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Abstract—We formalize the problem of adapting a
demonstrated trajectory to a new start and goal config-
uration as an optimization problem over a Hilbert space
of trajectories: minimize the distance between the demon-
stration and the new trajectory subject to the new end
point constraints. We show that the commonly used version
of Dynamic Movement Primitives (DMPs) implement this
minimization in the way they adapt demonstrations, for
a particular choice of the Hilbert space norm. The gener-
alization to arbitrary norms enables the robot to select a
more appropriate norm for the task, as well as learn how
to adapt the demonstration from the user. Our experiments
show that this can significantly improve the robot’s ability
to accurately generalize the demonstration.

I. INTRODUCTION

We focus on the problem of learning motor skills
from demonstration, in which a user demonstrates a
trajectory to a robot (like the gray trajectory in Fig.1)
(for instance, through kinesthetic demonstration), and
the robot adapts it to new conditions that it faces, such
as a new start or goal configuration (the blue trajectory
in Fig.1). This problem is important in learning motion
skills from demonstration [1], as well as in learning
from experience using trajectory libraries [2, 3].

Among several tools for addressing this problem
[1, 4-6], a commonly used one is a Dynamic Movement
Primitive (DMP) [7, 8]. DMPs have seen wide appli-
cation across a variety of domains, including biped
locomotion [9], grasping [10], placing and pouring [11],
dart throwing [12], ball paddling [13], pancake flipping
[14], playing pool [15], and handing over an object [16].

DMPs represent a demonstration as a dynamical
system tracking a moving target configuration, and adapt
it to new start and goal constraints by simply changing
the start and goal parameters in the equation of the
moving target. The adaptation process is the same,
regardless of the task and of the user, and is merely
one instance of a larger problem.

Our work introduces a generalization of this adap-
tation process. We provide a variational characteri-
zation of the problem by formalizing the adaptation
of a demonstrated trajectory to new endpoints as an
optimization over a Hilbert space of trajectories (Sec.
II). We find the closest trajectory to the demonstration,
in the linear subspace induced by the new endpoint
constraints (Fig.2). Distance (the notion of “closer”) is
measured by the norm induced by the inner product
in the space.

Using this formalism, different choices for the in-
ner product lead to different adaptation processes. We
prove that DMPs implement this optimization in the
way they adapt trajectories, for a particular choice of a
norm (Sec. III). We do so by proving that when up-
dating the endpoints, the moving target tracked by the
dynamical system adapts (as in Fig.1(b)) using the very
same norm that we often use in trajectory optimizers
like CHOMP [17] (we denote this norm by A). We then
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Fig. 1: (a) Using a norm M for adaptation propagates the change in
the start and goal,Afrom {s,g} to {5, §}, to the rest of the trajectory,

changing ¢p into ¢. The difference between the two as a function
of time is plotted in blue. (b) In contrast, DMPs represent the
demonstration as a spring damper system tracking a moving target
trajectory 7p, compute differences % (purple) between 7p and the
straight line trajectory, and apply the same differences to the new
straight line trajectory between the new endpoints. This results in

a new target trajectory 7 for the dynamical system to track. When
M = A, the velocity norm typically used in CHOMP [17], the two
adaptations are equivalent. In general, different norms M would lead
to different adaptions.

show that this also implies that the adaptation in the
trajectory space, obtained by then tracking the adapted
target, is also the result of optimizing a norm based on

Beyond providing a deeper understanding of DMPs
and what criteria they are inherently optimizing when
adapting demonstrations, our generalization frees the
robot from a fixed adaptation process by enabling it to
use any inner product (or norm). Because computing
the minimum norm adaptation is near-instant, any such
adaption process can be used in the DMP to obtain the
new moving target trajectory.

Thus, we can select a more appropriate norm based
on the task at hand (Sec. IV-A). What is more, if the
user is willing to provide a few examples of how to
adapt the trajectory as well, then the robot can learn
the desired norm (Sec. IV-B): the robot can learn, from
the user, not only the trajectory, but also how to adapt
the trajectory to new situations.

We conduct an experimental analysis of the benefit
of learning a norm both with synthetic data where
we have ground truth, as well as with kinesthetic
demonstrations on a robot arm. Our results show a
significant improvement in how well the norm that
the robot learns is able to reconstruct a holdout set of
demonstrations, compared to the default DMP norm.

Overall, we contribute a deeper theoretical under-
standing of DMPs that relates them to trajectory opti-



mization, and also leads to practical benefits for learn-
ing from demonstration that help broaden the use of
DMP-like algorithms.

