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Abstract— Sampling-based motion-planning algorithms typi-
cally rely on nearest-neighbor (NN) queries when constructing
a roadmap. Recent results suggest that in various settings NN
queries may be the computational bottleneck of such algo-
rithms. Moreover, in several asymptotically-optimal algorithms
these NN queries are of a specific form: Given a set of points
and a radius r report all pairs of points whose distance is at
most r. This calls for an application-specific NN data structure
tailored to efficiently answering this type of queries. Randomly
transformed grids (RTG) were recently proposed by Aiger et
al. [1] as a tool to answer such queries and have been shown
to outperform common implementations of NN data structures
in this context. In this work we employ RTG for sampling-
based motion-planning algorithms and describe an efficient
implementation of the approach. We show that for motion-
planning, RTG allow for faster convergence to high-quality
solutions when compared with existing NN data structures.
Additionally, RTG enable significantly shorter construction
times for batched-PRM variants; specifically, we demonstrate
a speedup by a factor of two to three for some scenarios.

I. INTRODUCTION AND RELATED WORK

Given a robot moving in an environment cluttered with
obstacles, motion-planning (MP) algorithms are used to effi-
ciently plan a path for the robot, while avoiding collision with
the obstacles [2]. A common approach is to use sampling-
based algorithms, which abstract the robot as a point in a
high-dimensional space called the configuration space (C-
space) and plan a path in this space. A point, or a configura-
tion, in the C-space represents a placement of the robot that
is either collision-free or not, subdividing the C-space X
into the sets Xfree and Xforb, respectively. The structure of
the C-space is then studied by constructing a graph, called
a roadmap, that approximates the connectivity of Xfree. The
nodes of the graph are collision-free configurations sampled
at random. Two (nearby) nodes are connected by an edge if
the straight line connecting their configurations is collision-
free as well.

Sampling-based MP algorithms are implemented using
two primitive operations: Collision detection (CD), which is
used to asses if a configuration is collision-free or not, and
Nearest neighbor (NN) search, which is used to efficiently
return the neighbor (or neighbors) of a given configuration.
The CD operation is also used to test if the straight line
connecting two configurations lies in Xfree—a procedure
referred to as local planning. While in theory the cost of
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NN exceeds that of local planning, in practice it is the latter
that is the main computational bottleneck in sampling-based
MP algorithms [2].

However, recent results (e.g. [3], [4], [5]) suggest that this
may not always be the case. By carefully replacing many
expensive calls to the local planner with NN queries, one
may reduce the running time of different sampling-based
MP algorithms. As a result, the computational overhead of
NN queries plays a significant role in the running time of
these algorithms. Moreover, existing algorithms that ensure
asymptotic optimality1 such as PRM* [6], FMT* [7] and
MPLB [4] or asymptotic near-optimality2 (such as ANO-
MPLB [4]) can make use of all-pairs r-nearest-neighbors
queries. That is, given a set P of n points and a radius
r = r(n) report all pairs of points p, q ∈ P such that
the distance between p and q is at most r. This calls for
application-specific NN data structures tailored to efficiently
answering this type of queries. Many implementations of
efficient NN data structures exist, e.g., ANN [8], FLANN [9],
and E2LSH [10]. However, none of the above methods is
tailored for these very specific NN queries that arise in the
context of these motion-planning algorithms.
Contribution and paper organization. This paper adopts
Randomly Transformed Grids (RTG), an algorithm by
Aiger et al. [1] for finding all-pairs r-nearest-neighbors,
to sampling-based MP algorithms. We begin by identify-
ing which algorithms can make use of all-pairs r-nearest-
neighbors and review them in Section II. Specifically, we dis-
cuss the subtleties of using them in an anytime mode versus a
batch mode. After an overview of existing NN data structures
we present in Section III the RTG algorithm together with
a description of our efficient implementation (which will
be publicly available, together with additional experimental
results in our web-page3). We then proceed with a series of
experimental results comparing our implementation with dif-
ferent state-of-the-art implementations of NN data structures
and show the speedup that is obtained by using our RTG
implementation for all-pairs r-nearest-neighbors queries. To
test the affect of RTG in MP algorithms, we present a series
of simulations demonstrating that RTG allows to speed up the

1An algorithm is said to be asymptotically optimal, if the cost of the
solution produced by the algorithm asymptotically approaches the cost of
the optimal solution. The notion of cost depends on the problem at hand and
may be, e.g., path length, energy consumption along the path or minimal
distance from the obstacles.

