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Abstract— Activity prediction is an essential task in practical
human-centered robotics applications, such as security, assisted
living, etc., which targets at inferring ongoing human activities
based on incomplete observations. To address this challenging
problem, we introduce a novel bio-inspired predictive orienta-
tion decomposition (BIPOD) approach to construct represen-
tations of people from 3D skeleton trajectories. Our approach
is inspired by biological research in human anatomy. In order
to capture spatio-temporal information of human motions, we
spatially decompose 3D human skeleton trajectories and project
them onto three anatomical planes (i.e., coronal, transverse and
sagittal planes); then, we describe short-term time information
of joint motions and encode high-order temporal dependencies.
By estimating future skeleton trajectories that are not currently
observed, we endow our BIPOD representation with the critical
predictive capability. Empirical studies validate that our BIPOD
approach obtains promising performance, in terms of accuracy
and efficiency, using a physical TurtleBot2 robotic platform to
recognize ongoing human activities. Experiments on benchmark
datasets further demonstrate that our new BIPOD representa-
tion significantly outperforms previous approaches for real-time
activity classification and prediction from 3D human skeleton
trajectories.

I. INTRODUCTION

In human-centered robotics applications, including service
robotics, assistive robotics, human-robot interaction, human-
robot teaming, etc, automatically classifying and predicting
human behaviors is essentially important to allow intelligent
robots to effectively and efficiently assist and interact with
people in human social environments. Although many activ-
ity recognition methods [1] have been proposed in robotics
applications, most of them focus on classification of finished
activities [2], [3], [4]. However, in a large number of practical
human-centered robotics tasks, it is desirable for autonomous
robotic systems to recognize human behaviors even before
the entire motion is completed. For example, it is necessary
for robot security guards to send off an alarm while someone
is stealing rather than after the stealing, since early detection
has significant potential to prevent the criminal activity and
provide more time for police officers to react; it is desirable
for an assistive robot to recognize falls as early as possible
to reduce the incidence of delayed assistance after a fall, as
illustrated by the example in Fig. 1.

The goal of activity prediction is to infer ongoing activities
given temporally incomplete information. Predicting human
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Fig. 1. A motivating example of human activity prediction: a robot needs
to infer ongoing human activities and make a decision based on incomplete
observations. We address this challenging prediction problem at the human
representation level, through introducing a new skeleton-based, bio-inspired
predictive orientation decomposition approach. Our human representation is
constructed based upon biological research in human anatomy, which is able
to (1) encode spatio-temporal information of 3D human joint trajectories,
(2) estimate unobserved future data to make predictions of human activities,
(3) deal with human rotations, body scale variations, and different formats
of skeletal data obtained from a variety of 3D sensing devices, and (4) run
in real time on physical robotic platforms.

activities is an extremely challenging problem in robot per-
ception. First, a robot has to perform reasoning and decision
making based on incomplete observations, which in general
contain significant uncertainties and can change dramatically
over time. Second, prediction of human activities must deal
with conventional activity classification challenges, including
significant variations of human appearance (e.g., body scale,
clothes, etc.), complete or partial occlusion, etc. Third, action
prediction with a mobile robot introduces additional, unique
challenges to robot perception:

• A moving robotic platform typically results in frequent
changes in viewing angles of humans (e.g., front, lateral
or rear views).

• A moving robot leads to a dynamic background. In this
situation, human representations based on local features
[4] are no longer appropriate, since a significant amount
of irrelevant features can be extracted from the dynamic
background.

• Prediction performed under computational constraints
by a robot introduces new temporal constraints, includ-
ing the need to predict human behaviors and react to
them as quickly and safely as possible [5].

To address the aforementioned challenges, we introduce a
novel 3D human representation called Bio-Inspired Predic-
tive Orientation Decomposition (BIPOD) of skeleton trajec-
tories. Our BIPOD representation models the human body as
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an articulated system of rigid segments that are connected
by joints in 3D (xyz) space. Then, human body motions
can be modeled as a temporal evolution of spatial joint
configurations in 3D space. Taking advantage of modern
technologies of 3D visual perception (e.g., structured-light
sensors, such as Kinect and PrimSense) and state-of-the-
art skeleton estimation methods [6], we can reliably extract
and track human skeletons in real time. Given the skele-
ton trajectory, our representation is able to encode spatio-
temporal information of joint motions in an efficient and
compact fashion that is highly descriptive for classification
and prediction of ongoing human activities in real-world
environments.

