1502.07019v1 [cs.RO] 25 Feb 2015

arXiv

Building with Drones: Accurate 3D Facade Reconstruction using MAVs
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Abstract— Automatic reconstruction of 3D models from im-
ages using multi-view Structure-from-Motion methods has been
one of the most fruitful outcomes of computer vision. These
advances combined with the growing popularity of Micro
Aerial Vehicles as an autonomous imaging platform, have made
3D vision tools ubiquitous for large number of Architecture,
Engineering and Construction applications among audiences,
mostly unskilled in computer vision. However, to obtain high-
resolution and accurate reconstructions from a large-scale
object using SfM, there are many critical constraints on the
quality of image data, which often become sources of inaccuracy
as the current 3D reconstruction pipelines do not facilitate the
users to determine the fidelity of input data during the image
acquisition. In this paper, we present and advocate a closed-loop
interactive approach that performs incremental reconstruction
in real-time and gives users an online feedback about the
quality parameters like Ground Sampling Distance (GSD),
image redundancy, etc on a surface mesh. We also propose
a novel multi-scale camera network design to prevent scene
drift caused by incremental map building, and release the first
multi-scale image sequence dataset as a benchmark. Further,
we evaluate our system on real outdoor scenes, and show that
our interactive pipeline combined with a multi-scale camera
network approach provides compelling accuracy in multi-view
reconstruction tasks when compared against the state-of-the-art
methods.

I. INTRODUCTION

Micro Aerial Vehicles a.k.a. Flying drones make them-
selves useful in a number of Architecture, Engineering and
Construction (AEC) applications. With the price of the
technology dropping fast, these firms are putting drones to
work with increasing frequency. Building teams across the
globe are now employing such drones as imaging platforms
to simplify what is inherently a complex, messy process.
Adding a simple passive camera technology makes these
drones become invaluable: to fly through existing structures
while returning rich, multi-layered data about the building
information that can be used for creating 3D digital models
of exterior facades, plan renovations via digital 3D simula-
tion and even to automatically generate 3D printable pre-
fabricated structures.

While the field of drones and robotics is yet emerging,
image-based 3D reconstruction and modeling techniques
have reached maturity. SfM is a well-studied topic and
several methods have surfaced [2], [3] in the last few
years, which demonstrate increased robustness, result in high
quality and claim to have accuracy comparable to laser range
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sensor systems at a fraction of the cost [4]. Though, these
methods were designed to efficiently process thousands of
unordered images from photo community collections and
automatically construct 3D models [1], their implicit benefits
have found popularity not only among researchers, but also
lead to participation of an ever increasing population of
end-users, who are not experts in computer vision, for
applications like architectural reconstruction and scene doc-
umentation.

We agree that, given a set of images and method, a
certain accuracy can be achieved that is comparable to
lasers, as claimed by most recent work. However, it is also
widely understood in the community that an arbitrary set
of images can be found that would not meet that accuracy.
Furthermore, for industrial applications like automatic facade
reconstruction, the accuracy of the resultung 3D models
are extremely crtitical and the current methods for image-
based 3D reconstruction do not match required accuracy
under unconstrained circumstances. The quality and com-
pleteness of 3D models obtained by SfM heavily depend
on the image quality and image acquisition strategy. Since
the current pipelines are designed mainly to handle large-
scale unordered image datasets with very high redundancy,
they often do not meet the demands of application specific
scenarios where images are acquired deliberately for the
reconstruction process. Hence, one needs to come up with
novel measures for a predictable application of SfM in
the most diverse circumstances. This work thus focuses on
Structure-from-Motion for applications where images need
to be deliberately acquired for the reconstruction process.

To recover an accurate and complete 3D model, the StTM
process has several requirements on the input images: The
viewing angle between two images may not be too large
to allow feature matching, the view cones must overlap,
the images have to be textured but the texture may not
be repetitive and lighting hasn’t changed too much between
images. For a user it is impossible to estimate if the acquired
images fulfill all demands. Another difficult question is the
scene completeness, i.e. the coverage of the scene. Parts of
the scene that are not captured with sufficient image overlap
cannot be reconstructed. Since completeness depends on the
required reconstruction resolution i.e. level-of-detail, and on
the surface itself it is not possible to quantify the degree
of completeness without prior information. In contrast, for
a human it is relatively easy to answer this question by
comparing a 3D model to the real world.