2An algorithm is said to be asymptotically near-optimal, if given an
approximation factor ε, the cost of the solution produced by the algorithm
approaches a cost within a factor of (1 + ε) of the optimal solution.

3http://acg.cs.tau.ac.il/projects/rtg
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construction time of PRM-type roadmaps, the time to obtain
an initial solution or to converge to high-quality solutions
in complex scenarios. For example, the construction time
of PRM-type roadmaps in certain scenarios is reduced by a
factor of between two and three. We conclude in Section V
with a discussion of the current limitations of our approach
together with suggestions for possible future work.

II. PRELIMINARIES

We first review several sampling-based MP algorithms that
can rely on NN queries of type all-pairs r-nearest-neighbors.
We then continue to discuss existing NN data structures.

A. Sampling-based motion-planning algorithms

Throughout this subsection we use the following proce-
dures, which are standard procedures used in sampling-base
MP algorithms. sample free(n) is a procedure returning
n random free configurations. nearest neighbor(x, V )
and r-nearest neighbors(x, V, r) return the nearest
neighbor and all nearest neighbors in a ball of radius r of
x within the set V , respectively. Let steer(x, y) return
a configuration z that is closer to y than x is. The pro-
cedure collision free(x, y) tests whether the straight-
line segment connecting x and y is contained in Xfree, and
dist(x, y) returns the Euclidean distance of the straight-
line path connecting x and y. Let us denote by costG(x)
the minimal cost4 of reaching a node x from xinit using a
roadmap G.

We begin by discussing the subtle difference between
batch and anytime MP algorithms. We refer to an algorithm
as a batch algorithm if it processes a predefined number of
samples n in one go. An algorithm is said to be anytime if it
refines its solution as time progresses and may be run for any
given amount of time. Observe that efficiently computing all-
pairs r-nearest-neighbors is intrinsically a batch operation.
We briefly describe a scheme to easily modify a batch
algorithm into an anytime one (see, e.g., [11]). First, run
the algorithm on an initial (small) set of n samples. Then,
as long as time permits, double n and re-run the algorithm
using the larger n. This way we obtain anytime algorithms,
which rely on all-pairs r-nearest-neighbors—this in turn
makes them amenable to the optimization that we propose
in this paper. We note that between iterations, additional
optimizations such as pruning, informed sampling [12], using
lower bounds [4] or relaxing optimality [13] may be applied.

Arguably, the best-known MP algorithm that makes use of
all-pairs r-nearest-neighbors is PRM* [6]. PRM*, outlined in
Alg. 1, is a multi-query, batch, asymptotically-optimal algo-
rithm that maintains a graph data structure as its roadmap. It
samples n collision-free configurations which are the vertices
of the roadmap (line 1). Two configurations are connected by
an edge if their distance is less than r(n) and if the straight-
line connecting them is collision-free (lines 2-5). Specifically,

4In this paper, unless stated otherwise, we use Euclidean distance as the
cost function.

Algorithm 1 PRM* (n)
1: V ← {xinit}∪sample free(n); E ← ∅; G ← (V,E)
2: for all (x, y ∈ V ) do
3: if (dist(x, y) ≤ r(n)) then
4: if (collision free(x, y)) then
5: E ← E ∪ (x, y)

the radius used [6] is

rPRM∗ = 2

[(
1 +

1

d

)
·
(
µ(Xfree)

ζd

)
·
(

log n

n

)]1/d
, (1)

where d is the dimension, µ(Xfree) is the volume of the free
space and ζd is the volume of a d-dimensional sphere of
radius 1.

To reduce the number of calls to the local planner, one
can delay local planning to the query phase and test if
two neighbors are connected only if they potentially lie
on the shortest path to the goal. This lazy approach was
originally suggested for the PRM algorithm [14]. We apply
this approach to the aforementioned batched PRM* and call
it LazyB-PRM*. Somewhat similarly, Luo and Hauser [5]
have recently proposed an anytime, single-query variant for
PRM* called Lazy-PRM* that relies on dynamic shortest
path algorithms to efficiently update the roadmap.

