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Abstract—In needle-based medical procedures, beveled-tip
flexible needles are steered inside soft tissue with the aim of
reaching pre-defined target locations. The efficiency of needle-
based interventions depends on accurate control of the needle
tip. This paper presents a comprehensive mechanics-based
model for simulation of planar needle insertion in soft tissue.
The proposed model for needle deflection is based on beam
theory, works in real-time, and accepts the insertion velocity
as an input that can later be used as a control command for
needle steering. The model takes into account the effects of
tissue deformation, needle-tissue friction, tissue cutting force,
and needle bevel angle on needle deflection. Using a robot
that inserts a flexible needle into a phantom tissue, various
experiments are conducted to separately identify different
subsets of the model parameters. The validity of the proposed
model is verified by comparing the simulation results to the
empirical data. The results demonstrate the accuracy of the
proposed model in predicting the needle tip deflection for
different insertion velocities.

I. INTRODUCTION

Percutaneous needle insertion is a minimally invasive med-
ical procedure by which a surgeon inserts needles through
the patient’s skin to reach the inner body organs. Despite
numerous advantages offered by needle-based interventions,
their efficiency highly depends on accurate control of the
needle tip in soft tissue. For instance, poor placement of
radioactive isotopes in brachytherapy can cause long-term
side effects (i.e. rectal or urinary damage) due to the disrup-
tion of neighboring tissues or organs. Various factors such
as tissue deformation and needle deflection, which are in
turn influenced by other factors such as insertion location,
heading and velocity, can cause poor needle placement [1].
Considering the above and given the limited control exercised
by a surgeon over the needle, prediction of the needle tip
location and accurate steering of the needle during manual
insertion is difficult. In this paper, a novel comprehensive
mechanics-based model of needle-tissue interaction is pre-
sented that can be used for various purposes including the
control of robotic-assisted needle insertion schemes.
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A. Background

Researchers have been trying to enhance accuracy of nee-
dle insertions by developing models for simulating needle
deflection in soft tissue. DiMaio et al. [2] and Goksel
et al. [3] used Finite Element (FE) models of the tissue
interacting with a rigid needle to find the needle tip position.
In their models, they considered needles with symmetric
tips. However, in needle-based interventions steerable flex-
ible needles with beveled tips are used to enhance control
over needle deflection. Using these needles a surgeon can
control tip deflection by rotating the needle and changing
the orientation of the bevel tip which causes the needle to
bend in the opposite direction. These needles increase needle
manipulability but finding an accurate model for relating the
needle base manipulation to tip position becomes even more
challenging. Webster et al. [4] developed a nonholonomic
model for steering flexible bevel-tipped needles based on a
kinematic bicycle model. Alterovitz et al. [S] presented a 2D
FE model of needle insertion considering the effect of the
tip bevel. Experimentally evaluated needle insertion forces
are applied as boundary conditions on the elements of an FE
tissue model to find tissue and needle deformation.

Other researchers have used beam theories to model needle
deflection [6], [7]. From our group, Lehmann et al. [8] mod-
eled an Euler-Bernoulli beam deflecting under static force
distribution profiles to simulate needle insertion. Asadian et
al. [9] developed a needle model comprised of two connected
beams, one outside the tissue and the other inside. Misra
et al. used an energy-based formulation for a beam that is
in contact with a nonlinear hyperplastic tissue to simulate
needle steering [10]. This model takes account of lateral
and axial deflection of the needle, tissue deformation, forces
at the tip of the needle and input force applied at the
needle base. However, the effects of needle-tissue friction
and needle insertion velocity were neglected.

