
Online deformation of optimal trajectories for constrained
nonprehensile manipulation

Alexander Pekarovskiy1,2, Thomas Nierhoff3, Jochen Schenek1,
Yoshihiko Nakamura4, Sandra Hirche3 and Martin Buss1,2

Abstract— This paper discusses an online dynamic motion
generation scheme for nonprehensile object manipulation by
using a set of predefined motions and a trajectory deformation
algorithm capable of incorporating positional and velocity
boundary constraints. By creating optimal trajectories offline
and deforming them online, computational complexity during
execution is reduced considerably. As tight convex hulls of
the deformed trajectories can be found, possible obstacles
or workspace boundaries can be circumnavigated precisely
without collision. The approach is verified through experiments
on an inclined planar air-table for volleyball scenario using two
3-DoF robots.

I. I NTRODUCTION

When using a robotic system to manipulate objects, the
object is usually grasped firmly to predict and control its
state precisely during the entire task execution. Yet, this
approach has also drawbacks as the pose of the object is
limited by the workspace limitations of the robot. Another
option is to manipulate an object without grasping, which
is called nonprehensile manipulation [1]. The advantage is
that the possible workspace can be greatly extended. Typical
examples include batting [2] and juggling [3]. All these tasks
are either one-off or periodic motions and characterized by
presence of the flight phase and impact point, where an
instantaneous state transition occurs. Due to missing form
or force closure grasp and the short time period where the
manipulator is in contact with the object, its motion needs
to be both well planned and precisely executed. Analytical
solution for motion planning based on predicted object
trajectory works for some applications, however they are not
always available. For instance, Senooet al. [4] analyzed the
derivation of polynomial solutions for hitting motion with
refinement of the hitting point based on the high speed vision
feedback.

For creating a feasible trajectory one can distinguish
between two main approaches:

On the one hand, there are numerical optimal control
methods which recalculate the entire trajectory for every
new object motion [5], [6]. They can readily incorporate
constraints required for a successful hitting motion, but

1Chair of Automatic Control Engineering, Technische Universität
München, D-80333 Munich, Germany
{a.pekarovskiy,j.schenek, mb} at tum.de

2TUM Institute for Advanced Study, Technische Universität München,
Lichtenbergstr. 2a, 85748 Garching, Germany

3Chair of Information-oriented Control, Technische Universität München,
D-80333 Munich, Germany{tn, hirche} at tum.de

4Department of Mechano-Informatics, University of Tokyo, Tokyo 113-
8656, Japan.{nakamura} at ynl.t.u-tokyo.ac.jp

they are limited as they rely on a good initial guess in
order to converge to a feasible solution and are too slow
to find an optimal trajectory online. It makes sense to
replace optimal control with optimization in some cases
due to requirements on algorithm execution time and rate
of convergence. Gradient optimization methods were imple-
mented for obstacle avoidance based on trajectory sampling
in [7], [8] and for robust nonprehensile balancing based
on polynomial trajectory representation in [9]. Sequential
quadratic programming was used instead of gradient descent
for getting better convergence in [10].

On the other hand, there are learning methods based on
movement imitation. Here the general idea is to learn some
prototypic motion offline based on a human demonstration
and adapt the learnt motion online to match the task-specific
constraints. Various methods exist in literature, for example,
Dynamic Movement Primitives as described in [11]. An
extension overcoming the prior problem of accounting only
for rest-to-rest motions is presented in [12]. By allowing
position and velocities to be specified for a predefined
point, the approach can be used for general hitting motions.
Another option is to use Gaussian Mixture Regression [13]
to learn motions through imitation. Still the approaches are
only suitable for free space motions as they cannot guarantee
collision avoidance. In addition, the fixed number of internal
states limits the extent of possible deformations.

Another method from Yamane and Nakamura [14] pro-
duces physically plausible motions from possibly infeasible
ones, where a trial-and-error procedure is used to find
proper unilateral force constraints of the contacts with the
environment. Here calculations are done independently for
every single time step and the resulting motion behavior is
highly dependent on the choice of the gains.