Janson and Pavone [7] introduced the Fast Marching Tree
algorithm (FMT*). The single-query asymptotically-optimal
algorithm, outlined in Alg. 2, maintains a tree as its roadmap.
Similarly to PRM*, FMT* samples n collision-free nodes
V (line 1). It then builds a minimum-cost spanning tree
rooted at the initial configuration by maintaining two sets
of nodes H,W such that H is the set of nodes added to the
tree that may be expanded and W is the set of nodes not in
the tree yet (line 2). It then computes for each node the set
of nearest neighbors5 of radius r(n) (line 4). The algorithm
repeats the following process: the node z with the lowest
cost-to-come value is chosen from H (line 5 and 17). For
each neighbor x of z that is not already in H , the algorithm
finds its neighbor y ∈ H such that the cost-to-come of y
added to the distance between y and x is minimal (lines 8-
10). If the local path between y and x is free, x is added
to H with y as its parent (lines 11-13). At the end of each
iteration z is removed from H (line 14). The algorithm
runs until a solution is found or there are no more nodes
to process. The algorithm, together with its bidirectional
variant [15], were shown to converge to an optimal solution
faster than PRM* and RRT* [6]. The radius used by the
FMT* algorithm [7] is

rFMT∗ = 2(1 + η)

[(
1

d

)
·
(
µ(Xfree)

ζd

)
·
(

log n

n

)]1/d
, (2)

5The nearest-neighbor computation can be delayed and performed only
when needed but we present the batched mode of computation to simplify
the exposition. The delayed variant makes use of multiple r-nearest neigh-
bors queries while the batched-mode variant makes use of all-pairs r-nearest
neighbors queries.
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Algorithm 2 FMT* (xinit, n)

1: V ← {xinit} ∪ sample free(n); E ← ∅; T ← (V,E)

2: W ← V \ {xinit}; H ← {xinit}
3: for all v ∈ V do
4: Nv ← nearest neighbors(V \ {v}, v, r(n))
5: z ← xinit
6: while z /∈ XGoal do
7: Hnew ← ∅; Xnear ←W ∩Nz

8: for x ∈ Xnear do
9: Ynear ← H ∩Nx

10: ymin ← arg miny∈Ynear{costT (y) + dist(y, x)}
11: if collision free(ymin, x) then
12: T .parent(x)← ymin
13: Hnew ← Hnew ∪ {x}; W ←W \ {x}
14: H ← (H ∪Hnew) \ {z}
15: if H = ∅ then
16: return FAILURE
17: z ← arg miny∈H{costT (y)}
18: return PATH

where η > 0 is some small constant. Moreover, Janson and
Pavone show that PRM* can also use the (smaller) radius
defined in Eq. 2 while maintaining its asymptotic optimality.

Recently, we proposed a scheme to compute tight, ef-
fective lower bounds on the cost to reach the goal [4].
Incorporating these bounds with the FMT* algorithm, we
introduced Motion Planning using Lower Bounds or MPLB.
The algorithmic tools used by MPLB cause the weight of
collision-detection to be negligible when compared to NN
calls. Some of the experimental results suggest that more
than 40% of the running time of the algorithm is spent on
NN queries. MPLB uses the same radius as FMT* (Eq. 2).

Both FMT* and MPLB perform r-nearest-neighbors
queries for a subset of the input points (we call this multiple
r-nearest-neighbors queries). On the other hand, the NN
data structure we propose to use answers only all-pairs r-
nearest-neighbors queries. This can easily be addressed by
performing an all-pairs r-nearest-neighbors query once, and
storing all such pairs. Multiple r-nearest-neighbors queries
are then reduced to querying the stored set of pairs and
returning the relevant ones. Clearly, this will only be efficient
when the number of multiple r-nearest-neighbors queries is
large. As demonstrated in Section IV this is indeed the case.

RRT* [6] is a single-query asymptotically-optimal vari-
ant of the RRT algorithm [16]. We first outline the RRT
algorithm (lines 1-7 of Alg. 3) and then continue describing
the RRT* algorithm together with a variant which we call
batched-RRT*. The RRT algorithm maintains a tree as its
roadmap. At each iteration a configuration xrand is sampled
at random (line 3). Then, xnearest, the nearest configuration
to xrand in the roadmap is found (line 4) and extended in
the direction of xrand to a new configuration xnew (line 5).
If the path between xnearest and xnew is collision-free, then
xnew is added to the roadmap (lines 6-7).