In the preceding models, inputs may be the forces exerted
on the needle as the result of tissue deformation as in [2],
[5]. In this way, a tissue-dependent model is developed, i.e.,
the needle model interacts with a separate (experimental
or theoretical) tissue model. Employing a comprehensive
model of tissue can be very time consuming — more time-
efficient ways to model tissue come at the expense of reduced
accuracy [11], [3]. Most models are static and developed to
correspond to a fixed set of inputs and model parameters
[9] which should be identified each time for a pre-defined
set of circumstances (e.g., for different insertion velocities)
by conducting pre-surgery insertions [10] or using real-
time measurements for online adaptive tuning of model
parameters [12]. By not explicitly considering factors such
as the insertion velocity as the model input, such approaches
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do not present sufficient control commands for real-time
control of the needle tip position. To the best of the authors’
knowledge, the nonholonomic bicycle-like model [4] is the
only model that has insertion velocity as its input and is
able to simulates deflection for given velocities. However, the
model does not account for needle-tissue interaction along
the needle shaft.

In conclusion, various inputs such as insertion velocity,
needle tip rotation and needle base forces/torques can be
used to control needle steering. However, a comprehensive
dynamic or kinematic model is needed to relate these inputs
to the system states and output (e.g needle shape and tip
position). Otherwise in the static condition, the system is in
balance means that the history of the input force or velocity
on needle deflection is ignored and they cannot be used to
control the needle deflection.

B. Contribution

In the current work, we have extended a beam theory to
develop a novel mechanics-based dynamic model for needle
insertion in soft tissue that considers velocity as an input.
In section II, modeling techniques used in the analysis of
vibration and dynamic response of beams under dynamic
or static loads are employed to model the needle steering
process. The proposed comprehensive model contains the
effects of tissue deformation, needle-tissue friction, tissue
cutting force, grid template used for positioning and guiding
the needle, needle insertion velocity and bevel angle. In
section III, using a needle-driving robot, experiments are
conducted on a synthetic tissue and the accuracy of the model
is verified.

The model enables one to use the insertion velocity as
control command for needle steering. Since insertion velocity
is easily tunable and accessible in needle steering, it is
considered as the model input. Also, since computing the
model output (needle deflection) given the model parameters
(external forces applied on the needle) essentially amounts to
solving the inverse dynamics of some robot-like dynamics,
the model is computationally efficient and allows for real-
time control of needle tip position in a robotic-assisted
needle insertion scheme. All the model parameters represent
mechanical characteristics of the needle-tissue system and
can be separately measured. Consequently, there is no need
for real-time feedback of measured system states for updating
the model parameters.

II. MECHANICS-BASED MODEL OF NEEDLE-TISSUE
INTERACTION

A. Needle-Tissue Modeling Approach

In this section, a method is proposed to study the dynamics
of a flexible needle as a cantilever beam undergoing various
static and dynamic loads. The external loads represent the
effects of the tissue and the grid template; the needle de-
flection is the dynamic response of the beam to these loads.
The needle is modeled as a homogeneous, long and thin
beam with a constant and symmetric cross section. Fig. 1
shows the proposed model of the flexible needle and its
interaction with the soft tissue. To model the needle insertion,
the beam is clamped to the local frame (xy) that is moving
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Fig. 1: Schematic of a bevel-tip needle inserted into a soft tissue.

along the X direction in global non-moving frame (XY) with
the velocity of V. Needle-template interaction is modeled
using a stiff spring and needle-tissue interactions are modeled
by axial and transverse distributed and concentrated loads.
These forces are applied to the portion of the needle that is
inside the tissue. As the needle is inserted into the tissue,
the locations of these loads and the points of application
of forces along the length of the needle change. The model
considers four main elements of needle steering mechanics:

1) Bending of the needle during insertion: The needle is
modeled as an Euler-Bernoulli beam that is translating along
its longitudinal axis (x). This is true if the beam’s slenderness
ratio (length/thickness) is much greater than 10, which is the
case for a brachytherapy needle. Mechanical characteristics
of the needle encompass its Young’s modulus of elasticity
E, length ¢, density p, cross section area A, area moment of
inertia /, and needle tip bevel angle «.