An approach capable of overcoming drawbacks of the
discussed methods is Laplacian Trajectory Editing [15] min-
imizing the acceleration deviation to a given reference path
through a least squares approach. Our approach modifies the
entire trajectory with a feasible contact point online - not
just a single time step. As the method does not rely on any
kernel/internal state, its resolution is solely limited bythe
number of trajectory sampling points. In addition, extensions
for collision avoidance are presented in [16].

The contribution of the paper is thus the combination of
a numerical optimal control method and Laplacian Trajec-
tory Editing (LTE) for online deformation of a previously
calculated optimal trajectories. Results of numerical optimal
control methods are in general locally optimal, but further



in the paper we will call them optimal for brevity. If the
amount of deformation is small, the optimality properties of
undeformed trajectory also hold for the deformed trajectory
up to a certain extent. It is shown that for a specific type of
deformation tight boundaries of the deformed trajectory can
be derived, making the approach an ideal choice for motion
adaptation in constrained environments. To achieve a tradeoff
between trajectory similarity and a large deformation, a hi-
erarchical collision avoidance approach iteratively increases
the amount of deformation and varies trajectory segmentation
size until a collision-free trajectory is obtained.

The remainder of the paper is as follows: Sec. II de-
scribes the trajectory deformation process and the collision
avoidance scheme. In Sec. III the boundary constraints for
trajectory deformation are derived through a precise physical
model of the given task. Experiments for a 2D volleyball
scenario on an inclined air-table are conducted in Sec. IV.
Finally, Sec. V and Sec. VI discuss the presented approach
and suggest ideas for further expansion.

II. T RAJECTORYDEFORMATION

For each new motion, initial and end boundary points of
the trajectory are assigned based on the task goal. Once
both new target position and velocity are known, a feasible
trajectory that moves the robot from a starting position to
the target position and back again while avoiding workspace
constraints has to be found.

Whereas in previous papers [5], [6] optimal trajectories
have been produced with direct collocation method, its
high computational complexity and sensitivity towards a
good initial guess are major drawbacks. In contrast, this
paper assumes that optimal trajectories have been calculated
beforehand and will be deformed online to meet additional
requirements. Although giving up the optimality of the direct
collocation method, it results in close-to-optimal trajectories
if the amount of deformation is small. On the plus side,
computational complexity is reduced considerably. For each
new motion, initial and end boundary points of the trajectory
are assigned based on the task goal. Once both new target
position and velocity are known, a feasible trajectory has
to be found that moves the robot from a rest positionA to
the hit positionB and back again while avoiding workspace
constraints.

A. Deforming Trajectories Through Laplacian Trajectory
Editing

A generic method for deforming trajectories through a
least-squares approach is Laplacian Trajectory Editing. It as-
sumes that the trajectory consists ofn equitemporally spaced
sampling pointsP = [p(t1),p(t2), . . . ,p(tn)]

T ∈ R
n×m,

ti+1 − ti = ∆t ∀i ∈ {1, . . . , n− 1}. For simplicity, original
optimal trajectory is denoted asPo = [po

1,p
o
2, . . . ,p

o
n]

T .
One can then calculate the acceleration along the original
trajectory for the i-th sampling point through the finite
difference

δi =
po
i+1 − 2po

i + po
i−1

∆t2
. (1)

The key idea of LTE during trajectory deformation is to
calculate local trajectory properties, resulting in a linear
system of equations. When adding boundary constraints,
the resulting overdetermined system of equations can be
solved using least squares. By introducing weighting factors
for each constraint, they can be prioritized to fit the user
requirements. Note that the acceleration in this paper is
just a special case of theLaplacian coordinatesin [15] for
equitemporally spaced sampling points.