RRT* follows the same steps as the RRT algorithm but has

Algorithm 3 RRT* (xinit, n )
1: V ← {xinit}; E ← ∅; T ← (V,E)
2: for i = 1 . . . n do
3: xrand ← sample free()
4: xnearest ← nearest neighbor(xrand, V )
5: xnew ← steer(xnearest, xrand)
6: if (collision free(xnearest, xnew)) then
7: V ← V ∪{xnew}; T .parent(xnew)← xnearest

8: Xnear ← r-nearest neighbors(xnew, V, n)
9: for all (xnear, Xnear) do

10: rewire RRT∗(xnear, xnew )
11: for all (xnear, Xnear) do
12: rewire RRT∗(xnew, xnear )

Algorithm 4 rewire RRT∗(xpotential parent, xchild)
1: if (collision free(xpotential parent, xchild)) then
2: c← dist(xpotential parent, xchild)
3: if (costT (xpotential parent) + c < costT (xchild))

then
4: T .parent(xchild)← xpotential parent

an additional stage after an edge is added to the tree (lines
8-12 of Alg. 3): a set Xnear of the r-nearest neighbors of
xnew is considered and a rewiring step (see Alg. 4) occurs
twice: first, it is used to find the node xnear ∈ Xnear which
will minimize the cost to reach xnew; then, the procedure
is used to attempt to minimize the cost to reach every node
xnear ∈ Xnear by considering xnew as its parent. We note
that RRT* uses two types of NN queries: both nearest-
neighbor and multiple r-nearest neighbors. Moreover, the
original formulation of RRT* [6] uses at step i a radius of
rRRT∗(i) where

rRRT∗(i) =

[(
2

(
1 +

1

d

))
·
(
µ(Xfree)

ζd

)
·
(

log i

i

)]1/d
.

(3)
However, to ensure asymptotic optimality, a radius of r(n)
may be used at each stage of the algorithm (see proof of
Thm. 38 in [6]).

We propose a batch variant of RRT* that stems from the
FMT* framework. Instead of using n uniformly sampled
configurations, one may use the n nodes constructed by an
RRT algorithm and build the FMT*-tree using these nodes.
This variant benefits from (i) the fast exploration of the
configuration space due to the Voronoi-bias that RRT has and
(ii) the efficient construction of the shortest-path spanning
tree due to the Dijkstra-like pass that FMT* has. We call
this variant batched-RRT*.

We summarize the different algorithms in Table I together
with the type of NN queries that they use.

B. Review of existing nearest-neighbor data structures

As nearest-neighbors search is widely used in various do-
mains there exists a wide range of methods allowing efficient

3



TABLE I
List of algorithms that use r-nearest neighbors queries.

Algorithm NN queries used Comments
PRM* all-pairs r-NN Multi-query
LazyB-PRM* all-pairs r-NN Multi-query

All-pairs variant exists
FMT* multiple r-NN Single-query

All-pairs variant exists
MPLB multiple r-NN Single-query, anytime

nearest neighbor All-pairs variant exists
batched-RRT* multiple r-NN

proximity queries, differing in their space requirement and
time complexity. Such methods include the kd-trees [17],
[18], geometric near-neighbor access trees (GNAT) [19],
locality sensitive hashing (LSH) [20], and others [21].
kd-trees, which work best for rather low dimensions,

are often used in motion-planning settings. A kd-tree is a
binary tree storing the input points in its leaves, where each
node v defines an axis-aligned hyper-rectangle containing
the points stored in the subtree rooted at v. Given a query
point q, NN search is performed in two phases: the first
locates the leaf node with the hyper-rectangle containing q,
and the second traverses the tree backwards searching for
closer sibling nodes. Given a d-dimensional point set of
size n, construction takes O(dn log n) time. Friedman et
al. [18] showed that under mild assumptions the expected
time for a single nearest-neighbor query is O(log n). For r-
nearest-neighbors queries, the expected complexity is at least
Ω(log n + k), where k is the number of reported neighbors
(the worst-case bounds are much worse [22]).

Another recursive structure that is frequently used in
motion-planning algorithms is GNAT. The input point set
is recursively divided into smaller subsets and each subset is
then represented using a subtree. Searching the structure is
done recursively, while the recursion call continues to child
nodes that have not yet been pruned. As claimed in [19],
typically only linear space is required and the construction
takes O(dn log n) time.