2) Tissue cutting at the needle tip: As the needle is inserted
into the tissue, a cutting force F¢, is applied to the needle in
a direction perpendicular to the beveled tip. The transverse
and axial component of F, are Q and P, respectively, and are
related by Q = P/tan(). It is typically assumed that the tip
forces are initially zero and rapidly reach a constant value
as the needle is inserted into the tissue [13] (see Fig. 1).

3) Needle-tissue interaction forces along the needle length:
A force distribution F; is used to model tissue reaction forces
as the result of its deformation caused by needle bending.
Friction between the needle shaft and the tissue is modeled
by an axially distributed load Fy tangent to the needle shaft.

4) Needle-template interaction: The grid template used for
initially positioning and subsequently guiding the needle acts
as a rigid support and is modeled as a very stiff spring with
stiffness K;.

In our mathematical approach, instead of directly bringing
the tissue and template into the dynamics equations, forces
and moments produced by them are added to the system as
external excitation forces. In this way we will be able to
simplify the dynamics equation of the needle and bring in
the effects of non-conservative forces such as friction.

B. Dynamic Equations of Needle-Tissue Interaction

In this section, we develop the governing equations of
motion for the axially translating beam exposed to the
external forces shown in Fig. 1. It is assumed that deflection
of the needle is small compared to its length. We also
presume needle bending is planar and in-plane axial bending
and rotation of beam elements are negligible. Fig. 2 shows
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Fig. 2: Flexural behavior of straight beam in xy plane under transverse and axial loads:
(a) sketch of the system; (b) forces and moments acting on the length dx of the beam
a small element of length dx of the deformed beam. The
(transverse) deflection of the needle is shown by ®(x,1),
where ¢ is time and x is the coordinate along the length
of the unbent beam. Fy(x,?) is an external load distribution
and encapsulates all the transverse loads shown in Fig. 1
(ie., Fy, K; and Q). Fy(x,t) is the needle-tissue friction
modeled as the uniformly distributed axial load. P is a
non-conservative follower force and always remains tangent
to the beam at its tip location. M is the internal bending
moment, and Fy and S are the axial and shear forces acting
on the small beam element, respectively. From here on, for
simplicity, deflection, external load distribution, and friction
force distribution are shown in the abridged form as w, F,
and Fy, respectively.

The equilibrium equation for translations in the y-direction
of the small element with length dx of the beam is obtained
by equating the inertial forces to the sum of exerted shear
forces and external loads:

2
pAdx (48) = Sdx+ Fx (1

: _ do _ do | dwdx
Note that since ® = @(x,t), we have 72 = 52 + 52 %%, Now,

(1) can be rewritten as
2 2 2
pA (‘372" +2V g8 4 V2L +a‘§—§)) =%+F @

where a = d*x/dt? is the insertion acceleration and V =
dx/drt is the insertion velocity. Surgeons tend to insert nee-
dles smoothly and avoid abrupt velocity changes, therefore
we can neglect a.

The equilibrium equation for in-plane rotation of the length
dx is obtained by equating to zero the sum of the moment
due to the shear forces acting at a distance dx, the internal
bending moment, and the bending moment due to the axial
forces. Note that it is assumed that the planar rotation of a
small element of the beam is small and we can neglect axial
and rotary inertia of the beam element. Thus, we have

Sdx+ YL dx+ F,%2dx =0 3)

The bending moment is proportional to the curvature of the
deflected beam. In fact, using Euler-Bernoulli beam theory,
the bending moment is given by M = EI 3;7‘;’ [14]. Also, the
sum of axial resistive forces applied to element dx is equal
to Fr = P+ ({ —x)Fy [15]. In (3), plugging in the above
bending moment M and axial force Fy terms, taking a partial

dx  Initial line
<« of insertion

)
> Rupture
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Fig. 3: Schematic of infinitesimal needle insertion: 1) needle in the beginning of
insertion; 2) needle cuts through the tissue; 3) cutting force applied prependicular
to the tip causes needle deflection and tissue deformation.
derivative with respect to x, and replacing for dS/dx from
(2) gives

PAG+2V@ + V20" +El0" + P’ = F,— [({ —x)F@'] (4)
In (4), dot and prime denote differentiation with respect to
t and x, respectively. (4) is the partial differential equation
(PDE) governing the dynamics of needle motion. F, and Fy
are transverse and axial force distributions containing all the
forces applied by the tissue and the template except the axial
component of cutting force. In section II-C we will model
these forces.