The main contribution of this work is the skeleton-based
3D representation of people, based on our novel bio-inspired
predictive orientation decomposition, which includes several
novelties: (1) We construct our representation based upon bi-
ological human anatomy research, which provides theoretical
guarantees that our approach is able to effectively encode all
human movements. (2) We introduce a novel spatio-temporal
method to build human representations in 4D (xyzt) space,
which spatially decomposes and projects 3D joint trajectories
onto 2D anatomical planes and encodes temporal information
of joint movements including high-order time dependencies.
(3) We implement a simple, yet effective procedure to endow
our human representation with critical predictive capabilities,
which offers a satisfactory solution at the representation level
to address the challenging activity prediction problem.

The rest of the paper is structured as follows. In Section II,
we overview related work on 3D robotic vision and activity
prediction. Section III discusses our new approach in detail.
Results of empirical study are presented in Section IV. After
discussing the characteristics of our approach in Section V,
we conclude the paper in Section VI.

II. RELATED WORK

We first overview perception systems that can be applied to
acquire skeleton data in 3D space. Then, we review existing
skeleton-based human representations applied for the activity
recognition task. Finally, we discuss previous approaches for
activity prediction.

A. Skeleton Acquisition from 3D Perception

The skeleton is a natural representation of the human
body structure, which assumes that the human body is an
articulated system of rigid segments that are connected by
joints. Acquisition of 3D human skeleton sequences has
been a desirable goal for a long time. An approach to
obtain 3D human skeleton data is using a motion capture
(MoCap) system, which typically uses multiple cameras to
track reflective markers attached to the human body. For
example, 3D skeleton data in the HDM05 Mocap dataset
[7] contains 24 joints, as depicted in Fig. 2(c). Although a
MoCap system provides very accurate and clean skeleton
data, it cannot be used on mobile robotic platforms.

Recently, structured-light sensors or color-depth cameras
have attracted significant attention, especially from robotics

(a) OpenNi (b) Kinect SDK (c) MoCap

Fig. 2. Examples of skeletal kinematic human body models obtained from
different 3D perception technologies. Skeleton data acquired from OpenNI
contains 15 joints as depicted in Fig. 2(a), 20 joints from Microsoft Kinect
SDK as shown in Fig. 2(b), and a varied number of joints from a MoCap
system such as 31 joints in Fig. 2(c). By only using the joints in red color,
the proposed BIPOD representation is able to consistently process skeleton
data obtained from different sensing techniques.

researchers. These sensors have become a standard device to
construct 3D perception systems on intelligent mobile robots.
Two sophisticated, off-the-shelf approaches are available to
acquire 3D human skeletons from a structured-light sensor:
(1) Microsoft provides a SDK for Kinect sensors, which can
provide skeletal data with 20 joints [6], as illustrated in Fig.
2(b); and (2) OpenNI, which is adopted by Robot Operating
System (ROS), estimate human body skeletons with 15
joints. These affordable structured-light sensors generally
obtain satisfactory skeleton data, and can be easily installed
on mobile robotic platforms [4].

Our approach directly works on the skeletal data that are
estimated using different technologies (i.e., OpenNI, Kinect
SDK, and MoCap). In addition, a representation trained using
one type of skeletal data can be directly applied to recognize
human activities contained in other types of skeletal data.

B. Skeleton-Based Activity Classification

After the recent release of affordable structured-light sen-
sors, we have witnessed a growth of studies using 3D skeletal
data to interpret human behaviors. A 3D representation was
introduced in [8] that is based on the joint rotation matrix
with respect to body torso. Another representation based on
skeletal joint positions was implemented in [9] to construct
actionlet ensembles for activity recognition. A moving pose
descriptor was introduced in [10], which uses joint positions
in a set of key frames and encodes kinematic information as
differential 3D quantities. By computing joint displacement
vectors and joint movement volume, the representation in
[11] is used to efficiently recognize activities from skeleton
data. Other skeleton based 3D human representations were
also implemented based on histograms of oriented displace-
ments [12], covariance of 3D joints [13], etc.

Different from previous skeleton-based human representa-
tions, our BIPOD representation is bio-inspired with a clear
interpretation in human anatomy research [14], [15]. Another
significant difference is that our predictive representation is
developed for activity prediction, instead of activity classifi-
cation as in previous works.

