
Plan Execution Monitoring through Detection of
Unmet Expectations about Action Outcomes

Juan Pablo Mendoza1, Manuela Veloso2 and Reid Simmons3

Abstract— Modeling the effects of actions based on the state
of the world enables robots to make intelligent decisions in
different situations. However, it is often infeasible to have
globally accurate models. Task performance is often hindered
by discrepancies between models and the real world, since the
true outcome of executing a plan may be significantly worse
than the expected outcome used during planning. Furthermore,
expectations about the world are often stochastic in robotics,
making the discovery of model-world discrepancies non-trivial.
We present an execution monitoring framework capable of
finding statistically significant discrepancies, determining the
situations in which they occur, and making simple corrections
to the world model to improve performance. In our approach,
plans are initially based on a model of the world that is
only as faithful as computational and algorithmic limitations
allow. Through experience, the monitor discovers previously
unmodeled modes of the world, defined as regions of a feature
space in which the experienced outcome of a plan deviates
significantly from the predicted outcome. The monitor may
then make suggestions to change the model to match the
real world more accurately. We demonstrate this approach
on the adversarial domain of robot soccer: we monitor pass
interception performance of potentially unknown opponents
to try to find unforeseen modes of behavior that affect their
interception performance.

I. INTRODUCTION

To make intelligent decisions, robots often use models of
the effects of their actions on the world. Unfortunately, in
sufficiently complex environments, it is infeasible to have
the computational resources and perfect knowledge required
to create completely accurate world models. This limitation
may lead to divergence between planned actions and actual
execution. It is thus necessary to monitor the execution of
plans, and to correct the model as needed to enable robots
to improve their performance.

We present an execution monitoring framework that en-
ables robots to improve performance by detecting poorly
modeled sets of situations and correcting their models ac-
cordingly. In particular, we address the problem of finding
and adapting to regions of a state-action feature space in
which action outcomes observed during execution deviate
from the expectations used to select those actions. Further-
more, since robotics domains are intrinsically noisy, we are
interested in stochastic expectations for which a single failed
execution episode may not be indicative of a poor model.

1Juan Pablo Mendoza is with the Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA 15213, USA jpmendoza@ri.cmu.edu

2Manuela Veloso is with the Computer Science Department, Carnegie
Mellon University, Pittsburgh, PA 15213, USA mmv@cs.cmu.edu

3Reid Simmons is with the Robotics Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA 15213, USA reids@cs.cmu.edu

Fig. 1: High level framework for planning and execution.
This paper focuses on the elements within the dashed line:
We present a monitor that uses stochastic expectations gen-
erated by the planner, and observations from the world, to
improve the model used in planning future execution.

Figure 1 illustrates the framework at a high level. This
work focuses on the Monitor component of the framework,
and its interaction, through inputs and outputs, with the Plan
component. This feedback interaction can be summarized in
the following looping steps:

1) Create a model of the world that is generally accurate,
but which may be suboptimal in some situations.

2) Create a plan to perform the desired task, based on the
best available model. When a plan is created, in ad-
dition to generating a sequence of actions to perform,
also generate a list of corresponding expectations about
the results of those actions.

3) During execution, monitor whether the expectations
were met in the real world by comparing them to
observations obtained from sensing.

4) Find the conditions in which the real world is not
well represented by the model. We represent such sets
of conditions as regions of a feature space in which
observations deviate from expectations in a statistically
significant way.

5) Based on such findings, make corrections to the model
in situations determined to be inadequately modeled.

Our application domain is a team of fast soccer-playing
robots attempting to pass the ball to each other while
preventing interceptions from opponent robots. Figure 2
illustrates how accurate ball interception modeling is crucial
for success in the Small Size League of RoboCup [2], with
robots capable of moving at over 3.5ms−1 and passing the
ball at up to 8ms−1. However, in such adversarial domains,
it is common to have incomplete information about the
opponent’s strategy and capabilities. We may be able to

(a) Moving ball interception. Faded images show points along the
trajectory of our robot, the ball, and a competing opponent robot.

(b) After a successful interception, our robot turns and scores with
a narrow angle on goal.