C. Modeling Needle-Tissue Interaction Forces

In (4), F, contains all the transverse loads applied to the
beam and comprises the forces applied due to the tissue
compression, the template constraint and the transverse tip
force. The transverse tip force Q is a static concentrated force
acting as a shear force at the tip of the beam. Other forces
are moving loads acting over a specific length of the needle.
As the needle is inserted, their point of application or width
will change accordingly. To define the limits of the force
profile applied to the length of the beam, we use unit step
(H) and Dirac delta (8) functions defined in the global frame
XY. Now, we will assume a model for F, based on Fig. 1.
Fy can be defined as

Fy=Q681vi(X) + FHy(X) + K, 06—, (X) 5)
Note the shorthand notation Hy,(x) = H(x—xo) and &, (x) =
6(x — xp) describing unit step and Dirac delta functions
shifted by the constant value xo. Note that (4) is written in the
non-inertial moving coordinates (xy) attached to the clamped
side of the beam but the load distributions are written with
respect to the global coordinates. The two frames are related
by x =X —Vt, y=Y. The tissue is placed at distance ¢ from
the global frame and at r+ = 0 the needle tip is touching the
tissue skin. The coordinates of the needle base and tip as it
is being inserted with velocity V are X =Vt and X =Vt 44,
respectively. In (5), the first term is the transverse tip force
— being a concentrated force fixed at the needle tip, it moves
with constant velocity V in the global frame as the needle
is inserted, thus the term &y, y;(X) has been used. The next
term is the continuous distributed load exerted by the tissue
and is activated as the needle tip enters the tissue (i.e., when
X > 0), thus involving the term Hy(X). The last term is the
force applied by the template, which is placed at a distance
¢, from the entry point, thus necessitating the term &y_, (X).
The last two force profiles are fixed in the global frame.
However, in the local frame, they seem to be shifting toward
the base of the needle as the needle is inserted.

In (5), the force distribution profile (Fy) is used to model
needle-tissue interaction. The magnitude of the approximated
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interaction forces are relative to the total deformation of
tissue caused by needle deflection. Since the needle cuts
a path through the tissue, only the tissue in between the
rupture path and the current needle position is deformed.
Fig. 3 shows the step-wise procedure used to investigate
tissue deformation as the needle cuts through tissue. The
hatched area shows the amount of tissue deformed as the
result of a small insertion dx of needle. Assuming that during
an infinitesimal needle insertion the needle cuts through the
tissue at a fixed angle and then it is bent as a result of the
cutting force, the amount of deformed tissue in various steps
are almost equal. Consequently, reaction forces applied to
the needle are the same at each step and can be simulated
with a uniformly distributed force profile.

Taking into consideration the viscoelastic behavior of the
tissue, tissue-needle interaction force can be found as

Fy=f;+Ca (6)
where f; is the needle-tissue interaction force per unit length
of the needle and is constant. C is the coefficient of viscous
damping for the tissue.