Only positional constraints of the formpj = cj are
considered, pinning a specific sampling pointpj to a desired
positioncj . With the weighting factorw it can be rewritten
as

wpj = wcj , j ∈ {1, 2, . . . , n}. (2)

Writing everything in matrix form, one obtains
[
L

P̄

]

P =

[
∆

C̄

]

, (3)

with

L =
1

∆t2













1 −2 1

1 −2 1

. . .
. . .

. . .
1 −2 1

1 −2 1













, ∆ =













δ2
δ3
...

δn−2

δn−1













,

(4)
and the matrices̄P and C̄ accounting for the weighted
positional constraints as described in (2). The equation
system can be solved for the deformed trajectoryPs as

Ps =

[
L

P̄

]+ [
∆

C̄

]

, (5)

using least squares. For weighting factorsw ≫ 1
∆t2

the error
ǫ = pi − ci is negligible for practical purposes and can be
approximated withǫ ≈ 0.

Straightforward as it is, the approach is also relatively
slow as the least squares solution requires a matrix in-
version. For a trajectory withn sampling points andp
positional constraints, the dimension of the matrix

[
LT P̄T

]T

is n+ p− 2× n, making the approach not feasible for real-
time deformation of large trajectories.

It is however possible to decompose the solution in (5)
into two parts as

Ps =

[
L

P̄

]+ [
∆

C̄1

]

︸ ︷︷ ︸

{1}

+

[
L

P̄

]+ [
0

C̄2

]

︸ ︷︷ ︸

{2}

, (6)

s.t. C̄1 + C̄2 = C̄. (7)

Through an adequate choice of the positional constraints in
C̄1, the term{1} results in a sole translation of the original
trajectory Po which can be obtained without the need to
calculate the least squares solution. In the continuous domain
the equivalent solution for{2} is a cubic spline interpolation
of the form

Pj =

3∑

k=0

aj,kt
k, t ∈ [0, 1], (8)



for the j-th trajectory interval. A proof is given in the
Appendix. This way, the equation system to be solved does
not consist ofn + p − 2 but only 4(p − 1) variables which
is advantageous ifn ≫ p.

B. Collision Detection Using B́ezier Splines

There are numerous ways to represent a cubic spline curve,
for example B́ezier splines. In this case one can rewrite (8)
for the j-th trajectory interval as

Pj =

3∑

k=0

cj,kB
n
k (t), (9)

with the weighting factorscj,k and Bn
k (t) as Bernstein

polynomials

Bn
k (t) =

(
n

k

)

(1− t)n−k tk, t ∈ [0, 1]. (10)

Due to the non-negativity of each Bernstein polynomial for
t ∈ [0, 1], every pointp ∈ Pj is a convex combination of the
control pointscj,k. This means that the trajectory segment
Pj always stays within the convex hull of its control points.

It is thus possible to find convex hullsconv({1}) and
conv({2}) both for{1} and for{2}. The convex hull of the
deformed trajectory{1}+ {2} is then bounded from above
by

conv({1}+ {2}) ≤

conv({1} ⊕ {2}) = conv({1})⊕ conv({2}), (11)

where the operator⊕ denotes the Minkowski sum of two
convex hulls. It is also possible to calculate the convex hull
based onconv({1} + {2}) without using the Minkowski
sum. Although generally resulting in tighter bounds, it is
not applicable for real-time deformations of large trajectories
due to itsO(n log(n)) complexity. Yet the Minkowski sum
enables one to calculateconv({1}) andconv({2}) indepen-
dently. Knowing that the term{1} is a sole translation of the
original trajectory, the convex hull of the original trajectory
is calculated offline and just has to be shifted accordingly to
obtain conv({1}). The convex hullconv({2}) is given by
the four control points of the associated Bézier curve.