3054



C. Activity Prediction

Different from conventional action classification [4], [1],
several approaches exist in the literature that focus on activity
prediction, i.e., inferring ongoing activities before they are
finished. An early approach applied dynamic programming
to do early recognition of human gestures [16]. A max-
margin early event detector was implemented in [17], which
modifies structured output SVM to detect early events. Logis-
tic regression models [18] were employed to detect starting
point of human activities. An online Conditional Random
Field method was introduced in [19] to predict human intents
in human-robot collaboration applications. Prediction in the
aforementioned methods is performed at the classifier level,
through extending conventional machine learning methods to
deal with time in an online fashion, in general. Significantly
different from these techniques, we focus on developing an
accurate, efficient fundamental representation of humans that
can be directly used by learning approaches.

Only a few approaches were implemented at the represen-
tation level. For example, a dynamic Bag-of-Words (BoW)
approach was introduced in [20] to enable activity prediction,
which divides the entire BoW sequence into subsegments to
find the structural similarity between them. To capture the
spatio-temporal structure of local features, a spatial-temporal
implicit shape model was implemented in [21] based on BoW
models. Despite certain successes of the BoW representation
for human behavior prediction, it suffers from critical limits.
BoW-based representations cannot explicitly deal with view
angle variations, and therefore typically cannot perform well
on moving robotic platforms. In addition, computing BoW-
based representations is computationally expensive, which is
not applicable in real-time onboard robotics applications, in
general. Moreover, the aforementioned BoW representations
do not make use of depth information that is available from
structured-light sensors. Different from previous studies on
BoW representations, our work focuses on developing a new
skeleton-based 3D human representation that is accurate and
efficient to predict human activities and is able to deal with
the aforementioned limitations.

III. PROPOSED SKELETAL REPRESENTATION

This section introduces our novel BIPOD representation.
First, we discuss our bio-inspired representation’s foundation
in human anatomy. Then, we introduce our approaches to
estimate anatomical planes and human facing direction and to
decompose spatio-temporal joint orientations on anatomical
planes. Finally, we discuss our approach’s predicative ability
to address activity prediction.

A. Foundation in Biology

In human anatomy, human motions are described in three
dimensions according to a series of planes named anatomical
planes [14], [22], [15]. There are three anatomical planes of
motions that pass through the human body, as demonstrated
in Fig. 3:

• Sagittal plane divides the body into right and left parts;

Fig. 3. Our bio-inspired representation is based on anatomical planes in
human anatomy research. This figure demonstrates how anatomical planes
divide the human body into different portions and illustrates exemplary
human motions performed in each anatomical plane [22].

• Coronal (frontal) plane divides the human body into
anterior and posterior portions;

• Transverse (horizontal) plane divides the human body
into superior and inferior parts.

When describing a human movement in anatomy, there is
a tendency to refer to it in a particular anatomical plane that
dominates the movement. Examples of human movements
in each anatomical plane are demonstrated in Fig. 3. When
human movement occurs in several planes, this simultaneous
motion can be seen as one movement with three planes,
which is referred to as tri-planar motion [22]. In human
anatomy research [14], [15], it has been theoretically proved
and clinically validated that all human motions can be
encoded by the tri-planar motion model.

The proposed BIPOD representation is inspired by the tri-
planar movement model in human anatomy research: human
skeletal trajectories are decomposed and projected onto three
anatomical planes, and spatio-temporal orientations of joint
trajectories are computed in anatomical planes. Based on the
tri-planar motion model in anatomy research, it is guaranteed
that our bio-inspired BIPOD representation is able to repre-
sent all human motions and thus activities. In addition, since
we use the same standard terminology, it is biomechanically
understood by biomedical researchers.

B. Estimation of Anatomical Planes

A core procedure of our bio-inspired human representation
is to estimate anatomical planes, which involves three major
steps: inferring the coronal axis za (intersection of the
sagittal and transverse planes), transverse axis ya (intersec-
tion of the coronal and sagittal planes), and sagittal axis
xa (intersection of the coronal and transverse planes). The
anatomical axes xa, ya, za are illustrated in Fig. 3.