In (4), Fy is the needle-tissue friction force modeled as a
uniformly distributed tangential load. Let us use the simple
friction model in [13] encompassing Coulomb and viscous
forces per unit length of the needle:

f=Uesgn(V) +w,V (7N
In (7), u. and u, are the Coulomb and viscous friction
coefficient, respectively. Now, we have Fy as

Fy = fH(X) (®)

Finally, by substituting (5), (6), (7) and (8) into (4), the PDE
governing the dynamics of needle motion can be found as

PA(D+2Va +V?0") +Elo" +Po" = 9)

Obp4ve(X) + fsHe(X) + CoH (X)+

K 08, (X) - fH(X)({ —x)0']
The clamped side of the needle is assumed to have no
deflection and have a slope of zero. The tip of the needle
is assumed to experience no shear force or bending moment.
Also, small rotation of needle tip during needle insertion is

neglected. Hence, we have the following set of boundary
conditions:

0(0,1) =0, ©'(0,1) =0, @"(1,t) =0, @"([,t) =0  (10)
Note that instead of including Q as a shear force in the
boundary conditions, an appropriate forcing term is added
as part of the transverse force distribution. The needle has
no deflection at r = 0 and starts from rest, therefore

o(x,0) =0, &(x,0) =0 an
The PDE given by (9) cannot be solved using conventional
methods such as separation of variables. Thus in the next
section, it is discretized into a system of nonlinear ordinary
differential equations (ODEs).

D. Discretization of The Continuous PDE

In this section, the continuous model in (9) is replaced by
a discrete model using the assumed mode method [16]. The
displacement field (x,t) is approximated by a linear combi-
nation of n arbitrarily assumed functions W;(x) representing
the first n modes of vibration. These functions are trial shape

functions which should satisfy the boundary conditions and
be differentiable at least up to the highest order of the PDE.
The displacement field is defined as
o(x,1) = XLy 9i()Wi(x) (12)
where ¢;(t) (i=1,...,n) are generalized coordinates or time
functions expressing the deformation of the beam with
respect to time and n is the number of the assumed modes.
Substituting (12) into (9) gives us the distribution of error of
the assumed mode method, e(x,t). At this point, we introduce
the arbitrary function U;(x), and we minimize the projection
of error on these functions:
fo x,1)U;(x)dx =0 (13)
In (13), U;(x) does not need to satlsfy any boundary or dif-
ferentiability condition. However, convergence of the results
of this approximation depends on a good choice of U;(x)
[14]. Here we use a technique known as Galerkins method.
Based on this method, a good choice for U;(x) is the assumed
function W;(x) itself. Also by choosing the mode shapes
of a homogenous clamped-free beam as assumed functions,
we ensure that the assumed functions satisfy the boundary
conditions and the results converge to the actual solution of
PDE. The mode shapes for the clamped-free beam are given
by [16]
VV,(X) _ é { 1;[ [cos(; X) coshéeix)] + sin(é@ix) _ sinhé@ix)j
14
where 6; (i=1,...,n) is a dimensionless constant correspond-
ing to different modes of vibration.

In this work, we will estimate the continuous model given
in (9) using the first four modes. Values of the first four 6;
for a clamped-free beam are 1.857, 4.694, 7.855 and 10.996,
respectively [16]. Also { and 7 in (14) are given by

C' _ sin 6;+sinh 6;
i cos 6;+cosh 6;
Ni = —&; (cos 6; — cosh 6;) + sin §; — sinh 6;

5)

Now, by taking the integral of (14) over the length of the
needle, the discrete dynamic equation of the system can be
obtained. The reference model for simulating deflection of a
needle inserted in the tissue is given by
M¢+G(V)¢+Ko +B(V)9 +No =F(9,V)+T(9,V) +D(¢,V) +R(9,V)
(16)
By solving the above system of ODEs, time functions ¢(7)
can be found and deflection of the needle at each point W;(x)
can be calculated by (12). The elements of matrices and
vectors in (16) are given by

Mij = pA [y W ()Wi(x)dx, Gy =2pAV [y W)/ (x)Wi(x)dx,
Kij = EI [} W;""( ) Wi(x)dx, Bij = pAVZ [{ W} (x)W;(x)dx,
Ni_,:PfOW (x)W;(x)dx, F;=QOW;i(£)+ f; f,z v Wi(x)dx,

T =KW,(t—4—Vt) Y] ¢;(O)W;({— L — V1),
Di=C [y, Wix) Ty ;(0)Wj(x)dx

R = —f[fz_vf (€ —x)W;(x)

