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Abstract— This paper discusses an online dynamic motion they are limited as they rely on a good initial guess in
generation scheme for nonprehensile object manipulation by order to converge to a feasible solution and are too slow
using a set of predefined motions and a trajectory deformation to find an optimal trajectory online. It makes sense to

algorithm capable of incorporating positional and velocity | timal trol with timizati .
boundary constraints. By creating optimal trajectories offline replace optimai control with optumizafion in Some cases

and deforming them online, computational complexity during due to requirements on algorithm execution time and rate
execution is reduced considerably. As tight convex hulls of of convergence. Gradient optimization methods were imple-
the deformed trajectories can be found, possible obstacles mented for obstacle avoidance based on trajectory sampling
or workspace boundaries can be circumnavigated precisely j, 7] [8] and for robust nonprehensile balancing based
without collision. The approach is verified through experiments - . . . .
on an inclined planar air-table for volleyball scenario using two on p0|y.n°m'a| tra]e(_:tory represeptatlon in [9]. Sequdntla
3-DoF robots. guadratic programming was used instead of gradient descent
for getting better convergence in [10].
|. INTRODUCTION On the other hand, there are learning methods based on

When using a robotic system to manipulate objects, tH@0vement imitation. Here the general idea is to learn some
object is usually grasped firmly to predict and control itrototypic motion offline based on a human demonstration
state precisely during the entire task execution. Yet, thignd adapt the learnt motion online to match the task-specific
approach has also drawbacks as the pose of the objectc@straints. Various methods exist in literature, for eptEmn
limited by the workspace limitations of the robot. AnotherPynamic Movement Primitives as described in [11]. An
option is to manipulate an object without grasping, whictxtension overcoming the prior problem of accounting only
is called nonprehensile manipulation [1]. The advantage for rest-to-rest motions is presented in [12]. By allowing
that the possible workspace can be greatly extended. Typid¥osition and velocities to be specified for a predefined
examples include batting [2] and juggling [3]. All thesekss Point, the approach can be used for general hitting motions.
are either one-off or periodic motions and characterized bfynother option is to use Gaussian Mixture Regression [13]
presence of the f||ght phase and impact point, where dA learn motions through imitation. Still the approaches ar
instantaneous state transition occurs. Due to missing forfily suitable for free space motions as they cannot guagante
or force closure grasp and the short time period where tﬁ@”iSion avoidance. In addition, the fixed number of intdrn
manipulator is in contact with the object, its motion needstates limits the extent of possible deformations.
to be both well planned and precisely executed. Analytical Another method from Yamane and Nakamura [14] pro-
solution for motion planning based on predicted objeciuces physically plausible motions from possibly infetesib
trajectory works for some applications, however they are n@nes, where a trial-and-error procedure is used to find
always available. For instance, Senetoal. [4] analyzed the Proper unilateral force constraints of the contacts wita th
derivation of polynomial solutions for hitting motion with €nvironment. Here calculations are done independently for
refinement of the hitting point based on the high speed visig#very single time step and the resulting motion behavior is

feedback. highly dependent on the choice of the gains.
For creating a feasible trajectory one can distinguish An approach capable of overcoming drawbacks of the
between two main approaches: discussed methods is Laplacian Trajectory Editing [15]-min

On the one hand’ there are numerical 0pt|ma| Contrd'niZing the acceleration deviation to a given referencélpat
methods which recalculate the entire trajectory for ever{firough a least squares approach. Our approach modifies the
new object motion [5], [6]. They can readily incorporate€ntire trajectory with a feasible contact point online - not

constraints required for a successful hitting motion, butiSt a single time step. As the method does not rely on any
kernel/internal state, its resolution is solely limited the
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in the paper we will call them optimal for brevity. If the The key idea of LTE during trajectory deformation is to
amount of deformation is small, the optimality propertiés ocalculate local trajectory properties, resulting in a #ine
undeformed trajectory also hold for the deformed trajgctorsystem of equations. When adding boundary constraints,
up to a certain extent. It is shown that for a specific type ahe resulting overdetermined system of equations can be
deformation tight boundaries of the deformed trajectony casolved using least squares. By introducing weighting facto
be derived, making the approach an ideal choice for motidior each constraint, they can be prioritized to fit the user
adaptation in constrained environments. To achieve aafaderequirements. Note that the acceleration in this paper is
between trajectory similarity and a large deformation, a hijjust a special case of theaplacian coordinatesn [15] for
erarchical collision avoidance approach iteratively éases equitemporally spaced sampling points.
the amount of deformation and varies trajectory segmamtati Only positional constraints of the forrp; = c; are
size until a collision-free trajectory is obtained. considered, pinning a specific sampling pgwtto a desired
The remainder of the paper is as follows: Sec. Il depositionc;. With the weighting factorw it can be rewritten
scribes the trajectory deformation process and the aatfiisi as
avoidance scheme. In Sec. Ill the boundary constraints for wp; =we;, j€{1,2,...,n}. (2)