We propose to tackle this problem by integrating the
acquisition process directly into the reconstruction pipeline.
Instead of first acquiring a set of images and then processing
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(a) Graz500 Multi-scale Facade dataset. (b) Reconstruction of a facade shows that though visually correct in appearance, geometric inconsistencies

(significant bends along the fringes) and holes in reconstruction are prevalent, even with state-of-the-art method [1]. (¢) In comparison, using our multi-scale
framework with a online feedback support results in a straight wall and complete scene reconstruction.

the whole dataset in batch-based manner, we propose a
closed-loop interactive processing that performs an incre-
mental reconstruction in real-time. Our closed-loop approach
first determines the camera pose of a new acquired image,
updates the sparse point cloud and then extracts a surface
mesh from the triangulated image features. This allows us
to compute quality parameters like the Ground Sampling
Distance (GSD) and the image overlap which are then
visualized directly on the surface mesh.

Furthermore, the intuitive difficulties of incremental SfM
methods, such as drift, high resolution vs. accuracy tradeoff,
etc. have not been solved completely (Fig. 1). The expla-
nation for the cause of this drift lies in the actual camera
network: as the scene is covered by fewer images towards
the borders of the surveying area compared to the center
of the object. Less image overlap leads to fewer image
measurements per object point and thus causes the camera
network to have fewer connections at the borders. This has
the effect that the optimization of camera positions and 3D
object points in the bundle adjustment is less constrained,
thus the optimized positions can undergo larger changes.

To overcome this problem, we propose to adjust the
image acquisition strategy to a multi-scale network and take
images at different distances to obtain dense reconstructions
while being more accurate. Our motivation for a multi-scale
camera network also derives from our experience in 3D aerial
mapping. Flying at different altitudes is a common approach
in airborne photogrammetry to enhance the accuracy of I/O
parameters. We use the same idea to ground level image-
based modeling and propose to change the gold-standard
from acquisition at a single depth to a multi-scale approach.
It is the above considerations that motivate our contribution.

Our technical contributions are three-fold. First, we
present a user-friendly method for accurate camera calibra-
tion using fiducial markers, an automatic geo-referencing
technique and a fully incremental surface meshing method
using a new sub-modular energy function, which are then
integrated into a full real-time system. Second, we, pro-
pose a multi-scale camera network design to constrain the
bundle block optimization to prevent scene drift caused

by incremental map building, while obtaining high quality
reconstruction. Third, we release the first multi-scale image
sequence dataset along with complete ground truth to be
available for the community as benchmark data.

II. BENCHMARKING DATASET

We acquired a dataset (Graz500 Multi-scale Facade) with
a multi-scale image sequence of an outdoor facade scene
consisting of 500 images. For image acquisition we used a
Falcon octocopter from AscTec as a flying platform. The
MAV is equipped with a Sony NEX-5N digital camera.
The APS-C CMOS sensor has an image resolution of 16.1
megapixels and is equipped with a fixed focus lens having
a focal length of 16 mm. The overview of the multi-scale
camera network design is depicted in Fig. 1. Images were
acquired at different depths, heights and viewing angles to
facade using the online feedback methodology described in
the next section. The dataset thus also offers an opportunity
for detailed analysis and evaluation of the various factors
in image-based facade reconstruction. To the best of our
knowledge, this is the only publicly available dataset with
a structured multi-scale image sequence and is expected to
serve as a benchmark data for the community.

We have acquired accurate terrestrial laser scanning (LI-
DAR) data, having a GSD of 1.5 ¢m and point measurement
uncertainty of 2 mm using a Leica Total Station that will
serve as geometrical ground truth to evaluate the quality of
the image based reconstructions. The data was acquired in a
single scan and hence does not involve any irregularities due
to scan registrations. Note, that we do not treat the LIDAR
data as an absolute ground truth reference. The LIDAR
itself contains errors, which are estimated and translated
to the image based acquisition. As a result, we evaluate
image-based modeling only relative to its accuracy. Thus,
to assess the achieved absolute accuracy in 3D, the facade
(which is about 30m high and 50m long) is equipped with
a reference network (17 fiducial targets) of Ground Control
Points. The ground truth data for each GCP is measured
using a theodolite and has an uncertainty of less than 1 mm.
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Camera Calibration using fiducial markers. (a) Each marker encodes a unique ID. (b) A typical calibration image arbitrarily arranged in a 4x4

grid on the floor. (c) Reliably extracted markers with positions and ID. (d) Online feedback for feature point coverage.