C. Hierarchical Collision Avoidance Through Iterative Sub-
division

Having calculated the convex hull of the deformed trajec-
tory, collisions are detected. Unfortunately, the Minkowski
sum provides rather conservative bounds of the deformed
trajectory, detecting collisions even if the underlying trajec-
tory is non-colliding. To overcome the problem, the original
trajectory is iteratively split into smaller trajectory intervals
for which a new convex hull is calculated. Through Jensen’s
inequality it can be proven that if a trajectory intervalPj is
split up into two smaller intervalsPj,1 andPj,2, it is for the
resulting convex hull

conv(Pj) ≥ conv(Pj,1) + conv(Pj,2), (12)

thus subdividing the trajectory generally results in tighter
convex hulls, see Fig. 1.

yy

xx

AA BB

(xh, yh)
pj−1,m

pj,m

pj+1,m

Fig. 1: Two consecutive steps for safe check. Minkowski sum of the
deformed non-periodic trajectory in the workspace of the robot. Red polygon
represents the static obstacle. If the intersection is found the more refined
segmentation is applied.

In case of a collision the boundary sampling points ofm-
th iterationpj−1,m,pj,m ∈ Pj of every trajectory interval
are shifted depending on the maximum intersection depth
dj,m of the convex hulls as

p′
j−1,m = pj−1,m +max(dj,m,dj−1,m), (13)

p′
j,m = pj,m +max(dj,m,dj+1,m),

resulting in the new sampling points positionp′
j−1,m,pj,m,

see Fig. 2. The shifting process is then repeated until a
collision-free trajectory is obtained.

pj−2,m

pj−1,m

pj,m

pj+1,m

pj+2,m

p′
j−2,m

p′
j−1,m

p′
j,m

p′
j+1,m

p′
j+2,m

dj,m

dj+1,m

dj−1,m

Obstacle

New

Original

Fig. 2: Shifting the segmentation points (orange circles) outside of the static
obstacle (red line). The new deformed trajectory is depictedwith the dashed
line.

When subdividing the trajectory, two contradicting objec-
tives have to be fulfilled: On the one hand, we want the gran-
ularity as fine as possible (many trajectory intervals) in order
to let the resulting convex hull be as tight as possible. On
the other hand, a coarse granularity reduces computational
complexity and leads to smoother deformations. A viable
tradeoff is found by iteratively subdividing the trajectory
and performing a number of shifting operations after each
subdivision until a collision-free trajectory is obtained.

III. I MPACT MODELING

In this paper, we present a scenario that shows full
dynamic capability of the introduced method by tackling
the problem of playing planar volleyball against a human
with a planar 3DOF robot, see Fig. 3. Note that only the
planar case is considered, although the entire approach can
be readily extended to the three-dimensional case. For the
robot, the task consists of hitting an incoming volleyball such
that the ball flies over the net (in orange) and lands in the
opponent’s field (in green). When modeling the impact of the
ball one has to find the full state vector of the end effector



for the desired ball motion, described by the hit position
(xh, yh) along the table, the fixed end effector angleΦh and
its translational velocity(vxh, vyh).

Under the influence of gravity the ball moves along a
parabolic trajectory described by

xh = x0 + vx0th,

yh = y0 + vy0th −
1

2
gmt2h, (14)

where gm = g sinα is a modified gravity on the surface
of the air table tilted at an angleα. By representing the
workspace constraints of the 3R robot by a circle, the
intersection point(xh, yh) for hitting the ball at timeth is
found by solving (14) subject to the constraint

(xh − xc)
2 + (yh − yc)

2 − r2c = 0, (15)

with workspace-dependent variablesxc, yc, rc. The velocity
of the ball immediately before the hit is denoted by(vx, vy)
and the rotational speed byω.

To find the remaining unknowns, one has to specify the
velocities (v′x, v

′
y) and ω′ immediately after the hit. In the

absence of disturbances, the ball moves similar to (14) on a
parabolic trajectory after the hit. By defining two waypoints
(x1, y1) and(x2, y2) along the parabola the ball has to pass,
one can solve the resulting system of equations

x1 = xh + v′xt1,

y1 = yh + v′yt1 −
1

2
gmt21,

x2 = xh + v′xt2, (16)

y2 = yh + v′yt2 −
1

2
gmt22,

for the four unknownst1, t2, v′x, v
′
y. The variablest1 and t2

denote the time when passing the two waypoints.