II. HiLBERT NORM MINIMIZATION

In this section, we formalize trajectory adaptation as
a Hilbert norm minimization problem. We then derive
the solution to this problem, and study the case in
which translating trajectories carries no penalty. This
is the case for the norm stemming from a common
trajectory optimization objective, as well as for the
norm DMPs use in their adaptation process.

A. Problem Statement

Trajectories are functions ¢ : [0,1] — Q mapping
time to robot configurations. We allow the time index to
be either discrete or continuous. Given a demonstrated
trajectory ¢{p, we propose to adapt it to a new start §
(the robot’s starting configuration) and a new goal ¢ by
solving:

&= argmin ||Zp — &34
st E(0) =8
f1) =g (1)

where M is the norm defined by the inner product
in the Hilbert space of trajectories, ||Z|[3, = (¢ ¢&).
Fig.2 illustrates this problem. Different inner products
lead to different Ms, which in turn lead to different
adaptations.

B. Solution

In general, M induces a linear operator. When time
is discrete, M is a matrix, and ||¢||5, = ¢T ME.
The Lagrangian of Eq.(1) is

L= (Gp—8)"M(Ep—8) +AT(5(0)=8) +27(E(1) 8
Taking the gradient w.r.t. {, A, and 7:

Vel = M(Ep — &)+ (1,0,.0)" +(0,.,0,1)" ()

VAL=¢4(0) =8, V,L=¢(1) = ¢ 4)
Thus, the solution is:
¢=¢p+M'(1,0,.,0,7)" ©)

where the vectors A and -y are set by Eq.(4).

This has an intuitive interpretation: correct the start
and the goal, and propagate the differences across the tra-
jectory in a manner dictated by the norm M (Fig.1(a)).
Fig.2 depicts the geometry of the space.

C. Free Translations

Often times, we are interested in being able to
translate trajectories at no cost, ie. if E = ¢+¢&,
with & (t) = k,Vt (a constant valued trajectory), then
|é — &||m = 0, Vk. However, that makes M a semi-norm,
as (G, Cx) = 0, Vk, which makes the problem ill posed.

§D+M"(A,O,...,O,y)T
g
&
(s,8) (5,3

Fig. 2: We adapt ¢p by finding the closest trajectory to it that satisfies
the new end point constraints. The x axis is the start-goal tuple, and
the y axis is the rest of the trajectory. M warps the space, transforming
(hyper)spheres into (hyper)ellipsoids. The space of all adaptations of
¢p 1s a linear subspace of E.

1) Why Free Translations: One such example that is
of wide applicability is the one stemming from the
integral over squared velocities along the trajectory, a
criteria often used in trajectory optimization [17-19].
Let

clg) = 5 [E@)é@iE=5eTas ©

with A = KTK, K being the finite differencing matrix.
Then M = A is such a semi-norm, as every constant
trajectory ¢y has norm O:

eTAE = 2C[6] =2 / 0dz = 0,k

The CHOMP trajectory optimizer [17] is often imple-
mented using this velocity norm to measure distances
between trajectories.

In the next section, we show that this norm A is the
norm that DMPs minimize in the way they adapt the
trajectory being tracked by the spring damper system to
new start and goal configurations.

2) Handling Free Translations: CHOMP bypasses the
semi-norm problem because the trajectory endpoints
are constants. Similarly, the key to free translations
while maintaining a full norm is fixing one of the end-
points, e.g. the starting configuration: one can adapt the
trajectory’s goal in a restricted space of trajectories that
all have the same (constant) start, and then translate
the result to the new starting configuration.

Let E;_j be the subspace of trajectories s.t. the start-
ing configuration is a constant k: {(0) =k, § € Es_ C
H. M is a full norm in E,_;, as no translations are
allowed.

Let 0y : Eg_p — Es—o, 0x(&) = ¢ — & be the function
that translates trajectories from Z;_j to start at s = 0.
This function is bijective, o} e =46

We can reformulate Eq.(1) to finding the closest
trajectory within Es_ that ends at § — §, and translating
this trajectory to the new start §, thereby obtaining a
trajectory from §to § —8§+5=¢:

E= 0'§_1 (arggmin llos(ép) — §||%/I)

€8s

st E1)=8—% @)



The solution to this, following an analogous deriva-
tion to Sec. II-B, is to take the demonstration translated
to 0, correct the goal to ¢ — 3, propagate this change to
the rest of the trajectory via M, and then translate the
result to the new start:

=0t (@) + M0 0mT) @
with 7 st. &(1) = ¢. For a norm M with no coupling
between joints, and m the last entry in M, this becomes:

1
m

E=o1 (as(cp) +=MY0,.,0,(§ %) — (g — s))T>

©)
This corrects the goal in E;—g from g —s to § —35,
effectively changing the goal in Z from g to ¢.!