trajectory deformation are derived through a precise [aysi . L . .
model of the given task. Experiments for a 2D voIIeybaIIertlng everything in matrix form, one obtains

scenario on an inclined air-table are conducted in Sec. IV. L P A 3)
Finally, Sec. V and Sec. VI discuss the presented approach P Cl’
and suggest ideas for further expansion. with
Il. TRAJECTORYDEFORMATION =21 02
1 -2 1 03
For each new motion, initial and end boundary points of, — 1 A= ’
the trajectory are assigned based on the task goal. Once At? 1 _9 1 P
both new target position and velocity are known, a feasible 1 -2 1 5::1
trajectory that moves the robot from a starting position to B B (4)
the target position and back again while avoiding workspacend the matrices® and C accounting for the weighted
constraints has to be found. positional constraints as described in (2). The equation
Whereas in previous papers [5], [6] optimal trajectoriesystem can be solved for the deformed trajecBryas
have been produced with direct collocation method, its +
. : : L L A
high computational complexity and sensitivity towards a P, = [} [} , (5)
L ; : P C
good initial guess are major drawbacks. In contrast, this

paper assumes that optimal trajectories have been cadulausing least squares. For weighting facters> <L the error
beforehand and will be deformed online to meet additional = p; — c; is negligible for practical purposes and can be
requirements. Although giving up the optimality of the dire approximated withe ~ 0.

collocation method, it results in close-to-optimal tragetes Straightforward as it is, the approach is also relatively
if the amount of deformation is small. On the plus sideslow as the least squares solution requires a matrix in-
computational complexity is reduced considerably. Foheaosersion. For a trajectory withm sampling points andp
new motion, initial and end boundary points of the trajegtor positional constraints, the dimension of the mafiid P7]"

are assigned based on the task goal. Once both new targef, + p — 2 x n, making the approach not feasible for real-
position and velocity are known, a feasible trajectory hagme deformation of large trajectories.

to be found that moves the robot from a rest positibrio It is however possible to decompose the solution in (5)
the hit positionB and back again while avoiding workspaceinto two parts as

constraints.

+ +
P.= I,‘ ,A + I,‘ p (6)
A. Deforming Trajectories Through Laplacian Trajectory P Gy P| |Gy’
Editing R o
A generic method for deforming trajectories through a st.C; +C, =C. )

least-squares approach is Laplacian Trajectory Editings- ) - S
sumes that the trajectory consistsoéquitemporally spaced 1hrough an adequate choice of the positional constraints in

sampling  pointsP = [p(t1), p(t2), . .., p(t,)]T € R™ ™, C,, the term{1} results in a sole translation of the original
tiy1 —t; = At Vi€ {1,...,n— 1}. For simplicity, original trajectory P° which can be obtained without the need to
optimal trajectory is denoted aB° = [p?,ps,...,p2]7T. calculate the least squares solution. In the continuousadom

One can then calculate the acceleration along the originf)e €quivalent solution fof2} is a cubic spline interpolation
trajectory for thei-th sampling point through the finite Of the form
difference

3
5 — P71 — 2p7 + pfq. 1) P; = Zaj,ktkv t € [0,1], 8)
At? k=0



for the j-th trajectory interval. A proof is given in the !
Appendix. This way, the equation system to be solved does « "
not consist ofn + p — 2 but only 4(p — 1) variables which X (s v

is advantageous it > p.

B. Collision Detection Using &ier Splines

There are numerous ways to represent a cubic spline curve, v x
for example Ezier splines. In this case one can rewrite (8Zigf- 1 gWO Consegyti;/e_stteps _fotrhsafe kcheck- l\f/liﬂkorvi\)/;kidsui:ﬁm
. . . eformed non-periodic trajectory in the workspace of thetoRed polygon
for the j-th trajectory interval as represents the static obstacle. If the intersection isdaine more refined
segmentation is applied.