III. APPROACH

Our 3D facade reconstrcution pipeline follows the tradi-
tional approach and consists of four modules: image ac-
quisition and camera calibration, multi-view sparse recon-
struction, geo-registration by transforming the 3D model
into a geographic reference coordinate frame and finally, a
densification and surface meshing step. In order to realize the
closed-loop schema that can give instant feedback about the
contribution of a new image, all components have to work (a)
in a fully incremental manner and (b) in real-time. Therefore,
we present and employ novel interactive calibration and
incremental sparse reconstruction schemes, an automated
geo-referencing technique and a fully incremental surface
meshing method, which are then integrated into a full real-
time system.

A. Accurate Camera Calibration

Accurate intrinsic camera calibration is critical to most
computer vision methods that involve image based measure-
ments. Traditional SfM pipelines such as Bundler, Agisoft,
etc. employ a direct use of uncalibrated views for 3D
reconstruction, and can inherently deal with a dataset having
images taken at varying focal length, scale and resolution.
However, in our experience, we have found that accuracy of
Structure-from-Motion computation is expected to be higher
with an accurately calibrated setup [5], [6]. In most of the
calibration literature [7], [8], [9], a strict requirement on
the target geometry and a constraint to acquire the entire
calibration pattern has been enforced. This is often a source
of inaccuracy when calibration is performed by a typical end-
user. Additionally, these methods tend to fail when images
are taken at considerably different distances to the object.
Hence, aiming at the accuracy of target calibration techniques
while factoring out image space variations due to occlusion,
reflection, etc., we advocate the use of a recently proposed
fiducial marker based camera calibration method [10].

The calibration routine follows the basic principles of
planar target based calibration and thus requires simple
printed markers to be imaged in several views (Fig. 2).
Each marker includes a unique identification number as
a machine-readable black and white circular binary code,
arranged rotationally invariant around the marker center. A
novel technique for robustly estimating the focal length is
employed, where an error function is exhaustively evalu-
ated to obtain a globally optimal value of focal length f

determining the calibration matrix K. In our findings, this
methods works very robustly and performs much better for
a multi-scale image sequence acquired at varying depths to
the object, as compared to traditional methods that employ
a non-linear minimization technique for intrinsic parameters
estimation. In addition, staying with the thrust of this paper
to give users a online feedback of the acquisition fidelity, we
facilitated the method with an easy to use GUI with user-
feedback about the feature point coverage (Fig. 2). There
are significant qualitative and quantitative benefits of the
presented calibration method towards a multi-scale robust
image sequence.

B. Real-time and Interactive SfM

Classically, batch-based SfM approaches assume spatially
unordered images as input and therefore require several
minutes or hours to determine the spatial ordering by con-
structing an epipolar graph [1]. Since the construction of
the epipolar graph comprises the calculation of relative
orientations between all image pairs, this is the most time-
consuming task in batch SfM pipelines [11]. In our addressed
problem, we can assume that a user does not acquire images
in a totally random order. If we assume that a new input
image / has an overlap to an already reconstructed scene
part, we can skip the epipolar graph construction and the
SfM problem can be split into two tasks that are easier to
solve: localization and structure expansion. More formally,
given a freshly acquired input image / and a reconstructed
scene M, we find the position of / within M and finally,
we expand the map M. The presented method is similar to
visual SLAM, but it matches wide-baseline features instead
of tracking interest points.

To calculate the pose of an image with respect to an SfM
point cloud we follow the approach of Irschara et al. [12].
Given a new image I, we compare its visual appearance
against all already reconstructed images using an efficient
vocabulary tree approach [13] and results in a similarity
score for each image. Then we match I pairwise against the
image features of the top n images with highest similarity
score to determine feature correspondences. Since some
of the features are already used for the triangulation of
3D points, we can establish 2D-3D image correspondences
between [ and M. Given a set of 2D-3D correspondences
and a calibrated camera, we solve the absolute pose problem
robustly in a RANSAC loop [14]. If a valid position for
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Fig. 3. Online feedback of the evolution of the reconstructed facade over time. The first column shows the color coding of the GSD where blue indicates
a low resolution and red a high resolution. The images in the second column are the image overlap of the reconstruction. Red colored parts are seen by 30
and more cameras. The last column shows the reconstructed mesh without any color. The meshes are extracted after 50, 100 and 200 integrated images.
The visualization supports the user to recognize which parts of the object have been reconstructed reliably.

I is determined, this pose is refined by minimizing the
reprojection error using non-linear optimization techniques.

If we cannot localize I within M, this is reported to the
user instantly. Hence, they can directly know that / could
not be aligned within the map and are asked to take a new
picture. Since the orientation of / is known and we already
have image correspondences available from the previous
step, we can easily triangulate new 3D points. To reduce
the number of outlier matches, we perform epipolar filtering
before triangulation. For bootstrapping the initial map M,
we require two images taken from different viewpoints, and
perform brute-force feature matching.