III. DMP ADAPTATION AS A SPECIAL CASE OF HILBERT
NorM MINIMIZATION

In this section, we summarize a commonly used
version of DMPs, and write it as a target tracker with
a moving target. Next, we show that the adaptation of
the tracked target to a new start and goal is an instance
of Hilbert norm minimization (Theorem 1). Finally, we
show that this induces an adaption in trajectory space
that is an instance of norm minimization (Theorem 2).

A. DMPs

A commonly used version [10, 11, 15, 16] of a DMP
is a second order linear dynamical system which is
stimulated with a non-linear forcing term:

TE(t) = K(g — &(t)) — DTE(t) — K(g —s)u + Kf(b(il)o)

where K(g — ¢(t)) is an attractor towards the goal,
K(g — s)u avoids jumps at the beginning of the move-
ment, D(t) is a damper, and Kf(u) is a nonlinear
forcing term. u is a phase variable generated by the
dynamical system

TH = —au
Thus, u maps time from 1 to (almost) 0:

u(t) =e ! (11)

B. DMP Adaptation as Tracked Target Adaptation

Let z =1 — u. We can reformulate a DMP as a target
tracker with a moving target, 7 (z):

TE(t) = K(T (z) = §(+)) — DTé(t)

with 7 (z) moving from s to ¢ as a function of z on a
straight line constant speed in z plus a deviation f as
a function of z, f(z) = f(u):

T(z) =s+z(g—s)+f(2) (13)

!Note that here we are overloading M. In Eq.(7), we are measuring
norms in a space of trajectories with constant start 0, which is a lower
dimensional space of trajectories 6 : (0,1] — Q that do not contain
the starting configuration (which is not a variable). In this space,
we can define a norm M by ||€]|5 = [|¢||m, with (0) = 0 and
&(z) = &(z)Vz € (0,1]. M is then of dimensionality one less than M
and full rank, and what we actually use in Eq.(9).

(12)

Given a demonstration {p, one forms a DMP by

computing fp(z) from Eq.(12).> To generalize to a new
§ and g, the target changes from Eq.(14) to Eq.(15):

Tp(z) =s+z(g—s)+ fp(z) (14)

T(z) =8+2(¢—35)+ fp(2) (15)

The linear function from s to g is adapted to the new
endpoints, becoming $§ + z(¢ — §) (black trajectories in
Fig.1(b)), and the deviation fp remains fixed (purple
deviations in Fig.1(b)).

C. Relation to Hilbert Norm Minimization

The adaptation of the target being tracked by the DMP,
from Tp to T, is a special case of the Hilbert norm
adaptation from &p to ¢, when the norm M = A from
Eq.(6).

To prove this, we show the equivalence between the
DMP adapted trajectory 7/ and the outcome of the
Hilbert norm minimization ¢ from Eq.(9), for 7 = .

We do this in two steps. Since 7 is the sum of a
straight line trajectory (as a function of z) and a fixed
deviation, we first show that the Eq.(7) will adapt a
straight line trajectory to another straight line when
M is the norm A. Next we show that when adding
a nonzero deviation to the initial trajectory, the same
deviation is added by Eq.(7) to the adapted trajectory.

Therefore, we first focus on the case when fp = 0.
In this case, the targets are straight lines from the
start to the goal, moving at constant speed: 7(z) =
éstruight(z) = (§—s)z+s, and T(z) = éstmight(z) =
(¢ —8)z+5.

In Lemma 3, we show that the adaptation of Csyaions
to a new start § and a new goal ¢ with respect to the
norm A matches éstmight. We build to this via two other
lemmas, where the key is to represent straight lines
in terms of the norm A. We first prove that Gsgignt

minimizes &7 AZ (Lemma 1). This enables us to write
out Cstraignt in terms of A (Lemma 2).

We then generalize this to non-zero fp using that fp
in not actually changed by the norm M in Eq.(9).
Lemma 1: Ggtygign: is the solution to minimizing Eq.(6):
constant speed straight line trajectories have minimum norm
under A.

Proof: We show this by showing that the solution
to Eq.(6) is a straight line with constant velocity, just
like Gstraigns- The gradient of C is

VeC=—¢

and setting this to 0 results in §{ = az+b. {(0) =s =
b=s,and {(1) =g¢g=a=g—s. Thus, { = (g —95)z+
5= gstraight- u
Lemma 2: 05(Cstraight) = %A’l(o,.., 0,¢)T with m the
last entry of A as in Eq.(9): we can write constant speed
straight line trajectories in closed form in terms of A.

