi identity is used 

to switch the order of operation. The terms  and  are the vectors 

from the tip to the i joint written in the tip frame, they will be referred to as the position 

vectors. Similarly,  and  are the rotation vectors of the i joint written in the tip 

frame. If the ith link is not perpendicular to the surface, then at least one of the cross 

products between the force and the position vectors is nonzero. The dot product is also 

nonzero because the force and the position vector cannot be simultaneously orthogonal to 

the half-angle vector, so the cross product between them cannot not orthogonal to the 

rotation vector. Therefore, the constraint force of the unactuated joints are not all zero.
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Fig. 1. 
Continuum and pseudo-rigid-body model of the catheter. The rotation of the ith joint is 

expressed in terms of two orthogonal twists, denoted by ξix and ξiy.
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Fig. 2. 
Rotation of the i-th joint. Since the rotation of one joint is considered in this case, the 

location of the joint, denoted by qi with respect to the base frame can be neglect, and the 

rotation axis ωi is used instead of the twist ξi.

Greigarn and Çavuşoğlu Page 19

IEEE Int Conf Robot Autom. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
The PRBM of the catheter and the MRI’s magnetic field is different configurations. In (a) 

and (b), the catheter is actuation singular. In (c) it is joint-space singular and in (d) it is task-

space singular.
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Fig. 4. 

Illustration of how U is mapped into  via g1 and f1.
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