C. Incremental Surface Reconstruction

The basic principle of most existing methods for extracting
surfaces from sparse SfM point clouds is based on the De-
launay triangulation (DT) of 3D points, and then to robustly
label the tetrahedra into free and occupied space using a
random field formulation of the visibility information. The
surface is then extracted as the interface between free- and
occupied space. Such traditional methods for robust surface
extraction [15] are not well suited for incremental manner
as their computational costs scale exponentially with the
increase in the number of 3D points. In contrast, existing
solutions for incremental surface reconstruction [16], [17]
are either based on a strong camera motion assumption or
they are prone to outliers [18].

We present a new method to incrementally extract a sur-
face from a consecutively growing SfM point cloud in real-
time. Though the core idea of our method remains the same,
we propose a new energy function that allows us to extract
the surface in an incremental manner, i. e. whenever the point
cloud is updated, we adapt our energy function. Given a set

of tetrahedra V obtained by the DT of the point cloud, we
define a random field where the random variables are the
tetrahedra of V. Our goal is to identify the binary labels .
that give the maximum a posteriori (MAP) solution for our
random field, analyzing the provided visibility information
Z. The binary labels specify if a certain tetrahedron V; € V
is free- or occupied space. To identify the optimal labels .Z,
we define a standard pairwise energy function:

E(Z)= Y{EVi %)+ YLjen Ex(Vi,Vis %) (1)

where .4; denotes the four neighboring tetrahedra of the
tetrahedron V; and %, is a subset of %, consisting of all
rays connected to the vertices that span V;.

For defining the unary costs E,(Vi,Z%;) we follow the idea
of the Truncated Sign Distance function (TSDF) that the
probability that a certain tetrahedron V; is free space is high,
if many rays of %; pass through V;. Therefore, we set costs
for labeling V; as occupied space to n7Qfy.., where ny is the
the number of rays of Z%; that pass through V;. In contrast
if V; is located in extend of many rays of %; the probability
is high that V; is occupied space. For this reason, the costs
for labeling V; as free space are set to n,0.., where n, is
the number of rays in front of V;. Fig. 4 illustrates the unary
costs for a small example. Here, ny is 1 since only the light
blue ray passes V; and n, is 3 because V; is in extend of the
three green rays. The red rays do not contribute to the unary
costs.

For the pairwise terms we assume that it is very unlikely
that neighboring tetrahedra obtain different labels, except for
pairs (V;,V;) that have a ray through the triangle connecting
both. Let Ry be a ray of %; that passes V;. If Ry intersects the
triangle (V;,V;), Ep(Vi,V;, %) is set to B, Triangles (V;,V;)
that are not intersected by any ray of %; are set to B;,;,. Fig. 4
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Fig. 4. (a) For defining the unary term for a specific tetrahedron V; we
only analyze rays (dashed lines) connected to vertices that span V;. (b) For
the pairwise term we only consider rays that pass through the tetrahedron
and that are connected to the tetrahedron vertices. (¢) Graph representation
of the energy function. The pairwise weights that are not shown are set to
binir -

shows the pairwise costs in an example. Fig. 4 visualizes the
graphical model of the energy function for a small example.

Having defined all terms for our random field formulation,
we are then able to derive a globally optimal labeling solution
for our surface extraction problem using graph cuts. This is
possible as our priors are submodular. However, to enable the
method to work in an incremental fashion, we employ the
dynamic graph cut of Kohli et al. [19] instead of minimizing
the updated energy with a standard graph cut. This allows
an efficient minimization of a series of similar random fields
by re-using the previous solution.

To guide the user throughout the acquisition, we visualize
the current, Ground Sampling Distance (GSD) and image
redundancy as quality indicators [18] on the surface model
as shown in Fig.3. Quantitatvely, our method achieves the
same accuracy as state-of-the-art methods but reduces the
computational effort significantly. The difference in com-
putational effort is mainly caused by the definition of the

Scene completeness for SfM results from individual row subsets at (a) Distance: 4m (b) Distance: 6m and (c) Distance: 10m.

energy function. While [15] has to perform a full raycast
for each ray, we only have to identify the tetrahedra in front
and behind the vertex and the first triangle that is intersected
by the ray, and while their optimization requires 740 ms, our
energy is fully optimized in 430 ms. Hence, the combination
of the dynamic graph cut with our new energy formulation
allows us to extract the surface from an increasingly growing
point cloud nearly independent of the overall scene size in
almost real-time.