1) Estimating coronal axis za: Since the coronal plane is
represented by human torso in anatomy [22], we can adopt
joints of the human torso to estimate the coronal plane.
Toward this goal, an efficient planar fitting approach based
on least squares minimization is implemented to fit a plane
to human torso joints in 3D space. Formally, given a set
of M torso joints P = {(xi, yi, zi)}Mi=1, the objective is
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to estimate the parameters A, B and C, so that the plane
z = Ax + By + C can best fit the human torso joints in
the sense that the sum of the squared errors err(A,B,C) is
minimized. Given the definition of squared errors:

err(A,B,C) =

M∑
i=1

‖(Axi +Byi + C)− zi‖2, (1)

the parameters (Ac, Bc, Cc) of the human coronal plane are
estimated using least squares minimization as follows:

(Ac, Bc, Cc) = argmin
A,B,C

err(A,B,C) (2)

which can be solved by computing its derivative as:

∇err = 2

M∑
i=1

((Axi +Byi + C)− zi) (xi, yi, 1) = 0 (3)

It is noteworthy that the estimated coronal plane’s surface
normal (A,B, 1) lies along the za-axis as shown in Fig. 3.

After the coronal plane is estimated, we need to determine
the coronal axis za, which is defined to point to the anterior
direction (i.e., the same as human facing direction) in human
anatomy [22], as shown in Fig. 3. Based upon this definition,
we estimate the human facing direction in order to initialize
the direction of the coronal axis za (performed only once).
To this end, a detection window is placed around the joint
representing human head (as demonstrated in Fig. 2(a)) in
the color image. Then, a highly efficient, off-the-shelf human
face detector, based on Haar cascades [23], is employed to
detect whether a face exists in the detection window. If a
positive is obtained, which means the human subject is facing
to the sensor, then we define the coronal axis za is pointing
to the sensor.

2) Estimating the sagittal axis xa and transverse axis ya:
The origin of the estimated anatomy coordinate is place at the
human torso center, as shown in Fig. 3. Then, the transverse
axis ya points from the torso center to the neck joint within
the coronal plane, and the sagittal axis xa is defined to point
to the left side of the human body, which lies within the
coronal plane and is perpendicular to ya and za as illustrated
in Fig. 3.

C. Anatomy-Based Orientation Decomposition

To construct a discriminative and compact representation,
our novel bio-inspired approach decomposes 3D trajectories
of each joint of interest, and describes them separately within
the 2D anatomical planes in a spatio-temporal fashion.

1) Anatomy-based spatial decomposition: Given the esti-
mated human anatomical coordinate xayaza, the trajectory
of each joint of interest in 3D space is spatially decomposed
into three 2D joint trajectories, through projecting the origi-
nal 3D trajectory onto anatomical planes. Formally, for each
joint of interest p = (x, y, z), its 3D trajectory P = {pt}Tt=1

can be spatially decomposed as

P = {p(xaya)
t , p

(yaza)
t , p

(zaxa)
t }Tt=1 (4)

where (xaya) denotes the coronal plane, (yaza) denotes the
sagittal plane, (zaxa) denotes the transverse plane, and p

(·)
t

represents the 2D location of the joint p on the (·) anatomical
plane at time t. Due to this bio-inspired spatial decomposi-
tion, our novel 3D human representation is invariant to view
point variations and global human movements, as proved in
the human anatomy research [22].

2) Temporal orientation description: After each 3D joint
trajectory is decomposed and projected onto 2D anatomical
planes, we represent the 2D trajectories on each plane using a
histogram of the angles between temporally adjacent motion
vectors. Specifically, given the decomposed 2D human joint
trajectory P (·) = {p(·)

t }Tt=1 on an anatomical plane, i.e., the
coronal (xaya), transverse (zaxa), or sagittal (yaza) plane,
our approach computes the following angles:

θt = arccos
−−−−→pt−1pt ·

−−−−→ptpt+1

‖−−−−→pt−1pt‖‖
−−−−→ptpt+1‖

, t = 2, . . . , T−1 (5)

where θ ∈ (−180◦, 180◦]. Then, a histogram of the angles is
computed to encode statistical characteristics of the temporal
motions of the joint on the anatomical plane. Intuitively, the
histogram represents how many degrees a body joint changes
its direction at each time point. Because the direction change
of a joint is independent of its moving distance, the proposed
representation, based on orientation changes, is invariant to
variations of human body scales.