2Typically, there is a smoothing step before adaptation where
fp is fitted by some basis functions, fp(u) = Z;:p‘lf”()f)’u The same

smoothing can be applied to a trajectory before perxforming Hilbert
norm minimization.




Proof: From Lemma 1 and from C[¢] = ¢TAE, we
infer that 05(&ssraiens ), which is the straight line from 0
to g — s, is the solution to

min {;'TA{;'
CE€Es=0
st &(1)=g—s (16)

Writing the Lagrangian and taking the gradient like
before, we get that 05 (Cstraignt) = L A_ 0,.,0,g —s):
this term is the straight line from 0 to g—s. |
Lemma 3: éstnght is the solution to Eq.(7) for {p =
Cstraight: constant speed straight lines get adapted by A to
constant speed straight lines.
Proof: From Lemma 2, the term L M~1(0,..,0, (¢ —
8~

8) —¢)T from Eq.(9) is the straight line from 0 to (
§) —(g—s) ie ((§—35)—g)t.
Thus, Eq.(9) becomes
g = 0'57_1 (0-5(é(sn.‘mighz.‘)+
1

|
Theorem 1: 7 is the solution to Eq.(7) for {p = T:
straight lines plus deviations get adapted by A to straight
lines plus the same deviations, like the target trajectories in

DMPs. L
Proof: When fp =0, T = cstmightr and T = gstraight-

The theorem follows from Lemma 3.

When fp # 0, the demonstrated target is Tp =
Gstraight + fp, and the adapted target is T = ‘:strmght +
fp. This adapted target still matches the solution in

Eq.(9):

|
Therefore, the target adaptation that the DMP does,
from T to 7, is none other than the Hilbert norm
minimization from Eq.(1), with the same norm as the
one often used in trajectory optimization algorithms
like CHOMP.
Norm Minimization Directly in the Trajectory Space.
Because the tracked target adaption from 7 to T is

a Hilbert norm minimization, then the corresponding
adaptation in the space of trajectories, which adapts ¢p
into ¢ by tracking 7, is also the result of a Hilbert norm
minimization.

To see this, let B : { +— T be the function mapping
a demonstrated trajectory to the corresponding tracked
target like in Eq.(12). Given a particular spring damper
system, B is a bijection: every demonstrated trajectory
maps to a unique tracked target, and every tracked
target maps to a unique trajectory when tracked by the
spring damper. Furthermore, f§ is linear, due to Eq.(12)
and additivity and homogeneity of differentiation.

Because f§ is bijective and linear, the norm A in the
tracked target spaces induces a norm P in the trajectory
space: /] = 1B(&)]|.
Theorem 2: The final tra]ectory obtained by tracking the
adapted target 7, & = p~1(7T), is the closest trajectory
to ¢p that satisfies the new endpoint constraints with
respect to the norm P: the final trajectory in a DMP is
the result of Eq.(1) for M = P.

Proof: Assume 3¢ with endpoints § and ¢ s.t. ||{p —

Ellp < ||Ep — &||p, i.e. € is closer to &p than & is. Then

1B(Zp = &)1a < [1B(&p —&)lla = [IB(ED) — B(&)]]a <
1BZp) = B@)lla = [ITo = B@lla < [ITo = Tlla,
which contradicts Theorem 1: we know that 7 is the
closest to 7p w.rt. the norm A given the endpoint
constraints, thus (&) cannot be closer. [

Therefore, DMPs adapt trajectories by minimizing a
norm that depends on both A (the norm used to adapt
the tracked target), as well as the particulars of the
dynamical system (represented here by the function p).

IV. IMPLICATIONS

Theoretical Implications. Our work connects DMPs to
trajectory optimization, providing an understanding of
what objective the DMP adaptation process is inher-
ently optimizing.

Our work also opens the door for handling ob-

stacle avoidance via planning. Currently with DMPs,
obstacles that appear as part of new situations in-
fluence the adapted trajectory in a reactive manner,
akin to a potential field. Certain more difficult situ-
ations, however, require using a motion planner for
successful obstacle avoidance, which reasons about the
entire trajectory and not just the current configuration.
Using our generalization, a trajectory optimizer akin to
CHOMP can search for a trajectory that minimizes the
adaptation norm (as opposed to the trajectory norm, as
in CHOMP) while avoiding collisions.
Practical Implications. First, the generalization frees us
from the default A norm, and enables us to select more
appropriate norms for each task. We discuss this benefit
in Sec. IV-A.