A common practice for speeding up algorithms that use
NN queries but do not require exact results (such as MP
algorithms) is to use approximate NN queries. Different types
of approximate r-nearest-neighbors methods exists: some
(e.g., [8]) return with high probability most neighbors of a
given query point q, while others return a neighbor within
a distance r(1 + ε) if a neighbor at distance of at most r
from q exists.

Locally sensitive hashing (LSH), presented by Indyk and
Motwani [20], is an approximate nearest-neighbor method
for d-dimensional point sets. As opposed to many other
methods, its O(dn

1
1+ε ) query time does not depend expo-

nentially on the dimension. LSH uses a subset of t hash
functions from a family of locally sensitive hash functions for
mapping the data into buckets. That is, with high probability
two close points will be mapped to the same bucket. Given
a query point q, the algorithm maps q using the set of hash
functions to a set of buckets and collects all data points that

Algorithm 5 Randomly Shifted Grids (P, r, c,m )
1: for i ∈ {1 . . .m} do
2: Choose a random shift for a grid of cell size c
3: U ← ∅
4: for all p ∈ P do
5: Compute the grid cell u that p lies in
6: Associate p to u
7: U ← U ∪ {u}
8: for all u ∈ U do
9: Go over all pairs of points in u and report those of

Euclidean distance at most r

were mapped to these buckets. The required neighbor is then
found within this set of collected candidates.

An algorithm for finding all nearest-neighbors in a given
fixed d-dimensional point set under the L∞-metric was
originally presented by Lenhof and Smid [23]. The algorithm
uses a fixed uniform grid for inspecting pairs of points that
lie in the same grid cell or in two adjacent ones. Its time
complexity is linear in both the input size and the output
size. A simplified variant was later presented by Chan [24].

III. RANDOMLY TRANSFORMED GRIDS (RTG)

Aiger et al. [1] suggest two simple randomized algorithms
for approximately answering all-pairs r-nearest-neighbors
queries given a set P of n points in a d-dimensional
Euclidean space.

The first algorithm, outlined in Alg. 5, conceptually places
a d-dimensional axis-parallel grid of cell size6 c, which is
shifted according to a randomly chosen uniform shift (line 2).
This grid defines a partition of the points in P into cells, and
each point is associated to the cell u containing it (lines 4-
7). For each non-empty grid cell, the distance between every
two points associated to the cell is computed. A pair inside
a cell is then reported if the computed distance is at most r
(lines 8-9). The process is repeated m times to guarantee
that, with high probability, most pairs of points at Euclidean
distance at most r will be reported. The second algorithm
follows the same approach adding a random orientation to
each randomly shifted grid.

Assuming a constant-cost implementation of the floor
function and of hashing, Aiger et al. [1] show that for
appropriate choices of c and m, with high probability, the
algorithm reports every pair at distance at most r with time
O((n+k) log n), where k is the number of pairs at distance at
most r. Note that the hidden constant depends exponentially
on the dimension d. When only randomly shifted grids are
used, the constant is roughly (.484

√
d)d. However, when

both rotations and translations are used, it is roughly 6.74d.
For input sets lying in a subset of the space that has low
doubling dimension, much tighter bounds can be obtained.

6 The cell size c should be slightly larger than the radius r. Thus, to
specify the cell size, one needs to specify a constant, which we call the
cell-size factor, c̃(r, d) > 1, such that c = c̃ · r.
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We next discuss the effect of the algorithm’s parameters,
outline several tradeoffs, and describe an efficient implemen-
tation of the algorithm.

A. The key parameters

RTG requires the user to set the cell size c and the
number m of randomly shifted grids. These two parameters
have a major impact on the performance of the algorithm.
When a very small c or m is used, the set of reported pairs
might be small compared to the true number of neighboring
pairs. However, when a large value of c is used, the algorithm
may output the whole set of true neighbors at the cost of per-
forming several inefficient brute-force searches. Obviously,
the more iterations performed (larger m) the better the results
are. Therefore, a tradeoff between the running time and the
quality of the results exists, and any subtle change to either c
or m may affect both measures. Experiments supporting this
observation are detailed in Subsec. IV-A.