3
P, =Y c;xBi(t), 9)
k=0

In case of a collision the boundary sampling pointsof
th iterationp;_1.m,p;m € P; of every trajectory interval
are shifted depending on the maximum intersection depth
B (t) = (Z) 1tk telo,1]. (10) d; ., of the convex hulls as
/
Due to the non-negativity of each Bernstein polynomial for p]_},m B Pj—tm +max(djm, dj-1m).  (13)
t € [0, 1], every pointp € P; is a convex combination of the Pj.m = Pjm +max(d; m, dj+1,m),
control pointsc; ;. This means that the trajectory segmentesulting in the new sampling points positi@j_Lm,pj,m,
P; always stays within the convex hull of its control points.see Fig. 2. The shifting process is then repeated until a
It is thus possible to find convex hulleonv({1}) and collision-free trajectory is obtained.
conv({2}) both for{1} and for{2}. The convex hull of the
deformed trajectory{1} + {2} is then bounded from above

by

with the weighting factorsc;; and Bj(t) as Bernstein
polynomials

conv({1} +{2}) <
conv({1} ® {2}) = conv({1}) ® conv({2}), (11)

Obstacle

where the operato® denotes the Minkowski sum of two Pj-2.m

Pj+2,m
convex hulls. It is also possible to calculate the convex hul N / djoim X =7 _;;’7- ~< R
based onconv({1} + {2}) without using the Minkowski Original D o S
. L . & 7 Pjitim A
sum. Although generally resulting in tighter bounds, it is New I{, P
j—2,m Jj+2,m

not applicable for real-time deformations of large trapeigts - ) ) ) ) )
Fig. 2: Shifting the segmentation points (orange circles}ide of the static

due to itsO(nlog(n)) complexity. Yet the MinkoWSki SUM  gpstacle (red line). The new deformed trajectory is depiatisd the dashed
enables one to calculatenv({1}) andconv({2}) indepen- line.

dently. Knowing that the ternfil} is a sole translation of the

original trajectory, the convex hull of the original trajery When subdividing the trajectory, two contradicting objec-
is calculated offline and just has to be shifted accordingly ttives have to be fulfilled: On the one hand, we want the gran-
obtain conv({1}). The convex hullconv({2}) is given by ularity as fine as possible (many trajectory intervals) iteor

the four control points of the associate@#ser curve. to let the resulting convex hull be as tight as possible. On
the other hand, a coarse granularity reduces computational
complexity and leads to smoother deformations. A viable
tradeoff is found by iteratively subdividing the trajector

Having calculated the convex hull of the deformed trajecang performing a number of shifting operations after each
tory, collisions are detected. Unfortunately, the Minkews sypdgivision until a collision-free trajectory is obtained

sum provides rather conservative bounds of the deformed
trajectory, detecting collisions even if the underlyingjéc- I1l. I MPACT MODELING
tory is non-colliding. To overcome the problem, the origina In this paper, we present a scenario that shows full
trajectory is iteratively split into smaller trajectorytémvals dynamic capability of the introduced method by tackling
for which a new convex hull is calculated. Through Jensenthe problem of playing planar volleyball against a human
inequality it can be proven that if a trajectory intenBy is  with a planar 3DOF robot, see Fig. 3. Note that only the
split up into two smaller interval®P; ; andP; », itis for the planar case is considered, although the entire approach can
resulting convex hull be readily extended to the three-dimensional case. For the
robot, the task consists of hitting an incoming volleybaltis
conv(P;) = conv(Pj 1) + conv(Py2), (12) " that the ball flies over the netg(in orange) gnd Ia%ds in the
thus subdividing the trajectory generally results in teght opponent’s field (in green). When modeling the impact of the
convex hulls, see Fig. 1. ball one has to find the full state vector of the end effector

C. Hierarchical Collision Avoidance Through Iterative Sub
division



for the desired ball motion, described by the hit positiorhit as

(zn,yn) along the table, the fixed end effector an@lg and o Van v Van
its translational velocity(v,,, vys). vi=P, ({uy] B {vth s VI =Py quj B [vth ’

Under the influence of gravity the ball moves along a | " Vo ) " Vo
(1 oo R (A ol

parabolic trajectory described by vl Vyh vz Vyh

h = 0 + Vaolh with the projection matrice® ; , P depending on the end

1
Yn = Yo + vyotn — igmt%” (14) effector angle® as

_ . T .
where ¢g,, = gsina is a modified gravity on the surface P = [cos(®n) sin(@p)]" [cos(®n) sin(Pn)],

of the air table tilted at an angla. By representing the P, =1-P. (18)
workspace constraints of the 3R robot by a circle, th
intersection point(z, yp) for hitting the ball at timet;, is
found by solving (14) subject to the constraint

%ig. 4 gives a detailed illustration of the impact model.

(th - -rc)Q + (yh - yc)2 - TE =0, (15)

with workspace-dependent variables, y., r.. The velocity
of the ball immediately before the hit is denoted (ay,, v,)
and the rotational speed hy.