Second, the generalization gives the robot the oppor-
tunity to learn how to adapt trajectories from the user. If
the user is willing to provide not only a demonstration,
but also a few adaptations of that demonstration to
different start and goal configurations, then the robot
can use this set of trajectories to learn the desired norm
M. We describe an algorithm for doing so in Sec. IV-B.
Aside 1 — Computation. The adaptation in a DMP
happens instantly, by instantiating the start and goal
variables with new values. Hilbert norm minimization
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Fig. 4: The different changes to the norm structure result in different adaptation effects.

has an analytical solution, with computational com-
plexity in the discrete case dominated by a single
matrix multiplication. This means any DMP can adapt
its moving target using norm minimization.

Aside 2 — Using a Spring Damper. DMPs first cast
the trajectory as a moving target tracked by a spring
damper, and adapt the moving target trajectory. Hilbert
norm minimization can be used to adapt trajectories
both for the moving target, as well as for the demon-
strated trajectory itself. The decision to use a spring
damper is independent from the adaptation process.

A. Selecting a Better Norm

The norm A can lead to good adaptations (see Fig.1),
but it is not always the most suitable norm. Fig.3 shows
three cases where a different norm leads to better
adaptations. In all three cases, the better norm is a
modification of the matrix structure of A (as shown
in Fig.4).

The first case, Fig.3(a), uses a demonstrated trajectory
that minimizes jerk. Therefore, using a norm that stems
from jerk as opposed to velocities, results in the correct
adaptation — the minimum jerk trajectory (orange).
This norm is band diagonal, like A, but has a winder
band because computing the jerk requires terms further
away from the current trajectory point than computing
velocities (Fig.4(b)).

The second case, Fig.3(b), uses a demonstrated tra-
jectory that moves faster in the middle than it does in

the beginning and end. Therefore, a norm that weighs
velocities in middle of the trajectory less than velocities
at the endpoints (unlike A, for which the velocities at
every time point matter equally), results in the adaption
in orange: the trajectory remains a straight line, and
follows a similar velocity profile as the demonstration.
This norm is a reweighing of the rows of A (Fig.4(c)).

The third case, Fig.3(c), uses a loop as the demon-
strated trajectory. The demonstration itself is not nec-
essarily minimizing any L? norm. However, a more
appropriate norm for adapting this demonstration cou-
ples waypoints that are distant in time but close in
space: instead of only minimizing velocities, it also
minimizes the distance between the two points that
begin and end the loop. Unlike A, which is band
diagonal, this norm also has entries far from the di-
agonal, depending on how far apart in time these two
waypoints are (Fig.4(d)).

B. Learning a Better Norm

As we saw in the previous section, different norms
result in different ways of adapting a demonstrated
trajectory. If the user providing the demonstration is
willing to also provide example adaptations to new
endpoints, then the robot can learn the norm M from
these examples: instead of adapting trajectories in a pre-
defined way, the robot can learn from the user how it should
adapt trajectories.



Let D = {{;} be the set of user demonstrations, each
of them corresponding to a different tuple of endpoints
(¢:(0),¢;i(1)). The robot needs to find a norm M such
that for each pair of trajectories (§;, ;) € D x D, ; is
the closest trajectory to §; out of all trajectories between
the new endpoints, ¢;(0) and &;(1), i.e. find a norm that
explains why the user adapted ¢; into ¢; and not into
any other trajectory:

12 =&l < g — Ellw, Ve € B ) A7)
Equivalently:
112 = &l SI(?EigHCi—CH%VJ
s.t. ¢(0) = ¢;(0)
(1) =¢;(1) (18)

One way to find an M under these constraints is to
follow Maximum Margin Planning [20]. We find M by
minimizing the following expression:

min ) [I¢i — Gilld — min([|¢; — EllR — £(2,8))]
L]

¢e
5. £(0) = §(0)
¢(1) =¢;(1)
st M= 0 (19)

with £ a loss function, e.g. a function evaluating to 0
when the trajectory matches ¢; and to 1 otherwise, and
M - 0 the positive-definiteness constraint.

If Q‘;} is the optimal solution to the inner minimization

problem, then the gradient update is:
M=M-aY [(& )& —&)" — (@& — &) @& —a)T)

i

(20)
followed by a projection onto the space of positive
definite matrices.
Aside 3 — Geometry. An M that satisfies all the
constraints only exists if the demonstrations in D lie in
a linear subspace of & of dimensionality 2d, with d the
number of degrees of freedom: the adaptation induces
a foliation of the space, with each linear subspace of a
demonstration and all its adaptations to new endpoints
forming a plaque of the foliation. Fig.2 depicts such a
linear subspace, obtained by adapting ¢p.