 

 

 

 

 

 

 
 

 

 

 

 

 

ω

(xop
h , y

op
h )

rc

(x1, y1)

t1(x2, y2)

t2

(xh, yh)

(xi, yi)

vx0

vy0

Human player

gm

Fig. 3: Scenario overview.

Knowing the state of the ball immediately before and after
the hit, one can derive the required end-effector angle and
velocity during the hit. To do so the ball velocities are first
decomposed into relative normal componentsv⊥,v

′
⊥ and

relative tangential componentsv‖,v
′
‖ before and after the

hit as

v⊥ = P⊥

([

vx
vy

]

−

[

vxh
vyh

])

, v‖ = P‖

([

vx
vy

]

−

[

vxh
vyh

])

,

v
′
⊥ = P⊥

([

v′x
v′y

]

−

[

vxh
vyh

])

, v
′
‖ = P‖

([

v′x
v′y

]

−

[

vxh
vyh

])

,

(17)

with the projection matricesP⊥,P‖ depending on the end
effector angleΦ as

P‖ = [cos(Φh) sin(Φh)]
T [cos(Φh) sin(Φh)],

P⊥ = I−P‖. (18)

Fig. 4 gives a detailed illustration of the impact model.

r
∆p⊥

∆p‖
Φh

v′
v′⊥

v′‖

v‖ v

v⊥

(xh, yh)

Fig. 4: Impact model between the flat end effector and the ball.

The hit between ball and end effector is modeled as a
partially elastic collision with restitution coefficientǫ along
the normal direction, resulting in the change of normal
impulse ∆p⊥. In tangential direction it is assumed that
the change of impulse∆p‖ during the hit just reduces the
relative tangential velocityv‖r between ball and end effector
to zero. The tangential impulse also leads to an angular
momentumL‖. Mathematically it can be described by

∆p⊥ = −(1 + ǫ)p⊥,

∆p‖ = −mv‖r = −m(v‖ + ω × r), (19)

∆L‖ = r×∆p‖,

with m as the mass of the ball,r as the vector from the
center of the ball to the contact point,ω as the vectorized
version ofω and the operator× as the pseudo cross product
in 2D. The resulting velocities before and after the hit can
then be related to each other as

v′
⊥ =

1

m
(p⊥ +∆p⊥) = −ǫv⊥,

v′
‖ =

1

m
(p‖ +∆p‖) = −ω × r, (20)

ω′ = ω +
1

Θ
r×∆p‖,

with Θ as the moment of inertia andp⊥ = mv⊥, p‖ = mv‖

as the normal/tangential impulse of the ball before the hit.
Due to the nonlinearity of the projection matricesP‖ and
P⊥, the resulting system of equations (20) has to be solved
numerically for the variablesvxh, vyh,Φh.



t = 0 s t = 0.13 s t = 0.26 s t = 0.39 s

t = 0.53 s t = 0.66 s t = 0.79 s t = 0.93 s

t = 1.06 s t = 1.19 s t = 1.33 s t = 1.46 s

Fig. 5: Frames of the experiment with the human playing against the robot.

IV. EXPERIMENTAL VERIFICATION

Experimental verification of the proposed approach is
performed on a tilted air-table, see Fig. 5. The ball (puck) is
tracked using a Qualisys motion capture system, operating at
a framerate of 250Hz. The robot manipulator’s update rate
is 1kHz. To obtain an optimal trajectory that will be defined
afterwards, the numerical optimal control direct collocation
method DirCol [5] is used. The workspace of the robot
is bounded on each side by a wooden board, constituting
obstacles the robot manipulator must avoid. Due to tight real-
time constraints only one subdivision step is performed in
case the deformed trajectory collides, resulting in trajectory
intervals of 50 ms. Fig. 5 shows the frames for a typical
batting movement of the robot manipulator. The ball is
thrown by a human opponent from the left side and batted
back by the robot manipulator while avoiding the net (yellow
line) in the middle of the table.