Fig. 4. An example of the temporal pyramid applied in our approach to
capture long-term independencies. In this example, a temporal sequence of
eleven frames is used to represent a tennis-serve activity, and the joint we
are interested in is the right wrist, as denoted by the red dots. When three
levels are used in the temporal pyramid, level 1 uses human skeleton data
at all time points (t1, t2, . . . , t11); level 2 selects the joint positions at odd
time points (t1, t3, . . . , t11); and level 3 continues this selection process
and keeps half of the temporal data points (t1, t5, t9) to compute long-term
orientation changes.

It is noted that the oriented angles computed based on Eq.
(5) can only capture temporal information within a short time
interval. In order to encode long-term temporal relationships,
a temporal pyramid framework is applied, which temporally
decomposes the entire trajectory into different levels. In level
1, the entire trajectory of a joint of interest is used to compute
the orientation changes on each anatomical plane, which is
exactly the same as Eq. (5). In level 2 of the pyramid, only
half of the temporal joint positions are adopted, for example,
t = 1, . . . , 2n− 1 where n ∈ IR. If a temporal pyramid has
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three levels, then in level 3, only the joint data that satisfy
t = 1, . . . , 4n− 1 where n ∈ IR are applied to compute the
orientation changes. Fig. 4 illustrates an intuitive example of
using a 3-level temporal pyramid to capture long-term time
dependencies in a tennis-serve activity. Temporal orientation
changes that are calculated in different levels of the pyramid
are accumulated in the same histogram.

To construct a final representation based on the orientation
changes, three histograms computed from the 2D trajectories
on the coronal, transverse and sagittal anatomical planes are
concatenated into a single feature vector. Through capturing
both space (anatomy-based spatial decomposition) and time
(temporal orientation description) information, our novel bio-
inspired approach provides a spatio-temporal representation
of humans and their movements.

D. Joint Trajectory Refinement and Prediction

Because skeletal data acquired from 3D robot perception
systems can be noisy, it is important to estimate true po-
sitions of human joints given the observed skeleton data.
In addition, in order to solve the activity prediction task,
our representation requires the capability of predicting future
human joint positions. To solve these problems, Extended
Kalman Filters (EKFs) [24] are used, which are a non-linear
extension of Kalman filters. Estimating and predicting body
joint positions using observable skeleton data is essentially
a non-linear tracking problem that can be solved by EKFs,
in which the true joint position is the state and the position
from acquired skeleton data is the observation.

To reduce the computational cost of large state space (i.e.,
all body joints), we divide the state space into five subspaces:
left-arm space (left elbow and hand, 2 states), right-arm space
(2 states), left-leg space (left knee and foot, 2 states), right-
leg space (2 states), and torso space (number of states may
vary when different types of skeleton data are used, as shown
in Fig. 2). When redundant joints are provided (such as the
skeletal data from MoCap systems), our approach only uses
the aforementioned joints (as illustrated by the red-colored
joints in Fig. 2), which guarantees the direct applicability of
our representation on skeletal data obtained from different
technologies such as using OpenNI or MS Kinect SDK.

Our simple yet effective solution of applying EKFs to track
true human joint positions provides two advantages. First, the
procedure endows our bio-inspired representation approach
with the capability of encoding human motions in the near
future, which is essential to human activity prediction using
incomplete observations. This is achieved by using past and
current states to predict future states in an iterative fashion.
Second, besides filtering out the noise in observed skeleton
data, this procedure makes our representation available all the
time to a robotic system, even during time intervals between
frames when skeletal data are acquired. In this situation, by
treating the non-existing observation (between frames) as a
missing value, the estimated state can be applied to substitute
the observation at that time point.

IV. EXPERIMENTS

To evaluate the performance of our BIPOD representation
on human activity classification and prediction, we perform
comprehensive experiments using publicly available bench-
mark datasets. Also, to demonstrate the impact of our BIPOD
representation in real-world robotics applications, we test our
approach on a TurtleBot2 robot to perform real-time online
activity recognition.

A. Implementation

Our skeleton-based BIPOD representation is implemented
using a mixture of Matlab and C++ programming languages
on a Linux machine with an i7 3.0G CPU and 16Gb memory.
Each of the three histograms, computed from trajectories on
the coronal, transverse and sagittal planes, contains 12 bins.
The learner employed in this paper is the non-linear Support
Vector Machine (SVM) [25] with χ2-kernels [26], which has
demonstrated superior performance on the histogram-based
input (e.g., our BIPOD representation). In order to address
multi-class classification and prediction, the standard one-
against-one methodology is applied [25].