B. Implementation details

Implementing the algorithm in a naı̈ve manner is straight-
forward. One has to store the non-empty cells and their
associated points. All pairs of points within a cell are
examined in a brute force manner, computing the distance
of a pair in O(d) time and reporting the pair if relevant.

Note that a certain pair of points may be associated to
the same cell in several different grids. Thus, in order to
report every neighboring pair only once, an auxiliary data
structure for storing the already reported pairs is needed. If
such a structure allows efficient query operations as well as
efficient insertions, it can be utilized to avoid costly distance
computations by filtering out many potential pairs. As a
result, the running time of the algorithm can be significantly
reduced at the cost of storing the auxiliary pairs structure.

Let P = {p1, . . . , pn} be the set of input points. A possi-
ble auxiliary structure would be an array of unordered sets,
where the ith cell of the array stores all indices j > i such
that (pi, pj) is a reported pair. The space complexity of such
a structure is linear in the size of the output (the number of
reported pairs), whereas the expected query time and update
time are constant. On the other hand, one can use a different
auxiliary structure, whose space complexity is O(n2), and
experience much better query and update times. For instance,
a bit array representing a two-dimensional matrix, where the
cell (i, j) is set to one if the pair (pi, pj) is a reported pair,
is a possible structure (notice that only half of the array
needs to be stored due to symmetry). It supports constant-
time insert and constant-time query operations. Nevertheless,
both the space and the query time complexity do not depend
on the output size. However, such a solution is restricted to
a limited number of input points, depending on the machine
on which the query is executed. We refer to this structure as
a flattened two-dimensional bit array.

Our C++ implementation supports either auxiliary data
structures discussed. The array of unordered sets is imple-
mented as a vector of boost::unordered set-s, while
boost::dynamic bitset is used for implementing the

flattened bit-array [25]. Although the latter typically exhibits
running times that are twice as fast as the former (for
dimensions six and above), it is highly non-scalable with
respect to memory consumption, thus only applicable to
settings where a limited number of samples is required. In
the rest of the paper we report on results of the first variant
only, namely an array of unordered sets.

As we construct one grid at a time, and since each new grid
may introduce new neighboring pairs, the pairs are reported
in an unordered manner. Therefore, only all-pairs r-nearest-
neighbors queries are supported. Yet, the structures can be
extended such that they support multiple r-nearest-neighbors
as well. In order to do so, the auxiliary structure should
store every pair twice. Then, after finding all pairs, multiple
r-nearest-neighbors queries can be easily answered.

We have also implemented the second algorithm proposed
by Aiger et al. that adds random orientations to the con-
structed grids. Our implementation, which uses the Eigen
C++ library [26], did not achieve significant improvement
in running time and quality of the results, comparing to the
first RTG algorithm. Therefore, we do not report on these
results here. We leave it for further research to understand
the gap between the optimistic theoretical prediction and the
effect of orientation in practice.

IV. EXPERIMENTAL RESULTS

To evaluate our implementation, we first report on a set
of experiments aiming both to demonstrate the sensitivity of
the RTG algorithm to the parameters used and to determine
the better (ideally, optimal) ones. Using these computed
parameters, we first compare our implementation with sev-
eral state-of-the-art implementations of NN data structures
and show the speedup that may be obtained by using
our RTG implementation for all-pairs r-nearest-neighbors
queries. Finally, to test the effect of RTG in MP algorithms,
we present a series of simulations that demonstrate that RTG
allows to speed up the construction time of a PRM-type
roadmap, the time to obtain an initial solution or to converge
to high-quality solutions. All experiments were executed on
a 2.8GHz Intel Core i7 processor with 8GB of RAM.

A. Parameter tuning

Recall that given a set of n points in a d-dimensional space
and a radius r = r(n) (as in Eq. 2), the RTG algorithm has
two parameters that should be set: the cell size c and the
number m of grids to construct. As discussed in Sec. III, the
algorithm is rather sensitive with respect to either parameter.
Therefore, we conducted the following experiments in the
unit d-dimensional hypercube: we executed our RTG imple-
mentation using increasing values of c and m and measured
both the time for running all-pairs r-nearest-neighbor and the
success-rate, that is, the ratio between the number of reported
pairs and the ground truth. We repeated the experiment for
different values of n and d.