Fig. 2: Goal scored by CMDragons during the quarter finals of RoboCup 2013. Accurate ball interception models of itself
and of opponents allows our single robot (blue center dot) to gain control of a moving loose ball among several opponents
(yellow center dots) to be able to score. (Thanks to J. Biswas for the interception and shooting algorithms [1].)

create a reasonably good model of how the world behaves
(e.g., we may assume the opponent uses the same algorithm
as our own robots to try to intercept passes). However, such
models are likely to be poor predictors in some situations.
In particular, opponents may have different strategies that
they use in different circumstances; this means that there
is likely to be a discrete boundary between the situations
that are well-modeled and those that are not. Our goal is to
find these boundaries, enabling our robots to improve their
planning models and thus their passing performance.

II. RELATED WORK

The problem of execution monitoring, well established in
fields like industrial control, has gained increased interest
in the robotics community [3], since robots need to be
robust to failure in uncertain domains. An expectation-based
monitor is one that monitors execution by comparing model-
generated expectations of the world against correspond-
ing observations received during execution. This type of
monitor has been applied successfully to various robotics
domains [4], [5]. While previous applications of expectation-
based monitoring focus on detection and recovery from
single failures, we focus on the detection of subtle, stochastic
anomalies displayed over multiple trials, and model adapta-
tion based on such detection.

Adaptation is essential for robots that act in changing
or not fully modeled environments. Several Reinforcement
Learning (RL) algorithms have addressed the problem of
learning to perform well in a continuous environment that is
not perfectly modeled. Model-free RL approaches, such as
Q-Learning [6] and policy gradient descent [7], are capable
of improving robot performance without explicitly modeling
the world. While this generality is appealing and necessary
in situations where modeling is impractical, learning tends
to be less data-efficient and is not generalizable to different
tasks within the same environment [8]. Model-based RL

approaches learn, along with optimal policies, a transition
model for the MDP that describes their world [9]. Our work
is related to model-based RL in that we address the problem
of learning a model to improve performance. However, in
this paper, we focus on a framework that allows learning of
different behavior modes, and we do not address the problem
of exploration versus exploitation trade-off to achieve maxi-
mum reward. Furthermore, our framework requires and takes
advantage of domain knowledge about expected, potentially
long-term, effects of actions.

At the core of our algorithm is the detection of unmodeled
modes of behavior through anomaly detection techniques,
many of which have been applied in robotics and other
fields [10]. In particular, we find statistical anomalies in
collections of data. In this aspect, our work is related to time-
series analysis [11], although we are more interested in data
that is spatially related in some space of features of state-
action space, rather than in purely temporal relationships.

III. EXECUTION MONITOR DESIGN

The main contribution of this paper is the execution moni-
toring framework, and how it interacts with the planner. First,
we describe how the planner generates the the necessary
expectation information for plans to be monitored. We then
describe how the monitor uses this information to find sets of
situations in which the real world does not perform how the
planner expected. Finally, we describe how the model might
be updated to account for such detected discrepancies.

A. Planning with measurable expectations

We seek to improve the decision-making capabilities of
a robot that operates in a state space S, and which can act
upon its world through a set of actions A. We are interested
in domains in which the planner makes decisions based on
some quantifiable expectations of the world: the planner must
be able to predict the results of applying action a ∈ A

in state s ∈ S. We model these stochastic predictions as
random observable variables z ∈ Rn with parameters θ ∈ Θ.
For example, in the applications of this paper, we model
the observables as normally distributed: z ∼ N (z̃,Σz).
Furthermore, the effects of action a need not be immediate,
so the planner must also know when these observables can
be evaluated. Formally, the planner and monitor have access
to two functions:

Predict : S ×A→ 2S×Θ

Observe : S ×A× S → Rn.

Function Predict models the expected (not necessarily im-
mediate) effects of applying action a in state s: Predict(s, a)
returns a prediction set P ∈ 2S×Θ of state-parameter pairs
corresponding to the states in which the observable can be
evaluated, and the parameters of the expected distribution of
the observation at that state. For example, a soccer robot
may predict that if it shoots the ball from its own goal
(state s) with speed v0 (action a), then, when the ball exits
the opposite end of the field (states in P), it will have a
speed normally distributed around ṽ1, dependent on the exit
point (expectation θ = (ṽ1, σ

2
v) in P).

Function Observe is then used to verify or contradict such
expectations during execution: if the robot finds itself in
state sz such that (sz,θz) ∈ P , then z = Observe (s, a, sz)
is expected to be distributed according to θz . For the example
above, when the ball reaches a position on the opposite end
of the field, the robot can observe its true speed v1 and
evaluate its fit within the expected distribution N (ṽ1, σ

2
v).