Fig. 5. The MSR Daily Activity 3D dataset is applied in the experiment to
evaluate our BIPOD representation, which contains 16 activity categories:
(1) drink, (2) eat, (3) read book, (4) call cellphone, (5) write on a paper,
(6) use laptop, (7) use vacuum cleaner, (8) cheer up, (9) sit still, (10) toss
paper, (11) play game, (12) lie down on sofa, (13) walk, (14) play guitar,
(15) stand up, (16) sit down.

B. Evaluation on MSR Activity Daily 3D dataset

The MSR Daily Activity 3D dataset [9]1 is a most widely
used benchmark dataset in human activity recognition tasks.
This dataset contains color-depth and skeleton information of
16 activity categories, as illustrated in Fig. 5. Each activity is
performed by 10 subjects twice, once in a standing position
and once in a sitting position in typical office environments,
which results in a number of 320 data instances. The skeleton
data in each frame contains 20 joints, as shown in Fig. 2(b).
In our experiments, we follow the experimental setups used
in [27]; accuracy is applied as the performance metric.

We investigate our BIPOD representation’s performance in
the activity recognition task, i.e., classifying human activities
using complete observations. Experimental results obtained
by our approach over the MSR Daily Activity 3D dataset

1MSR Daily Activity 3D dataset: http://research.microsoft.
com/en-us/um/people/zliu/actionrecorsrc.
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TABLE I
COMPARISON OF AVERAGE RECOGNITION ACCURACY WITH PREVIOUS

SKELETON-BASED REPRESENTATIONS ON MSR DAILY ACTIVITY 3D

Skeleton-based representations Accuracy
Dynamic Temporal Warping [9] 54.0%
Distinctive Canonical Poses [18] 65.7%

Actionlet Ensemble (3D pose only) [9] 68.0%
Relative Position of Joints [28] 70.0%

Moving Pose [10] 73.8%
Fourier Temporal Pyramid [9] 78.0%
Our BIPOD representation 79.7%

are presented in Table I. When a human activity is complete
and all frames are observed, our approach obtains an average
recognition accuracy of 79.7%. In order to show the proposed
representation’s superior performance, we also compare our
approach with state-of-the-art skeleton-based representations
in human activity recognition tasks, as presented in Table I.
It is observed that our approach outperforms previous works
and obtains the best recognition accuracy over this dataset.
In addition, we evaluate the efficiency of our approach in the
activity classification task. An average processing speed of
53.3 frames-per-second is obtained, which demonstrates the
high efficiency of our representation. Because this processing
speed is faster than the frame rate of structured-light cameras,
real-time performance can be achieved on a robotic platform
equipped with such 3D sensors.
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Fig. 6. Experimental results of using our BIPOD representation to predict
human activities given incomplete observations. When the procedure of joint
trajectory refinement and prediction is used, 15% future data are predicted.
Generally, the predictive representation greatly outperforms representations
without prediction capabilities.

To demonstrate that our BIPOD representation is capable
of predicting ongoing activities based on incomplete observa-
tions, we conduct a series of experiments by feeding different
percentages of observations to our method. Then, 15% future
unobserved data are predicted by the component procedure
of joint trajectory refinement and prediction, as discussed in
Section III-D. After combining the predicted data with the
observed trajectories of joints, the robot can make a decision
to respond to the ongoing activity before it is complete. The
quantitative experimental results on the MSR Daily Activity
3D dataset are illustrated in Fig. 6(a). It can be observed that,
comparing with the representation without feature prediction,
the BIPOD version obtains much better recognition accuracy.
This highlights the fact that the predicted data do contribute

to improving recognition accuracy, which also demonstrates
the importance of endowing human representations with the
critical prediction capability.

C. Evaluation on HDM05 MoCap Dataset

To validate the generalizability and applicability of our BI-
POD representation on skeleton data collected from different
sensing technologies, we conduct another set of experiments
using skeletal data obtained using motion capture systems.
The HDM05 MoCap dataset [7]2 is used in our experiments.
Comparing with skeleton datasets collected using structured-
light sensors, this MoCap dataset has several unique charac-
teristics. First, the skeleton data are much less noisy than the
data acquired by a color-depth sensor. Second, the human
skeleton obtained by a MoCap system contains 31 joints, as
shown in Fig. 2(c). Third, the frame rate of a MoCap system
is 120 FPS, which is much higher than maximum 30 FPS
of a structured-light sensor. Fourth, only skeleton trajectories
are provided by the HDM05 dataset, which does not provide
color images. In this case, face recognition is not performed.
Since all motion sequences begin with a T-pose, as explained
in [7], we simply assume subjects face toward the view point.