A large amount of this paper is dedicated to deriving an
alternative representation for LTE using splines. The main
reason is the reduced computational complexity. Fig. 6 evalu-
ates the improvement through simulations. The computation
time for a single trajectory deformation step for a varied
number of sampling points is shown. All calculations are
performed using an Intel Core2Duo T7500 CPU with 4GM
RAM with Matlab R2010a running under Windows7. For
small trajectories (n < 500) the spline representation is
slower than the straightforward matrix inversion according
to (5) due to the computational overhead of the built-in
Matlab function for calculating splines (csape). For large
trajectories the spline representation is about one magnitude
faster than LTE. When executing the algorithm on the robot,
computation time is further reduced for both methods as the
code is run as an executable C++ program.

The online trajectory deformation is illustrated more in
detail in Fig. 7. Because the time to reach the hit point

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

number of sampling points

p
ro

c
e
s
s
in

g
 t

im
e
 [

s
]

spline representation

Lapl. Traj. Ed.

Fig. 6: Reduced computational complexity using a spline representation.

and the time back to the resting position are similar for all
trajectories (381ms and 673ms), one can see well how the
end effector has to move faster to reach a hit position further
away from the resting position. Although the acceleration
difference to the original trajectory is minimized by using
splines, the absolute acceleration can still become large for
big trajectory deviations in task space. As the acceleration
is coupled to the torques through the dynamical model of
the manipulator, minimizing the acceleration also minimizes
the torques up to a certain extent. This is effect becomes
more dominant for fast movements where the gravitational
term plays a minor role. Fig. 8 illustrates this effect. Shown
on top is a true-to-scale model of the table with an overlaid
contour plot. The color of the contour corresponds to the
maximum end effector acceleration of the robot depending
on the position of the(xh, yh) for the deformed trajectory.
All other parameters like the original trajectory, the angleΦh

and the hit velocity(vxh, vyh) and timeth are kept constant.
The bottom figure shows the maximum joint torque of the
manipulator, illustrating the dependence on the end effector
acceleration.



x [m]

y
 [
m

]

x [m]

y
 [
m

]

Fig. 7: Trajectory deformation for the volleyball scenario.Left side: Multiple possible deformations for a given hit position (blue dots) and start/end position
(red dot) with corresponding velocity along the trajectory(path color). The blue line marks the undeformed reference trajectory calculated with DirCol.
Right side: Collision avoidance scheme using convex hulls (red rectangles) for a given workspace boundary (red line). Rectangular convex hulls were used
here to simplify calculations. As they enclose the trajectory, the trajectory is deformed through the collision avoidance scheme of Sec. II-B such that the
convex hulls do not intersect with any obstacle (green rectangles).

m
a
x
. 
e

n
d

e
f f

e
c
to

r 
a

c
c
e
le

ra
ti
o 

n
 [
m

/ s
2
]

m
a
x
. 
jo

in
t 
to

rq
u
e

 [
N

m
]

6

8

10

12

14

10

15

20

25

Fig. 8: Maximum end effector acceleration and joint torques depending on
the exact hit position in task space. A red dot depicts the hitposition of the
original undeformed trajectory.

V. D ISCUSSION

Experiments show that the presented approach works
reliably and is executed online. Right now only minimum
acceleration deformation is considered in the paper. This is
chosen intentionally as the resulting cubic splines offer a
good tradeoff between generalization and stability without
suffering from oscillations occurring with higher order poly-
nomials. Still it is theoretically possible to use splines of any
degree for the deformation process. For 5-th order splines it
results in minimum jerk deformation, for 7-th order splines
in minimum snap deformation etc. In addition, only one
reference trajectory is deformed. As the experiments show
this becomes problematic if the trajectory deformation gets

large, leading to high end effector accelerations and joint
torques. Another option is to use multiple trajectories and
select the one that needs to be deformed less for hitting
the ball. Yet this raises the question about proper selection
strategies and is thus not further investigated here.