This follows from Eq.(5): the space of all adaptations
of a trajectory is parametrized by the vectors A and .
Similarly, when we allow free translations, the linear
subspace has dimensionality 4 (Eq.(8)). Note that there
are many norms that satisfy the constraints in this case,
because only a subset of the rows of M~! are used in
the adaptation.

When the demonstrations do not form such a linear
subspace, the algorithm will find an approximate M
that minimizes the criterion in Eq.(19). We study the
effects of noise in the next section. Other techniques
for finding an approximate M, such as least squares
or PCA, would also apply, but they would minimize
different criteria, e.g. the difference between the trajec-
tories themselves (L |[{; — Z*]| ?), and not the difference

between the norms.

V. EXPERIMENTAL ANALYSIS

We divide our experiments in two parts. The first
experiment (Sec. V-A) analyzes the ability to learn a
norm from only a few demonstrations, under different
noise conditions. We do this on synthetically generated
data so that we can manipulate the noise and compare
the results to ground truth. We assume an underlying
norm, generate noisy demonstrations based on it, and
test the learner’s ability to recover the norm. The sec-
ond experiment tests the benefit of learning the norm
with real kinesthetic demonstrations on a robot arm
(Sec. V-B).

A. Synthetic Data

To analyze the dependency of learning the norm on
the number of demonstrations, we generate demonstra-
tions for different endpoints using a given norm M
and some arbitrary initial trajectory. We then use the
training data to learn a norm M. For simplicity, we
focus on norms that allow free translations, and that
do not couple different joints (similar to A).

1) Dependent Measures: We test the quality of a
learned norm M using two measures (which signifi-
cantly correlate, see Analysis): one is about the norm
itself, and the other is about the effect it has on adap-
tations.

Waypoint Error: This measure captures deviations of
the behavior induced by the learned norm from desired
behavior. We generate a test set of 1200 new start and
goal configuration tuples for testing, leading to 1200
adapted trajectories using M as ground truth. We then
adapt the demonstrated trajectory to each tuple using
the learned norm M. For each obtained trajectory, we
measure the mean waypoint deviation from the ground
truth trajectories, and combine these into an average
across the entire set.

Norm Error: This measure captures deviations in the
learned norm itself (between M and M). Because only

the last row of M~! (which we denote Mﬁl) affects
the resulting adaptation, we compute the norm of the
component of the normalized M, that is orthogonal
to the true normalized Mﬁl.

2) Ideal Demonstrations: We first test learning from
ideal demonstrations, meaning perfectly adapted using
M, without any noise.

Because of the structure that M imposes on the op-
timal adaptations (a linear subspace of dimensionality
2d in general, d for free translations), only a few ideal
demonstrations are necessary to perfectly retrieve M: 3
in the general case, and 2 in the case of free translations.

As a sanity check, we ran an experiment in which we
chose the starting trajectory from Fig.1 and generated
100 random norms. For each norm, we computed the
two measures above. The resulting error was exactly 0
in each case: the learning algorithm perfectly retrieved
the underlying norm.

3) Tolerance to Noise: Real demonstrations will not
be perfect adaptations — they will be noisy. With noise
comes the necessity for more than the minimal number
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full configuration space o

the robot, but here we plot the end effector traces for visualization. The learned norm more closely reproduces

two of the trajectories, and has higher error in the third. Overall, the error decreases significantly (see Fig.7).
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Fig. 7: The average waypoint error on a holdout set of pointing
gesture demonstrations on the HERB robot, for the adaptations
obtained using the learned norm, compared to error when using the
default A.

of demonstrations, and the questions of how many
demonstrations are needed and how robust the learn-
ing is to the amount of noise.
Manipulated Variables. In this experiment, we study
these questions by manipulating two factors: (1) the
number of demonstrations, and (2) the amount of
noise we add to the adaptations in the training data.
We added Gaussian noise to the ideal adaptations
using a covariance matrix that adds more noise to the
middle of the trajectory than the endpoints (since the
endpoints are fixed when requesting an adaptation).
For the first factor — number of demonstrations —
we started at 2 (the minimum number required), and
chose exponentially increasing levels (2, 4, 8, 16, 32,
64) to get an idea for what the scale of the number
of demonstration should be. For the second factor, we
scaled the covariance matrix (by 1, 10, 100, 1000, 10000)

up to the point where the average noise for a trajectory
waypoint was 50% of the average distance from start
to goal (which we considered an extreme amount that
exceeds by far levels we expect to see in practice).
This resulted in 30 total conditions, and we ran the
experiment with 30 different random seeds for each
condition.