The experimental setup applied in [12], [29] is adopted in
our empirical study: Eleven categories of activities are used,
which are performed by five human subjects, resulting in a
total number of 249 data instances. Skeleton data from three
subjects are used for training, and two subjects for testing.
The activities used in our experiment include: deposit floor,
elbow to knee, grab high, hop both legs, jog, kick forward,
lie down floor, rotate both arms backward, sneak, squat, and
throw basketball.

Table II presents the experimental results obtained using
our BIPOD representation over the HDM05 MoCap dataset.
The proposed method obtains an average accuracy of 96.70%
in the human activity classification task using fully observed
skeleton sequences. In addition, we compare our bio-inspired
method with state-of-the-art skeleton-based human represen-
tations over the same dataset, which is reported in Table II. A
similar phenomenon is observed that our BIPOD representa-
tion obtains a superior human activity recognition accuracy
and outperforms existing skeleton-based representations. In
terms of computational efficiency, a processing speed of 48.6
FPS is obtained, which is a little slower than processing the
skeleton data from structured-light sensors, since more torso
joints are used.

Additional experiments are also conducted to evaluate our
BIPOD representation’s ability to predict ongoing activities,
based on incomplete observations from the HDM05 MoCap
dataset. In this experiment, 15% future data is predicted by
the process of joint trajectory refinement and prediction. Fig.
6(b) shows the experimental results obtained by our BIPOD
representation. Comparison with the non-predictive version
is also illustrated in the figure, which shows that the activity
recognition accuracy can be significantly improved if human
representations are predictive.

2HDM05 motion capture dataset: http://resources.mpi-inf.
mpg.de/HDM05.
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TABLE II
COMPARISON OF AVERAGE RECOGNITION ACCURACY WITH PREVIOUS

SKELETON-BASED REPRESENTATIONS ON HDM05 MOCAP

Skeleton-based representations Accuracy
Trifocal tensor of joint positions [30] 80.86%

Sequence of Most Informative Joints [29] 84.40%
Subtensor of joint positions [30] 85.71%

Relevant Joint Positions [31] 92.20%
Cov3DJ [13] 95.41%

Our BIPOD representation 96.70%

D. Case Study on TurtleBot2 Using Cross-Training

Besides evaluating our representation’s performance using
benchmark datasets, we also implement our BIPOD approach
on physical robots to evaluate how well it performs in real-
world robotics applications. The robotic platform used in our
experiments is the TurtleBot2 robot built upon the Kobuki
mobile base. The robot employs a Kinect sensor for on-board
3D perception and an ASUS netbook (with 1.6G dual core
CPU and 2G memory) for on-board control. To compute our
representation and perform activity recognition in real time,
another laptop, as described in Section IV-A, is placed on top
of the robot. The hardware configuration of our TurtleBot2
robot is illustrated in Fig. 7(a).

In order to validate our approach’s generalization ability to
process data from different skeleton estimation techniques,
we apply the cross-training methodology in this experiment.
Specifically, our BIPOD representation and the SVM classi-
fier are trained using skeleton data obtained from MS Kinect
SDK, which provides information of 20 joints, as shown in
Fig. 2(b). Then, the learned models (i.e., human representa-
tion plus classifier) are directly applied to recognize activities
from skeleton data that are obtained using OpenNI in ROS,
which provide 15 body joints as depicted in Fig. 2(a). The
essential advantage of cross-training is that, through applying
similar datasets that are available on the internet to train a
learning system, it is able to avoid collecting a new dataset
and therefore can significantly save human labor.

(a) Experiment setups (b) Confusion matrix

Fig. 7. Our BIPOD representation is evaluated using a TurtleBot2 robotic
platform to recognize ongoing activities in an online fashion in a standard
living room environment, as illustrated in Fig. 7(a). The confusion matrix
obtained in this experiment is presented in Fig. 7(b).