To find the remaining unknowns, one has to specify the
velocities (v;, v,) andw’ immediately after the hit. In the
absence of disturbances, the ball moves similar to (14) on a
parabolic trajectory after the hit. By defining two waypaint

(xz1,y1) and(z2,y2) along the parabola the ball has to pass,

one can solve the resulting system of equations Fig. 4: Impact model between the flat end effector and the ball.
1 = ) + Vit The hit between ball and end effector is modeled as a
, 1, partially elastic collision with restitution coefficiemtalong
Y1 ="Yn+ vyt — §9mt17 the normal direction, resulting in the change of normal
Ty = T + Vst (16) impulse Ap,. In tangential direction it is assumed that
1 the change of impulsép during the hit just reduces the
Y2 = Yn + v;tQ - §gmt§7 relative tangential velocity, between ball and end effector

to zero. The tangential impulse also leads to an angular
for the four unknownsl,tg,v;,v;. The variableg; andt;  momentumL;. Mathematically it can be described by

denote the time when passing the two waypoints.
Ap, =—(1+¢€)py,

Ap” =-—mv), = —m(VH + w X I'), (29)
AL =r x Apy,
l Im Uyo ) —>— ~ - . ” H
- @1,) 4 -7 with m as the mass of the balt, as the vector from the
v / V0 A,,,,,;,,% &/ AN . .
(oys)  h V/({T\}i\;}yh) o center of the ball to the contact point, as the vectorized
X /7 @y version ofw and the operatox as the pseudo cross product
b2 in 2D. The resulting velocities before and after the hit can
Human player then be related to each other as
1
vio= E(pi +Ap1) = —evy,
1
Vi = —(p+Ap)) = -—wxr, (20)
, 1
Fig. 3: Scenario overview. w = w4+ 61‘ X Ap“7

. . . with © as the moment of inertia a = , P =
Knowing the state of the ball immediately before and afte Wl =mv.,py =my

the hit, one can derive the required end-effector angle ar%d; the normal/tqngen_tial impulse (.)f the ball bfefore the hit
velocity during the hit. To do so the ball velocities are firsoue to the nonlinearity of the projection matricey and
decomposed into relative normal components, v/, and P, the resulting system of equations (20) has to be solved
relative tangential componentq,vh before and after the numerically for the variables,,, vy, ®p,.
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Fig. 5: Frames of the experiment with the human playing agahestabot.

IV. EXPERIMENTAL VERIFICATION 10

= Spline representation
| | w— ] ap|. Traj. Ed.

Experimental verification of the proposed approach is
performed on a tilted air-table, see Fig. 5. The ball (puek) i
tracked using a Qualisys motion capture system, operating a
a framerate of 250Hz. The robot manipulator's update rate
is 1kHz. To obtain an optimal trajectory that will be defined
afterwards, the numerical optimal control direct collogat
method DirCol [5] is used. The workspace of the robot ‘ ‘ ‘
is bounded on each side by a wooden board, constituting 10° 10° 10* 10°
obstacles the robot manipulator must avoid. Due to tight rea number of sampling points
time constraints only one subdivision step is performed inFig. 6: Reduced computational complexity using a spline s &tion.
case the deformed trajectory collides, resulting in titajgc
intervals of 50 ms. Fig. 5 shows the frames for a typical
batting movement of the robot manipulator. The ball is
thrown by a human opponent from the left side and batteghd the time back to the resting position are similar for all
back by the robot manipulator while avoiding the net (yellowrajectories (381ms and 673ms), one can see well how the
line) in the middle of the table. end effector has to move faster to reach a hit position furthe

A large amount of this paper is dedicated to deriving aaway from the resting position. Although the acceleration
alternative representation for LTE using splines. The maigifference to the original trajectory is minimized by using
reason is the reduced computational complexity. Fig. 6ievalsplines, the absolute acceleration can still become lavge f
ates the improvement through simulations. The computatidsig trajectory deviations in task space. As the accelanatio
time for a single trajectory deformation step for a varieds coupled to the torques through the dynamical model of
number of sampling points is shown. All calculations arehe manipulator, minimizing the acceleration also miniesiz
performed using an Intel Core2Duo T7500 CPU with 4GMhe torques up to a certain extent. This is effect becomes
RAM with Matlab R2010a running under Windows7. Formore dominant for fast movements where the gravitational
small trajectories 7( < 500) the spline representation is term plays a minor role. Fig. 8 illustrates this effect. Show
slower than the straightforward matrix inversion accogdinon top is a true-to-scale model of the table with an overlaid
to (5) due to the computational overhead of the built-icontour plot. The color of the contour corresponds to the
Matlab function for calculating splines (csape). For largenaximum end effector acceleration of the robot depending
trajectories the spline representation is about one madit on the position of thex;,,y;,) for the deformed trajectory.
faster than LTE. When executing the algorithm on the roboRll other parameters like the original trajectory, the ang},
computation time is further reduced for both methods as thend the hit velocity(v,.,, v,,) and timet;, are kept constant.
code is run as an executable C++ program. The bottom figure shows the maximum joint torque of the