Although not implemented in the current experiment, the
manipulator trajectory can be recalculated every millisecond,
allowing for fast adaptation strategies in case of sudden
disturbances. This is especially important if the air drag can
not be neglected anymore, requiring either a very precise
model of the environment or a continuous recalculation of
the hitting movement.

Whereas large parts of the approach are very stable, we
encounter some problems in finding a proper number of
trajectory intervals for the collision avoidance procedure.
As mentioned before it is a tradeoff between contradicting
objectives, thus manual adjustment is necessary. Even if
the presented collision avoidance scheme has proven to
work reliably for the given scenario, it is unknown how it
behaves in very cluttered environments as convergence of the
collision avoidance algorithm is not proven yet.

VI. CONCLUSION AND FUTURE WORK

This paper presents a novel method for retargeting pre-
viously calculated optimal trajectories online. The approach
can be executed online and in real time together with the
feasibility check on kinematic and dynamic constraints of
the generated trajectories. Special structure of the LTE de-
formation allows to modify separate nodes with preserving,
as much as possible, desired acceleration profile of the pre-
calculated optimal trajectory. Deformation algorithm is used
for avoiding task space obstacles. Simulation results were
experimentally validated with planar volleyball scenario. The
method shows very high repeatability and robustness of the
produced motions in constrained environment.

Future work will be focused on extending the presented
approach to5-th or higher order polynomials to cover a
wider variety of retargeting problems. In addition it is still an
open question whether a collision avoidance algorithm with
guaranteed avoidance can be found for the given trajectory
representation.



APPENDIX

It is stated in Sec. II-A that the term
[
L

P̄

]+ [
0

C̄2

]

, (21)

can be expressed in the continuous domain by a cubic
spline. As the matrixL consists of second order finite
differences along the entire trajectory and the matricesP̄, C̄2

specify waypoints, the term in (21) can then be interpreted
as minimizing the acceleration along the trajectory while
passing a set of waypoints. In the continuous domain this
corresponds to minimizing the accelerationẍ. An optimal
trajectoryxopt is then calculated as

xopt = min
x

I(x) = min
x

1

2

T∫

0

ẍ(t)2dt. (22)

Through the calculus of variation we consider the disturbed
trajectoryx(t) + ǫη with the scalarǫ and η as an arbitrary
function fulfilling the boundary conditions

η(0) = 0, η(T ) = 0,

η̇(0) = 0, η̇(T ) = 0, (23)

This results in

I(x+ ǫη) =
1

2

T∫

0

(ẍ+ ǫη̈)2dt, (24)

dI(x+ ǫη)

dǫ
=

T∫

0

(ẍ+ ǫη̈)η̈dt. (25)

For x to minimizeI(x+ ǫη), the following condition has to
be fulfilled. In all other cases the trajectoryx is not optimal.
Note that we write(i) for the i-th time derivative.

dI(x+ ǫη)

dǫ

∣
∣
∣
∣
ǫ=0

= 0 =

T∫

0

ẍη̈dt =

T∫

0

x(2)η(2). (26)

Through partial integration we obtain

T∫

0

x(2)η(2) = x(2)η(1)
∣
∣
∣

T

0
︸ ︷︷ ︸

=0

−

T∫

0

x(3)η(1) = −

T∫

0

x(3)η(1).

(27)
Applying partial integration another time yields

−

T∫

0

x(3)η(1) = − x(3)η
∣
∣
∣

T

0
︸ ︷︷ ︸

=0

+

T∫

0

x(4)η =

T∫

0

x(4)η, (28)

giving
T∫

0

x(4)η = 0, (29)

as the resulting condition that must hold for any functionη.
This is the case for every function fulfilling

x(4) = 0 ∀t ∈ [0, T ]. (30)

Any third order polynomial of the form

x =

3∑

k=0

akt
k, (31)

fulfills this condition. Note that the proof is a modified
version of the one for minimum jerk trajectories in [17].
Fore more details on the work related to the proof one can
see [18].