Instead of a traditional planner in which only a sequence
of actions (or a policy) is passed to the executing module,
the planner can now also create a corresponding list of
expectations of the outcomes such actions. Given that a
plan (or policy) chooses to take action a when in state s,
an expectation e is defined as e = (s, a,P), such that
Predict(s, a) = P . These expectations are then used as
input to the monitoring module in charge of verifying or
contradicting their validity.

B. Monitoring expectations during execution

Once a plan has been created, the planner passes the list
of expectations e = (s, a,P) to the monitor as execution
begins. Algorithm 1 describes the procedure of the monitor
during each step of execution.

The first step in monitoring consists of comparing the
expected results created by the planner with the results z
experienced during execution. To do this, for every expecta-
tion waiting to be verified, the monitor needs to check if the
conditions for verification have been met – i.e., if the current
state st is an element of the expectation termination states
in P . If so, then an actual observation is generated through
the domain-specific function Observe, which needs to look at
the conditions in which the expectation was generated (s, a),
and the resulting state st, to generate z = Observe(s, a, st).

Once observations are generated, they are passed as input
to an anomaly detector, which determines whether there are
situations in which the predictive model does not correspond

Algorithm 1 Execution monitor procedure run every time
step t of execution. Input: robot state st, expectation list E ,
set of regions R likely to be anomalous (initially empty).

1: function MONITOR(st, E ,R)
2: . First: add any new execution observations
3: for each e = (s, a,P) ∈ E do
4: if ∃ (sz,θz) ∈ P s.t. sz = st then
5: z ← Observe(s, a, st)
6: add (f (s, a) , z,θz) to observations Z.
7: remove e from E
8: end if
9: end for

10: . Second: Find execution anomalies
11: (R,A)← FARO(Z,R)
12: . Third: Update planning model
13: if A 6= ∅ then
14: UpdateModel(A)
15: end if
16: return (R,A)
17: end function

with the experienced reality. To do this, we use the Focused
Anomalous Region Optimization (FARO) detector [12], de-
scribed in detail in Section IV. The output of FARO is either
an empty set, if no anomalies are present, or a set of states
(represented as a region of feature space) in which expected
behavior deviates significantly from experience, along with a
maximum likelihood hypothesis of the true parameter value
in that region.

C. Modifying the planning model

Regions of anomaly detected by FARO are used to update
the planning model accordingly. In our framework, this
means modifying the Predict function into a new func-
tion Predict+ that incorporates information about anomalies
found during execution. Thus, we use the output of FARO,
which is a list of anomalies A, each consisting of a region
of feature space Ri of anomaly, as well as a maximum
likelihood parameter deviation ∆̄θi of observations within
that region. Then, Predict+ is defined as

Predict+(s, a) =
{

(sz,θ
+
z)|(sz,θz) ∈ Predict(s, a)

}
,
(1)

where

θ+z =

{
θz − ∆̄θi if ∃Ri ∈ A s.t. f(s, a) ∈ Ri
θz otherwise (2)

That is, if f(s, a) is within a region of anomaly, predictions
are shifted by the maximum likelihood shift determined by
the anomaly detector, thus creating a new mode in the model.

IV. DETECTING ANOMALOUS REGIONS OF
STATE-ACTION FEATURE SPACE

The FARO anomaly detector [12] was designed to find
regions of state space in which observations deviate signifi-
cantly from expectations. Here, we use the FARO algorithm
to detect anomalous regions of a state-action feature space,

rather than only of state space directly. Algorithm 2 describes
the FARO algorithm at a level of detail that fits the purposes
of this paper. For a more detailed description of the algo-
rithm, we refer the reader to [12].

Algorithm 2 FARO anomaly detector. Input: a list of
observations Z and a set of regions R most likely to
be anomalous. Returns: Updated set R, and an anomalous
region, if one is found.

1: function FARO(Z = (f i, zi,θi)i∈{0,...,t},R)
2: R ← R∪ r(f t) . Small region around latest obs.
3: A ← ∅ . Initially, no detected anomaly
4: for R ∈ R do
5: Optimize R into R′ such that
6: anom(R′,Z) ≥ anom(R,Z)
7: R ← R∪R′ \R
8: if anom(R′,Z) ≥ amax then
9: A ← R′ . Anomaly detected

10: end if
11: end for
12: if |R| > capacity then
13: R− ← arg minR∈R anom(R,Z)
14: R ← R \ {R−}
15: end if
16: return (R,A)
17: end function

The FARO algorithm attempts to find regions of anoma-
lous behavior using general optimization techniques. It con-
ducts a parallel optimization on a few promising parametric
regions of feature space (for this paper, ellipsoids), to find
the one most likely to be a statistically significant anomaly.