In this experiment, the MSR Daily Activity 3D dataset, as
discussed in Section IV-B, is used to compute our represen-
tation and estimate the SVM’s parameter. Six activity classes
are adopted, including cheer up, toss paper, lie on sofa, walk,

stand up, and sit down. Cross-training is performed using a
five-fold cross-validation over all instances of each activity.
Then, the learned reasoning system is directly applied by
the robot to recognize the six activities in an online fashion.
To deal with the online streaming skeleton data, a temporal
sliding window technique is applied, where the window size
is 2 seconds and the overlap of temporally adjacent windows
is 1 second. Then, activity recognition is performed using the
skeleton data falling in each window.

Two human subjects, a male and a female with different
body scales and motion patterns, are involved in the online
testing process to evaluate the performance of our BIPOD
representation. Each subject performs each activity five times
in a random order in a standard living room environment, as
illustrated in Fig. 7(a). Ground truth is manually recorded and
used to compare with recognition results from the TurtleBot2
robot for quantitative evaluation.

Fig. 7(b) shows the confusion matrix produced by the on-
line activity recognition system based on our novel skeleton-
based BIPOD human representation, where each column cor-
responds to the predicted category and each row corresponds
to the ground truth category. It is observed that, when cross-
training is used, our algorithm is able to accurately recognize
continuous human activities from streaming skeleton data.
This observation validates our method’s capability of encod-
ing skeleton data from different resources, which is achieved
by only using discriminative joints and removing redundant
joints on human limbs, as demonstrated in Fig 2. In addition,
it is observed that our representation is able to encode time
information, which is indicated by the successful separation
between “stand up” and “sit down” activities. Since the used
SVM classifier is not capable of modeling time, we can infer
that the separation between these reversal activities results
from our spatio-temporal representation. Finally, we observe
that a small portion of “toss paper” activities are misclassified
as “cheer up”, since these activities share similar arm-moving
motions.

In summary, our representation obtains an average online
recognition accuracy of 93.33%, with a processing speed of
30 FPS (which is the maximum frame rate of the onboard
Kinect sensor on TurtleBot2). The experimental results show
that our skeleton-based bio-inspired algorithm is a promising
human representation that is able to accurately and efficiently
address online activity recognition.

V. DISCUSSION

Our skeleton-based representation based upon bio-inspired
predictive orientation decomposition possesses several desir-
able characteristics. Our BIPOD human representation is a
bio-inspired approach, which has clear biological interpreta-
tion in human anatomy. Through spatially decomposing joint
trajectories and projecting them onto anatomical planes, our
human representation is invariant to view point changes. By
computing the temporal orientation, instead of using the joint
moving distance, our representation is invariant to variations
of human body scales. Through selecting the discriminative
human joints that are available from all skeleton estimation
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techniques, our BIPOD representation can be directly applied
on different categories of skeleton data, which makes cross-
training possible.

On the other hand, similar to other skeleton-based human
representations, our approach cannot encode object informa-
tion, and may not be able to effectively distinguish activities
involving human-object interactions. In addition, the same as
all skeleton-based methods, our representation heavily relies
on the accuracy of global human skeleton estimation, which
may suffer from severe occlusions. These limitations can be
leveraged by combining 3D human skeleton data with color
depth information.

VI. CONCLUSION

In this paper, we introduce the novel BIPOD representation
to enable intelligent robots to predict human activities from
skeletal data in real-world human-centered robotics applica-
tions. Our approach is inspired by biological human anatomy
research, which provides theoretical and clinical guarantees
that our representation can encode all human movements. To
construct our the BIPOD representation, we estimate human
anatomical planes, decompose 3D skeleton trajectories, and
project them onto the anatomical planes. Then, we describe
time information through computing motion orientations on
each plane and encoding high-order time dependency using
temporal pyramids. In addition, to endow our representation
with the predictive capability, we use the simple yet effective
EKF technique to estimate future skeleton trajectories, which
can also reduce noise and deal with missing observations. We
perform empirical studies, using a TurtleBot2 mobile robot,
to evaluate the performance of our BIPOD representation in
an ongoing human activity recognition task. In addition, our
BIPOD representation is compared with methods in previous
studies on activity classification and prediction, using MSR
Daily Activity 3D and HDM05 MoCap benchmark datasets.
Experimental results demonstrate that BIPOD significantly
improves human activity recognition accuracy and efficiency
and successfully addresses the challenging activity prediction
problem.
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