" ¢j(r)W” (x)dx+
VW=V, 0,()W)(E— Vi) ! (x)dx]

ff Vt 1 1¢J()
a7

The matrix M, which is associated with the kinetic energy
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Fig. 4: Experimental setup used to steer a flexible needle though phantom tissue-The
setup consists of a robotic system with two degrees of freedom (DOF), translational
and rotational motion of needle. Forces and torques are measured at the needle base
using a 6 DOF force sensor. Images of the needle inside tissue are recorded using a
Logitech C270 webcam and is used to track needle position [8].

of the system, is positive definite. Due to using orthogonal
eigen functions of a homogeneous clamped-free beam as
the assumed modes, M is also symmetric. K corresponds
to the elastic linear forces in the beam, it is also positive
definite and symmetric. Both M and K are constant and
time invariant. G represents the gyroscopic forces and B
corresponds to inertial forces applied to the beam elements
as the result of axial translation. G and B depend on the
insertion velocity and appear in (17) because the vibration
of the beam is described with respect to non-inertial moving
coordinates. N contains the effects of non-conservative forces
which give rise to self-excitation of the beam. The terms on
the right side of the system of ODEs in (16) correspond to
the external excitation forces and moments and they are all
functions of V.

III. EXPERIMENTAL VALIDATION

The parameters of the model given by (16) are the friction
force (f), tip forces (P and Q), needle-tissue interaction
force (f;) and tissue viscous damping coefficient (C). In the
following section, a set of experiments is proposed to identify
values of model parameters. In addition, needle deflection
predicted by the model is compared to that during actual
needle insertion into phantom tissue to verify the model
accuracy.

A. Model Calibration and Measurement Procedures

In order to perform needle insertion into soft tissue, the
setup introduced in [8] is used (Fig. 4). The needle used
for the experiments is a standard 18-gauge brachytherapy
needle (Best Medical International Inc., Springfield, VA,
USA) made of stainless steel, with an outer diameter of 1.27
mm and an inner diameter of 1 mm. The needle bevel angle
is 20°. The phantom tissue is made of 80% liquid plastic and
20% plastic softener (M-F Manufacturing Co., Fort Worth,
TX, USA) The tissue has a Young modulus E of 28 kPa.

In order to measure elements of cutting force (Q and P)
and the friction force (f), the method proposed in [13]
is used. A small needle is inserted into a small piece of
phantom tissue at different insertion velocities. The insertion
is continued while the needle tip is outside the tissue. During
the insertion the axial forces are measured using the force
sensor placed at the needle base. In the first interval in
which the needle tip is inside the tissue, the insertion force
equals the force to overcome friction plus the axial element
of cutting force P (we neglect inertial forces). In the next
phase where the needle tip is outside, the cutting force

applied at the tip becomes zero and the measured axial force
corresponds only to the friction force. Therefore using the
measured forces in the second phase we can identify friction
force. This data is fitted to (7) to identify the Coulomb
(U.) and viscous friction coefficients (u,). Moreover, by
subtracting the friction force from the measured forces in the
first interval, the axial element of cutting force (P) can be
calculated. Finally, the transverse element of cutting force
can be calculated by Q = P/tan(o), where o is the bevel
angle. In this experiment, a small needle with a length of 80
mm was robotically inserted into the synthetic tissue with
a length of 40 mm at the insertion velocities of 5, 10, 20
and 30 mm/sec. The shortened needle is used to minimize
its deflection and the consequent effect on measured axial
forces.

In the next step, experiments are conducted on the phantom
tissue to identify f; and C. The needle is robotically inserted
into the phantom tissue at three different velocities (5,20,40
mm/sec). By performing a multi-objective optimization, the
experimental data for the three insertions are simultaneously
fitted to the nonlinear system of ODEs defined by (16) and
the two aforementioned parameters are identified. Genetic
algorithm is used to minimize the residual error between
the experimental data points and the predicted ones [17].
The magnitude of the constant force profile f; and damping
coefficient of tissue per unit length of the needle C are
calculated to be 2.3 N/m and 796 N.sec/m’> with 90%
confidence intervals of £0.109 and £6.374, respectively.
Estimated model parameters and mechanical properties of
the needle provided by the manufacturer are given in the
first and the second row of Table I, respectively.