Hypotheses:

Hila. (Sanity Check) The number of demonstration posi-
tively affects the learned norm quality.

H1b. (We Only Need a Small Number of Examples)
There is a point beyond which increasing the number of
examples results in practically equivalent norm quality.
H2a. (Sanity Check) The amount of noise negatively affects
norm quality.

H2b. (Learning is Tolerant to Noise) The waypoint error
is significantly lower than the noise on the training exam-
ples.

Analysis. The waypoint error and norm error mea-
sures were indeed significantly correlated (standard-
ized Crohnbach’s « = 0.95), suggesting that the way-
point error also captures the deviation from the real
norm.

A factorial least squares regression revealed that, in
line with Hla and H2a, both factors were significant:
as the number of demonstrations increased, the error
did decrease (F(1,867) = 24.07, p < .0001), and as
the amount of noise increased, the error did increase
(F(1,867) = 628.35, p < .0001).

Fig.5 plots these two effects. In support of H1b, the
error stops decreasing after 8 demonstrations (it takes
a difference threshold of 0.3 for an equivalence test
between the error at 8 and the error at 16 to reject
the hypothesis that they are practically the same with
p = .04). This suggests that learning the norm can



happen from relatively few demonstrations.

In support of H2b, the error was significantly lower
than the noise in the training trajectories (£(899) =
19.35, p < .0001): on average, the error was lower by
a factor of 6.71, and this factor increased significantly
with the number of demonstrations (F(1,869) = 869.01,
p < .0001).

B. Real Data

Our simulation study compared the learned norm
to ground truth. Next, we were interested in studying
the benefits of learning the norm with real kinesthetic
demonstrations on a robot arm.

We collected 9 expert demonstrations of pointing
gestures on the HERB robot [21], where the task was to
point to a particular location on a board, as in Fig.6(a).
We chose pointing as a task because the shape of the
adapted trajectories is important for such gestures. We
used up to 6 of these trajectories for training, and held
out 3 for testing.

Dependent Measures. We use the waypoint error mea-
sure from before, this time from the noisy holdout set
as opposed to ground truth. We cannot use the norm
error since we no longer have access to the true norm
M.

Manipulated Variables. We used both the learned
norm, as well as the default A norm from Eq.(6), to
generate adaptations of the same original demonstra-
tion (its end effector trace is shown in gray in Fig.6(c
and d)). Note that even though the learned norm has
access to more than the original demonstration, we
used this demonstration only when testing the adap-
tation, to remain fair to the default norm. In practice,
if the user provides multiple demonstrations, the one
corresponding the situation closest to the test situation
could be used for adaptation.

We also manipulated how many of the 6 demonstra-
tions the learning algorithm used.

Hypotheses:

H3. (Data Improves Performance) As before, we expect
that the number of demonstrations positively affects perfor-
mance of the learned norm, i.e. error in reproducing the hold-
out trajectories decreases as the number of demonstrations
increases.

H4. (Learned Norm > Default A) The learned norm has
smaller error in reproducing the holdout demonstrations than
the default A norm.

Analysis. Fig.6 qualitatively compares the learned and
the default norm, and Fig.7 plots our results.

Overall, the performance did tend to improve with
the number of demonstrations, but the effect was not
significant (F(4,26) = 1.31, p = .29). In support of H4,
the error was significantly lower overall when learning
the norm than when using the DMP default (£(30) =
31.96, p < .0001), suggesting that for real kinesthetic
demonstrations, there is indeed a practical benefit to
the generalization we propose in this paper.

VI. DiscussioN AND FUTURE WORK

In this paper, we formalized the trajectory adaptation
problem as Hilbert norm minimization and showed this
is a generalization of the process DMPs use to adapt
demonstrated trajectories to new endpoints. Our work

can be used for tasks in which DMPs are typically
employed, in particular those tasks for which the shape
of the trajectory is important (such as gestures): by
learning the adaptation norm from the user, the robot
can produce trajectories that better match the desired
shape in new situations (as in our experiments).

We also envision an alternate use, geared towards
skills for which success is the main driver (such as clos-
ing a lid or hitting a tennis ball): rather than learning
the norm from the user, the robot can learn a good
norm through reinforcement, targeting an increase in
the success rate compared to the default norm.

Further avenues of future work include testing the
norm learning on data from novice users. This would
require addressing the problem of enabling novices
to provide good demonstrations, which is a separate
line of research and the reason we opted for expert
demonstrations in this paper.