The key computations of Algorithm 2 are the optimiza-
tion of region R into R′ (line 5), and the cost function
anom(R,Z) used for it (line 6). As an optimization algo-
rithm, FARO uses the cross-entropy method [13], although
other optimization methods could be used instead. For the
cost function to maximize, FARO uses the following:

anom(R,Z) =
P (Z|behavior in R is anomalous)
P (Z|behavior in R is nominal)

. (3)

The region that maximizes this cost function is the one
most likely to be anomalous. We can rewrite Equation 3
more specifically by assuming anomalies take the form of
statistical deviations in the mean µ of the expected distri-
bution by some vector δ. In this case, assuming conditional
independence among samples, we have:

anom(R,Z = (f i, zi,θi)) = max
δ

∏
f i∈R

P (zi|µ(θi) + δ)∏
f i∈R

P (zi|µ(θi))
.

(4)
The value of the threshold value amax (line 8) used to detect
anomalies is obtained through Monte Carlo sampling [14] to
achieve the desired tradeoff between false positive and false
negative detections.

V. MONITORING PASS INTERCEPTION IN ROBOT SOCCER

In this section, we describe the application of the frame-
work presented in Section III to the robot soccer pass inter-
ception domain. The task consists of a team of soccer robots
passing a ball to each other while preventing interceptions
from opponent robots. The domain is inspired by the Small-
Size League of Robot Soccer [2], where two teams of 6
robots each compete in a highly dynamic game of soccer.
In this paper, we focus on the kicking robot’s decision
making, assuming a distributed architecture in which it has
no influence over what actions its teammates take.

The full state space S of a robot soccer game involves
over 80 continuous physical dimensions, to which one must
add each team’s internal state. The action space A for
our problem is the 2-dimensional space of velocities at
which a robot can pass the ball. For purposes of anomaly
detection and correction, we capture the important features
of the world in an 8-dimensional feature vector f(s, a)
per opponent robot: the ball position, its velocity in polar
coordinates, and the opponent robot position and velocity in
polar coordinates, both measured relative to the ball and the
planned pass direction. While these features were enough for
our demonstrative purposes, one may imagine using other
features about the intercepting robot’s state, or even about
the rest of the robots on the field.

Since the focus of this paper is the monitoring of execu-
tion, rather than the planning, we apply a simple planning
algorithm to the scenario: every time the robots need to
pass the ball, they simply take the pass that maximizes
the probability of one of our robots intercepting the ball
before the opponents. Furthermore, we discretize the space
of actions and search through all of them to pick the one
that maximizes the expected reward.

With this planning scheme, our robots decide based on a
model of the probability that a pass is successfully received
by a teammate: P (success |s, a). To model this probability,
we compute the predicted time τ̃ that each robot in the
field will take to intercept the ball. For this computation,
we use the interception model of the CMDragons team [1].
We note that, while our own robots can actually use this
interception model during execution, such that execution
matches planning, we do not know what model the opponents
use; this makes our model likely to be inaccurate in situations
in which opponents behave differently from us. To map these
interception times to a probability value, we compare the
shortest predicted interception time τ̃us among our robots,
to the shortest predicted interception time τ̃them among their
robots:

P (success |s, a) = Φ

(
τ̃them − τ̃us

σ

)
, (5)

where Φ is the cumulative distribution of the standard
normal distribution, and σ defines the uncertainty level in
our predictions. Therefore, the probability of a successful
pass smoothly changes from 0 when τ̃us >> τ̃them, to 0.5
when τ̃us = τ̃them, to 1.0 when τ̃us << τ̃them.

(a) Robot Y prepares to shoot, while B
navigates to various locations.

(b) Robot Y shoots the ball, and B computes
the optimal interception location.

(c) Robot B navigates to the chosen location
to intercept the ball.

Fig. 3: Setup for ball interception tests. Yellow and blue circles depict robots from opposing teams (Y and B), while the
orange circle depicts the ball. Thick lines indicate ball and robot trails, while the blue X indicates B’s chosen target.