Fig. 1a shows that for a given cell-size factor c̃ (recall
that c̃ = c

r ), increasing the number m of grids results in
both an increase in the success rate of the algorithm as well

5
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Fig. 1. Success rate (red, left axis) and running time (green, right
axis) as a function of (a) the number m of grids (for a fixed value of c̃ =
1.1) and (b) the cell-size factor c̃ (for a fixed number of grids m = 20).
Results are for n = 102400 and d = 9.

TABLE II
Input parameters (m and c̃) for which the implementation obtained

the fastest running times, while reporting at least 98% of neighbors,
as a function of the number of points n and the dimension d.

d 3 6 9 12
n m c̃ m c̃ m c̃ m c̃
100 20 1.2 20 1.35 20 1.4 30 1.4
200 20 1.275 20 1.35 20 1.4 30 1.4
400 20 1.2 20 1.35 30 1.3 30 1.4
800 20 1.2 25 1.25 25 1.325 30 1.4
1600 20 1.2 25 1.225 25 1.35 30 1.4
3200 20 1.15 20 1.35 25 1.35 30 1.325
6400 20 1.175 25 1.225 30 1.275 30 1.325
12800 20 1.15 20 1.35 35 1.225 55 1.175
25600 20 1.15 20 1.325 35 1.225 35 1.35
51200 20 1.15 20 1.35 40 1.2 30 1.425
102400 20 1.15 20 1.325 40 1.2 N/A N/A
204800 20 1.15 20 1.325 N/A N/A N/A N/A

as a linear growth in the running time. Similar behavior was
observed for a given m, when c̃ gradually increases (Fig. 1b).

Requiring a success rate of at least 98%, we chose for
each d and n the values of m and c̃ (and thus the value
of c) that yielded the best running times. Our results are
summarized in Table II. We note that similar behavior and
results were obtained when running the same experiment on a
point set sampled in an environment cluttered with obstacles.

Throughout the next set of experiments, the values for c
and m are selected according to the aforementioned table.
Note that Aiger et al. [1] use completely different values
for c and m, which we found too crude for our setting. The
difference lies in the smaller radius used in their experiments,
causing the output size to be very small with respect to n.
This is not surprising as their data comes from an application
of completely different nature.

Fig. 2. Comparison between NN methods running all-pairs r-nearest-
neighbors for randomly sampled points in the three-dimensional unit
hyper-cube.

Fig. 3. Comparison between NN methods running all-pairs r-nearest-
neighbors for randomly sampled points in the nine-dimensional unit
hyper-cube.

B. Comparison with existing NN libraries

We compared our RTG implementation with the following
state-of-the-art NN methods: FLANN kd-tree [9], ANN kd-
tree [8], and LSH in Euclidean metric spaces (E2LSH) [10].
For ANN we set the bucket size to log n, where n is the
number of input points, and allowed an error bound of ε =
0.5 in the query phase. We mark that this had no major effect
on the number of reported pairs. For consistency reasons,
we used the same error bound in FLANN. For E2LSH we
had to empirically estimate the optimal parameters for our
point set. Therefore, we used a training set and selected the
parameters that minimize the running time on the training
set while still reporting a true neighbor with probability
at least 0.9. As mentioned, for RTG we chose c and m
according to Table II. For each method we measured the
time for answering an all-pairs r-nearest-neighbors queries7

for n random uniform samples from the unit d-dimensional
hypercube. The radius r = r(n) was defined as in Eq. 2.
We used point sets, of increasing sizes, of dimensions d =
3, 6, 9, and 12.

The results for different dimensions, averaged over ten
different runs, are presented in Fig. 2, 3 and 4. Clearly, as the
number of samples increases (exactly where NN dominates
the running times of MP algorithms) the gap in running time
between our RTG implementation and the other methods
grows. Similar results (see Fig. 5) were obtained when the
environment was cluttered with obstacles.

7Recall that for some of the methods finding all pairs requires n single
r-nearest-neighbors calls, with each of the n points as an input.
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Fig. 4. Comparison between NN methods running all-pairs r-nearest-
neighbors for randomly sampled points in the twelve-dimensional unit
hyper-cube.

Fig. 5. Comparison between NN methods running all-pairs r-nearest-
neighbors for randomly sampled points in an environment cluttered
with obstacles (see the Cubicles scenarios, Fig. 6c).