The online trajectory deformation is illustrated more inmanipulator, illustrating the dependence on the end effect
detail in Fig. 7. Because the time to reach the hit poinacceleration.

processing time [s]
S
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Fig. 7: Trajectory deformation for the volleyball scenatieft side: Multiple possible deformations for a given hit fims (blue dots) and start/end position
(red dot) with corresponding velocity along the traject@path color). The blue line marks the undeformed referengectary calculated with DirCol.
Right side: Collision avoidance scheme using convex hudld (ectangles) for a given workspace boundary (red linedtaRgular convex hulls were used
here to simplify calculations. As they enclose the trajgcttire trajectory is deformed through the collision avoidascheme of Sec. II-B such that the
convex hulls do not intersect with any obstacle (green regés).

\ large, leading to high end effector accelerations and joint
torques. Another option is to use multiple trajectories and
12 select the one that needs to be deformed less for hitting
10 the ball. Yet this raises the question about proper selectio
strategies and is thus not further investigated here.
Although not implemented in the current experiment, the
manipulator trajectory can be recalculated every miltiset;
allowing for fast adaptation strategies in case of sudden
disturbances. This is especially important if the air drag c
not be neglected anymore, requiring either a very precise
model of the environment or a continuous recalculation of
the hitting movement.
o s s s s Whereas large parts of the approach are very stable, we
N 25 encounter some problems in finding a proper number of
trajectory intervals for the collision avoidance procedur
As mentioned before it is a tradeoff between contradicting
15 objectives, thus manual adjustment is necessary. Even if
the presented collision avoidance scheme has proven to
10 work reliably for the given scenario, it is unknown how it
behaves in very cluttered environments as convergenceof th
collision avoidance algorithm is not proven yet.

max. endeffector acceleration [m/s?]

20

max. joint torque [Nm]

vl

VI. CONCLUSION AND FUTURE WORK

Fig. 8: Max_imum _end‘ effector acceleration and jo!nt torque_pe_mding on This paper presents a novel method for retargeting pre-
f)hr?gﬁ]ﬁcjnh&?;;meodnt'rgjfcstlgé?ace' A red dot depicts thedsition of the viously calculated optimal trajectories online. The auto
can be executed online and in real time together with the
feasibility check on kinematic and dynamic constraints of
the generated trajectories. Special structure of the LTE de
formation allows to modify separate nodes with preserving,
Experiments show that the presented approach works much as possible, desired acceleration profile of the pre-
reliably and is executed online. Right now only minimumcalculated optimal trajectory. Deformation algorithm &ed
acceleration deformation is considered in the paper. This for avoiding task space obstacles. Simulation results were
chosen intentionally as the resulting cubic splines offer experimentally validated with planar volleyball scenarfibe
good tradeoff between generalization and stability withoumethod shows very high repeatability and robustness of the
suffering from oscillations occurring with higher orderlypo produced motions in constrained environment.
nomials. Still it is theoretically possible to use splindsny Future work will be focused on extending the presented
degree for the deformation process. For 5-th order splinesdpproach to5-th or higher order polynomials to cover a
results in minimum jerk deformation, for 7-th order splineswider variety of retargeting problems. In addition it idlsin
in minimum snap deformation etc. In addition, only oneopen question whether a collision avoidance algorithm with
reference trajectory is deformed. As the experiments shoguaranteed avoidance can be found for the given trajectory
this becomes problematic if the trajectory deformatiorsgetrepresentation.

V. DISCUSSION



APPENDIX Any third order polynomial of the form

It is stated in Sec. lI-A that the term 3
L' o z=> at", (31)
e e

) _ ) fulfills this condition. Note that the proof is a modified
can be expressed in the continuous domain by a Cubigsion of the one for minimum jerk trajectories in [17].

spline. As the matrixLi consists of second order finite rqre more details on the work related to the proof one can
differences along the entire trajectory and the matrRe€> g0 [18].

specify waypoints, the term in (21) can then be interpreted

as minimizing the acceleration along the trajectory while ACKNOWLEDGMENT
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