ACKNOWLEDGMENT

This work is supported in part within the ERC Ad-
vanced Grant SHRINE Agreement No. 267877 (www.shrine-
project.eu) and in part by the Technische Universität
München - Institute for Advanced Study (www.tum-ias.de),
funded by the German Excellence Initiative.

REFERENCES

[1] K. M. Lynch and M. T. Mason, “Dynamic nonprehensile manipulation:
Controllability, planning and experiments,”International Journal of
Robotics Research, vol. 18, No. 1, pp. 64–92, 1999.

[2] K. M ülling, J. Kober, O. Kroemer, and J. Peters, “Learning to
select and generalize striking movements in robot table tennis,” The
International Journal of Robotics Research, vol. 32, no. 3, pp. 263–
279, 2013.

[3] M. Buehler, D. E. Koditschek, and P. J. Kindlmann, “Planning and
control of robotic juggling and catching tasks,”International Journal
of Robotics Research, vol. vol.13, no.2, pp. pages 101–108, April 1994.

[4] T. Senoo, A. Namiki, and M. Ishikawa, “High-speed battingusing a
multi-jointed manipulator,” inRobotics and Automation. Proceedings.
IEEE Int. Conf. on, vol. 2, pp. 1191–1196, 2004.

[5] O. Von Stryk and M. Schlemmer, “Optimal control of the industrial
robot manutec r3,”Computational optimal control, International series
of Numerical Mathematics, vol. 115, pp. 367–382, 1994.

[6] A. Pekarovskiy and M. Buss, “Optimal control goal manifolds for
planar nonprehensile throwing,”In IEEE/RSJ Int Conf. on Intelligent
Robots and Systems, 2013.

[7] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp:
Gradient optimization techniques for efficient motion planning,” in
IEEE Int. Conf. on Robotics and Automation, pp. 489–494, 2009.

[8] S. Quinlan,Real-time modification of collision-free paths. PhD thesis,
Stanford University, 1994.

[9] A. Pekarovskiy, F. Stockmann, M. Okada, and M. Buss, “Hierarchical
robustness approach for nonprehensile catching for rigid objects,” in
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2014.

[10] J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel,
“Finding locally optimal, collision-free trajectories with sequential
convex optimization.,” inRobotics: Science and Systems, vol. 9, pp. 1–
10, Citeseer, 2013.

[11] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with
nonlinear dynamical systems in humanoid robots,” inIEEE Int. Conf.
on Robotics and Automation, pp. 1398–1403, 2002.

[12] J. Kober, K. Mulling, O. Kromer, C. H. Lampert, B. Scholkopf, and
J. Peters, “Movement templates for learning of hitting and batting,” in
IEEE Int. Conf. on Robotics and Automation, pp. 853–858, 2010.

[13] S. Calinon, E. Sauser, A. Billard, and D. Caldwell, “Evaluation of a
probabilistic approach to learn and reproduce gestures by imitation,”
in IEEE Int. Conf. on Robotics and Automation, pp. 2381–2388, 2010.

[14] K. Yamane and Y. Nakamura, “Dynamics filter - concept and imple-
mentation of online motion generator for human figures,”Robotics
and Automation, IEEE Transactions on, vol. 19, pp. 421–432, June
2003.

[15] T. Nierhoff and S. Hirche, “Fast trajectory replanningusing laplacian
mesh optimization,” in IEEE Int. Conf. on Control, Automation,
Robotics and Vision, 2012.

[16] T. Nierhoff, S. Hirche, and Y. Nakamura, “Variable positional con-
straints for laplacian trajectory editing,” inDGR-Tage, 2013.

[17] T. Flash and N. Hogan, “The coordination of arm movements:An
experimentally confirmed mathematical model,”The Journal of Neu-
roscience, vol. 5, no. 7, pp. 1688–1703, 1985.

[18] G. Wahba,Spline models for observational data, vol. 59. Siam, 1990.