C. RTG in motion-planning algorithms

We integrated our RTG implementation within the
OMPL [27] framework, which uses GNAT as its primary
NN structure. This allowed us to compare the two NN data
structures in different MP algorithms. The scenarios we used
are depicted in Fig. 6. Each result is averaged over 50 runs.

We first tested the construction time of the multi-query al-
gorithms PRM* and LazyB-PRM* on the Z-tunnel scenario8

(Fig. 6a) in a three-dimensional Euclidean C-space of a robot
translating in space. Fig. 7 reports on the construction time as
a function of the number n of samples in the roadmap. One
can clearly see that as n grows, using RTG becomes more
advantageous. To test the quality of the roadmap obtained, we
performed a query for finding a path from one side of the Z-
tunnel to the other (see green and red robots in Fig. 6a). Both
roadmaps yielded similar success rates in finding a solution.

Next, we tested the single-query MPLB algorithm on the
3D Grid scenario (Fig. 6b) in a six-dimensional C-space
consisting of two translating robots in space. The distance
metric we used, which we refer to as MR-metric, computes
the sum of the distances that each robot travels. Fig. 8
presents the quality of the solution obtained as a function
of time. One can see that RTG allows to find higher quality
solutions faster than GNAT. Even though the analysis of
Aiger et al. regarding the quality of RTG’s results holds only
in Euclidean spaces, the MR-metric is more natural in multi-

8Scenario based on the Z tunnel scenario by the Parasol MP Group,
CS Dept, Texas A&M University https://parasol.tamu.edu/
groups/amatogroup/benchmarks/mp/z_tunnel/

(a) Z-tunnel

(b) 3D Grid (c) Cubicles

Fig. 6. Scenarios used for MP experiments. When testing the
single-query algorithms the green and red robots need to interchange
positions.

Fig. 7. Roadmap construction time in a three-dimensional Euclidean
C-space of a translating robot in the Z-tunnel scenario.

robot settings. We repeated the same test for the Euclidean
metric. The results, presented in Fig. 9, demonstrate similar
trends to those presented for the MR-metric.

Finally, we report on the success rate of finding a solution
in the Cubicles scenario9 (Fig. 6c). We first performed
the experiment for a six-dimensional Euclidean C-space
consisting of two translating robots. The results, depicted in
Fig. 10, demonstrate that RTG allows to reduce the time to
find an initial solution in complex scenarios. Fig. 11 presents
similar results using the MR-metric.

V. DISCUSSION AND FUTURE WORK

Many possible enhancements can be applied to our RTG
implementation in order to easily use it in sampling-based
MP algorithms. One obvious requirement is to automatically
tune the two parameters c and m defining the grid cell size
and the number of constructed grids, respectively.

Our RTG implementation is much faster when the flattened
bit-array is used for storing the pairs, however this structure
has a quadratic space complexity. Thus, a potential solution
may introduce a hybrid data structure that for small number
of samples uses the bit-array and for large inputs uses
the array of unordered sets. Nevertheless, as the array of
unordered sets is output sensitive in its memory consumption,
when the number of true neighboring pairs is very large,

9The Cubicles scenario is provided with the OMPL distribution.
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Fig. 8. Solution’s cost vs. time in a six-dimensional MR-metric (non-
Euclidean) C-space of two translating robots in the 3D Grid scenario.
The cost is normalized such that a cost of one denotes the optimal
cost that may be obtained.

Fig. 9. Solution’s cost vs. time in a six-dimensional Euclidean C-
space of two translating robots in the 3D Grid scenario. The cost is
normalized such that a cost of one denotes the optimal cost that may
be obtained.

cache faults occur and the program slows down drastically.
Thus, we seek to have an IO-efficient RTG implementation
in order to overcome these limitations.

Similar to the work in [28], one can implement RTG
differently such that a single r-nearest-neighbors query, as
opposed to all-pairs r-nearest-neighbors, is answered effi-
ciently. Such implementation should store all m constructed
grids. At query phase, given a query point q, the m cells
containing q are examined, and the set of neighboring points
among all potential candidates within the cells is found. For
small values of m, this implementation may be efficient.

Another interesting extension is parallelizing the algo-
rithm. A possible approach may be to partition the grid into
overlapping portions and run the algorithm on each portion
separately. Finally, we wish to devise an RTG variant applica-
ble to non-Euclidean C-spaces, a much needed data structure
in asymptotically-optimal sampling-based MP algorithms.
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