Finally, we plan on investigating skills beyond point-
ing gestures. In particular, since minimum L? norm
adaptations lie in a low dimensional linear subspace
of the trajectory space, we aim to explore what types
of skills best meet this assumption.

REFERENCES

[1] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning.
A survey of robot learning from demonstration. Robotics and autononous
systems, 57(5):469-483, 2009.

[2] Nikolay Jetchev and Marc Toussaint. Trajectory prediction: learning to
map situations to robot trajectories. In ICML, 2009.

[3] Martin Stolle and Christopher G Atkeson. Policies based on trajectory
libraries. In ICRA, 2006.

[4] Sylvain Calinon, Florent Guenter, and Aude Billard. On learning, repre-
senting, and generalizing a task in a humanoid robot. Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, 37(2):286-298, 2007.

[5] Gu Ye and Ron Alterovitz. Demonstration-guided motion planning. In
ISRR, 2011.

[6] John Schulman, Jonathan Ho, Cameron Lee, and Pieter Abbeel. Learning
from demonstrations through the use of non-rigid registration. In ISRK,
2013.

[7] Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. Learning attractor
landscapes for learning motor primitives. In NIPS, 2003.

[8] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and
Stefan Schaal. Dynamical movement primitives: learning attractor models
for motor behaviors. Neural computation, 25(2):328-373, 2013.

[9] Jun Nakanishi, Jun Morimoto, Gen Endo, Gordon Cheng, Stefan Schaal,
and Mitsuo Kawato. Learning from demonstration and adaptation of
biped locomotion. Robotics and Autonomous Systems, 47(2):79-91, 2004.

[10] Peter Pastor, Ludovic Righetti, Mrinal Kalakrishnan, and Stefan Schaal.
Online movement adaptation based on previous sensor experiences. In
IROS, 2011.

[11] Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Stefan Schaal. Learn-
ing and generalization of motor skills by learning from demonstration.
In ICRA, 2009.

[12] Jens Kober, Erhan Oztop, and Jan Peters. Reinforcement learning to adjust
robot movements to new situations. In IJCAI, 2011.

[13] Jens Kober and Jan Peters. Learning motor primitives for robotics. In
ICRA, 2009.

[14] Petar Kormushev, Sylvain Calinon, and Darwin G Caldwell. Robot motor
skill coordination with em-based reinforcement learning. In IROS, 2010.

[15] Peter Pastor, Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou,
and Stefan Schaal. Skill learning and task outcome prediction for
manipulation. In ICRA, 2011.

[16] Miguel Prada, Anthony Remazeilles, Ansgar Koene, and Satoshi Endo.
Dynamic movement primitives for human-robot interaction: comparison
with human behavioral observation. In IROS, 2013.

[17] Matt Zucker, Nathan Ratliff, Anca D Dragan, Mihail Pivtoraiko, Matthew
Klingensmith, Christopher M Dellin, ] Andrew Bagnell, and Siddhartha S
Srinivasa. Chomp: Covariant hamiltonian optimization for motion plan-
ning. IJRR, 32(9-10):1164-1193, 2013.

[18] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor,
and Stefan Schaal. Stomp: Stochastic trajectory optimization for motion
planning. In ICRA, 2011.

[19] Chonhyon Park, Jia Pan, and Dinesh Manocha. Itomp: Incremental
trajectory optimization for real-time replanning in dynamic environments.
In ICAPS, 2012.

[20] Nathan D Ratliff, ] Andrew Bagnell, and Martin A Zinkevich. Maximum
margin planning. In ICML, 2006.

[21] Siddhartha S Srinivasa, Dmitry Berenson, Maya Cakmak, Alvaro Collet,
Mehmet Remzi Dogar, Anca D Dragan, Ross A Knepper, Tim Niemueller,
Kyle Strabala, Mike Vande Weghe, et al. Herb 2.0: }iessons learned from
developing a mobile manipulator for the home. Proceedings of the IEEE,
100(8), 2012.



	I Introduction
	II Hilbert Norm Minimization
	II-A Problem Statement
	II-B Solution
	II-C Free Translations
	II-C1 Why Free Translations
	II-C2 Handling Free Translations


	III DMP Adaptation as a Special Case of Hilbert Norm Minimization
	III-A DMPs
	III-B DMP Adaptation as Tracked Target Adaptation
	III-C Relation to Hilbert Norm Minimization

	IV Implications
	IV-A Selecting a Better Norm
	IV-B Learning a Better Norm

	V Experimental Analysis
	V-A Synthetic Data
	V-A1 Dependent Measures
	V-A2 Ideal Demonstrations
	V-A3 Tolerance to Noise

	V-B Real Data

	VI Discussion and Future Work