TABLE I: Values of model parameters

fi INNm]  C [Nsec/m?]  p. [N/m]  p, [N.sec/m?] P [N] 0 [N]
2.3 796 5.1 1.6 x 10? 0.088 0.244

K, [N/m] £ [m] p [Kg/m?] A [m?] I [N.sec/m?]  Eyeedre [GPal
10* 0.185 8030 481x1077  7.75x 1074 200

Note that in our experiments, the grid template is not
used. However, the entry point into the tissue experiences
negligible deformation during the insertion. Thus, the tissue
surface effectively acts as a template. In order to model
the rigid support, the stiffness of the template is arbitrarily
chosen to be very large (10* N/m) and it is placed at the
point of entry (¢, = 0).

B. Performance Assessment

In this section, the parameters of Table I are imported
into the model and needle insertion into the soft tissue
is simulated for five different velocities (5,10,20,30,40
mm/sec). Also, using the robotic setup, the needle is inserted
to a depth of 140 mm into the soft tissue phantom at the
TABLE II: Results of 140 mm insertion of the needle. Final tip position in the
experiments @,,,({), final tip position in the simulation @j;,(£), maximum tip error

€ max, the root-mean-squared error of the whole insertion process RMSE, and standard
deviation of final tip position ¢ are listed

| V [mmvsec] | @ep(6) Imm] | @yin(€) [mm] | esge [mm] | RMSE [mm] | & [mm] |

5 11.17 11.06 0.66 0.29 0.75
10 11.67 11.97 0.39 0.19 0.89
20 12.66 13.27 0.61 0.32 0.60
30 13.69 14.14 0.52 0.30 0.61
40 14.54 14.76 0.57 0.38 0.58
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Fig. 5: Comparison of simulation results from the identified model and the experimental data for needle steering at velocities of (a) 5 mm/sec, (b) 10 mm/sec, (c) 20 mm/sec,

(d) 30 mm/sec, and (e) 40 mm/sec

same velocities (five trials for each velocity). Fig. 5 shows
the simulated tip deflection compared to the average of five
experimental insertions. The results are summarized in Table
II. The maximum error in predicting the tip position is 0.66
mm at the depth of 95 mm and an insertion velocity of 5
mm/sec. Also, the results show that the maximum root-mean-
squared error (RMSE) of the model in predicting tip position
is 0.38 mm for the insertion velocity of 40 mm/sec.

IV. CONCLUDING REMARKS

In this work a mechanics-based model of flexible needle-
tissue interaction is developed to simulate needle insertion
into tissue. Needle insertion velocity is the input to this
model and can be used as a control command for robotically-
controlled needle steering. Experimental results from robotic
insertion of a brachytherapy needle into phantom tissue
demonstrated the accuracy of the model and its sensitivity to
the insertion velocity as the model input. In the collected
experimental data, the maximum error of the model in
predicting the needle tip position was 0.66 mm at the depth
of 95 mm. The proposed model can be used to provide the
surgeon with real-time prediction of the needle deflection,
which can be more useful when presented visually than low-
resolution ultrasound images. Also, the proposed model can
be utilized for pre-surgery motion planning and optimized
trajectory design in brachytherapy applications.

In this research, our experiments were performed only on
a simple test phantom using synthetic materials. Further
experiments in more realistic conditions, e.g., in-vitro tests
using biological tissues are needed to further verify our
conclusions. Also, velocity is the only input of the presented
model. However, axial rotation of needle is another input that
can give physicians control over needle trajectory. In future
work rotation of beveled tip of the needle will be added to
the model as another input.
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