Having defined the problem and the planner, we now
define the expectations E that will be monitored during
execution. Our planner depends entirely on the model of
interception times for each team, and our model of the
opponent is usually the one that cannot be known in advance;
because of this, we use the opponent interception time τ̃them
as the quantity to monitor. Every time the planner generates
a passing action, it passes an expectation e = (s, a,P) to
the monitor. Here, s and a are simply the state of the world
and the chosen pass. Termination states in P are states in
which a pass has just ended, determined by simple collision
checks between the ball and the robots. Finally, the expected
distribution of times is a normal distributionN (τ̃them, σ

2
τ̃). In

this work, we allow σ2
τ̃ to be constant; however, this quantity

could be learned and monitored as well.
During execution, the one-dimensional measured execu-

tion vector z = [τthem] would ideally represent the actual
time the opponent robot took to intercept the ball. However,
the ball may also be intercepted by one of our robots, or
go out of bounds before any robot intercepts it. In these
cases, if the pass finished at some time τ before the predicted
interception time τ̃them (τ < τ̃them) passed, no observation
is added to the monitor, as no information is gained about
the accuracy of τ̃them. On the other hand, if the pass finished
after time τ̃them had passed (τ > τ̃them), an observation is
added with τthem = τ ; this is an underestimate of how long
the opponent would have taken to intercept the ball, which
correctly observes that τthem > τ̃them.

VI. ILLUSTRATIVE RESULT

We deployed the execution monitoring framework, as
described in Section V, and tested it with the setup illustrated
in Figure 3: The yellow robot Y , from our team, has no
teammates on its field, but it must perform passes. It was
only allowed to pass from one starting location and in one
direction, for ease of visualization below. Furthermore, since
there is no chance of a successful pass, as there are no
teammates on the field, all its available actions (pass speeds
between 3ms−1 and 6ms−1) have the same expected reward,
and so it chooses randomly among them. The opponent blue
robot B continually navigates to various locations on its

half of the field, but attempts to intercept any moving balls.
This setup allowed us to obtain random samples of robot
B’s interception times starting with varying locations and
velocities relative to the ball, and different ball speeds.

We ran this test multiple times on a PhysX-based simula-
tion of our team, which includes robot models at the com-
ponent level. Robot Y employed the FARO monitor, while
robot B, whose model need not be known to Y , employed
our regular ball-interception algorithms. The purpose of this
experiment was to find out if the monitoring framework
would find any anomalies in our own architecture; that is,
find out if there were any unforeseen discrepancies between
planning and execution.

After running the experiment multiple times, the mon-
itoring framework repeatedly found an anomalous region
of approximately the same shape. This shape, whose 2D
projection is shown in Figure 4, contained states for which,
at the moment the ball was passed, the opponent robot was
already close to the trajectory of the ball along the perpen-
dicular direction, and was either moving toward the ball’s
trajectory or had a small velocity component moving away.
The average deviation τthem − τ̃them between measured and
expected interception time in this region was 0.3 seconds: the
opponent robot was intercepting the ball significantly farther
along the trajectory of the ball than predicted.

After analyzing the internal state of the intercepting robot,
we realized that there was indeed a discrepancy between
the algorithm used for planning and the algorithm used
during execution. While the execution algorithm used the
same computation to determine the fastest interception point,
it contained another mode that was unaccounted for: If
the robot was already on the path of a moving ball, then
it ignored the computation of closest intercept point, and
proceeded to stand its ground until the ball arrived to it.
This mode was created to prevent oscillatory behavior and
encourage a more stable reception of the ball, yet it was
neglected by the planner.

This illustrative example reveals the value of our anoma-
lous region-based monitor: The monitor was able to discover
an unmodeled mode of the opponent’s behavior. Even though

(a) Full field view of monitor running online.

(b) Close-up of detected anomaly in a different instance.

Fig. 4: Anomalous region detection result. Small circles with
attached lines show observations of opponent robot location
and velocity (in units of displacement over 0.1s) when a
pass starts. The red ellipse shows a 2D projection of the
detected 8D anomalous region onto the space of opponent
initial locations; data points that lie inside of the detected 8D
ellipse are shown in red. Grey ellipses show other samples
considered by FARO at the most recent execution step.

the robot does not understand the reasons behind the oppo-
nent’s actions, it can understand and exploit the effects of
this mode that are relevant to planning. Here, our robot can
make a simple modification to its time estimate, as described
in Section III-C, to improve the accuracy of the model. Our
robots can thus benefit from this discovery by exploiting the
region of sub-optimal performance (with respect to time) to
make passes that would have seemed likely to fail before the
model was corrected.

VII. CONCLUSION

This paper presents an execution monitoring framework
for robots that make decisions based on measurable, stochas-
tic expectations of how the world works. In particular, our
framework is concerned with continuous multidimensional
domains with potentially unknown modes of behavior, in
which expectations of action outcomes are not realized
during execution. The monitor finds these unknown modes
by searching for regions of a state-action feature space
in which execution deviates statistically significantly from
expected action outcomes. Additionally, if an unmodeled

mode is detected, the monitor also makes a simple suggestion
on how to change the model to more accurately predict action
outcomes in such mode.

The problem of detection and adaptation to unmodeled
behavior modes is of particular interest in adversarial envi-
ronments, since precise models of the opponents are rarely
available. In robot soccer, not only do we not have exact
models of the opponents, but opponents often intentionally
reveal new strategies and techniques only at execution time.
Monitoring our own robots as if they were opponents reveals
a mode of behavior that was unaccounted for during plan-
ning. Finding such an unforeseen anomaly shows promise
for the application of this monitoring framework in logs
of games played during RoboCup, and perhaps in real-time
during competition games.

In recent work [15], we show that an extension of
the framework presented in this paper can detect multiple
unmodeled behaviors, and correct the models accordingly.
Empirical demonstrations have shown that such a framework
can significantly improve performance in the complex robot
soccer sub-task of keeping the ball away from opponent
robots by passing it among teammates.

REFERENCES

[1] J. Biswas, J. P. Mendoza, D. Zhu, B. Choi, S. Klee, and M. Veloso,
“Opponent-driven planning and execution for pass, attack, and defense
in a multi-robot soccer team,” in Proceedings of International Con-
ference on Autonomous Agents and Multi-Agent Systems (AAMAS),
January 2014.

[2] Small Size Robot League. [Online]. Available: http://robocupssl.cpe.
ku.ac.th/

[3] O. Pettersson, “Execution monitoring in robotics: A survey,” Robotics
and Autonomous Systems, vol. 53, no. 2, pp. 73–88, Nov. 2005.

[4] R. J. Doyle, D. Atkinson, and R. Doshi, “Generating perception
requests and expectations to verify the execution of plans.” in AAAI,
T. Kehler, Ed. Morgan Kaufmann, 1986, pp. 81–88.

[5] G. D. Giacomo, R. Reiter, and M. Soutchanski, “Execution monitoring
of high-level robot programs.” in Principles of Knowledge Represen-
tation and Reasoning. Morgan Kaufmann, 1998, pp. 453–465.

[6] C. Gaskett, D. Wettergreen, and A. Zelinsky, “Q-learning in continuous
state and action spaces,” in Australian Joint Conference on Artificial
Intelligence. Springer-Verlag, 1999, pp. 417–428.

[7] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion.” in NIPS, vol. 99, 1999, pp. 1057–1063.

[8] C. G. Atkeson and J. C. Santamaria, “A comparison of direct and
model-based reinforcement learning,” in In International Conference
on Robotics and Automation, 1997.

[9] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: a survey,” Journal of Artificial Intelligence Research, vol. 4,
pp. 237–285, 1996.

[10] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Computing Surveys, pp. 1–72, September 2009.

[11] E. Keogh and J. Lin, “Hot sax: Efficiently finding the most unusual
time series subsequence,” in ICDM, 2005, pp. 226–233.

[12] J. P. Mendoza, M. Veloso, and R. Simmons, “Focused optimization
for online detection of anomalous regions,” in Proceedings of the
International Conference on Robotics and Automation (ICRA), Hong
Kong, China, June 2014.

[13] R. Rubinstein, “The cross-entropy method for combinatorial and
continuous optimization,” Methodology and computing in applied
probability, vol. 1, no. 2, pp. 127–190, 1999.

[14] M. Kulldorff, “A spatial scan statistic,” Communications in Statistics-
Theory and methods, 1997.

[15] J. P. Mendoza, M. Veloso, and R. Simmons, “Detecting and correcting
model anomalies in subspaces of robot planning domains,” in Proceed-
ings of International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS) (to appear), Istambul, Turkey, May 2015.

http://robocupssl.cpe.ku.ac.th/
http://robocupssl.cpe.ku.ac.th/

	Introduction
	Related Work
	Execution monitor design
	Planning with measurable expectations
	Monitoring expectations during execution
	Modifying the planning model

	Detecting anomalous regions of state-action Feature space
	Monitoring pass interception in robot soccer
	Illustrative Result
	Conclusion
	References