D. Multi-scale Camera Network

In 3D reconstruction literature, the distance to the recon-
struction object has always been considered an important
and contributing factor but seldom has been studied in an
empirical way. It is widely accepted in the robotics and
vision community that the closer we go to the image greater
information is gained and accuracy is improved. However,
our experience with structure from motion has shown that
the contrary is true. We performed a systematic study on
the ground control point accuracy with respect to distance of
image acquisition from facade and ground sampling distance.
Our facade dataset was further quantified into 3 row-subsets
based on the distance of acquisition from close to distant (4
m, 6 m and 10 m), and reconstruction was performed on each
subset independently using the proposed pipeline.

1) Scene Completeness Vs. High Accuracy: It can be
observed from the results in Table I, the mean absolute error
decreases significantly as we go further from the facade.
This is contrary to the belief that the closer one gets to the
object i.e. the higher the resolution the greater will be the
accuracy. Thus after an exhaustive evaluation and study of
various parameters we can state that the influence of the
geometric configuration of the multi-view camera network
on the resulting accuracy is higher than the influence of
redundancy in image acquisition and there is a significant
accuracy gain as we go away from the facade. This is
possibly due to the strong drift affect caused in the camera
pose estimation when the distance between the camera and
the object is very small. However, we also observe that as
we go closer to the facade the scene completeness is greatly
improved as can be seen in Fig. 5. This is because a greater



Mean Error (mm)
Distance Ours | Bundler | AgiSoft
Near Row (4m) 45.2 51.3 57.1
Middle Row (6m) | 23.1 27.2 323
Far Row (10m) 5.7 11.2 16.1

TABLE 1
ACCURACY RESULTS ON INDIVIDUAL ROW SUBSETS.

number of finely textured featured points are only visible in
the closeby images due to a higher GSD. It can be thus
concluded that there is a trade-off between accuracy and
completeness as we change the distance between the image
acquisition and facade. We can generalize this as a systematic
behavior as they can also be consistently observed in the
standard software packages. Hence, we infer that a model
incorporating the knowledge of this trade-off could help in
improving the metric accuracy of the final reconstruction.

2) Constrained Bundle Block Optimization: A way to
avoid systematic errors arising from the deformation of
the image block is to introduce the prior knowledge of
this behavior in bundle adjustment. The global optimization
of camera positions and 3D object point positions in the
Bundle Adjustment (BA) is carried out based on Googles
Ceres Solver for non-linear least squares problems [20].
For this purpose, we modify the cost function from the
original bundling step to include another cost term based
on distance of the image from the scene of interest besides
the mass of object points from natural landmarks from
SIFT. In particular, we penalize the reprojection error of the
feature points in image space with a Huber error norm [21].
Furthermore, we let the initial camera parameters for intrin-
sics and lens distortion be commonly refined and corrected
for all cameras in the bundle adjustment step. Thus multi-
scale integration distributes the residual errors equally over
all markers and allows 3D reconstructions with very low
geometric distortions, even for elongated objects of large
extent. This can be observed from the experimental results
shown in Sec. IV

E. Automatic Geo-Referencing

The reconstruction and external orientation of the cameras
recovered using the described pipeline so far is initially in a
local Euclidean coordinate system and only up to scale and
therefore not metric. However, for applications in facade re-
construction, the absolute position accuracy of the measured
object points is of interest [22]. In addition, we want the
created 3D model correctly stored and displayed in position
and orientation in its specific geographic context. Based on
known point correspondences between reconstructed object
points and ground control points (GCPs), we first transform
the 3D model from its local source coordinate frame into
a desired metric, geographical target reference frame using
similarity transform.

1) Marker-based Rigid Model Geo-Registration: To fa-
cilitate automation and to avoid erroneous point correspon-
dences by manual control point selection, the association

Fig. 6. Automatically detected ground control points with plotted marker
centers and corresponding marker IDs.

Fig. 7. Histogram for an unrolled circular marker and rotation invariant
binning of the code stripe. The numbers from top to bottom indicate the
probabilities for center, binary code and outer circle. The marker with ID
20 has been successfully decoded.

of point correspondences between image measurements and
ground control points is encountered again using fiducial
markers introduced for camera calibration. A requirement
for full automation is that markers are detected robustly and
stable in at least two images of the dataset and are clearly
identified individually by their encoded ID. The detection
also needs to work reliably from different flying altitudes
and distances from the object.

Instead of paper print outs, we make use of larger versions
(~50 cm diameter) of the markers printed on durable weather
proof plastic foil to signal reference points in the scene
used as GCPs. The markers are flexible, rolled up easy to
carry, though robust and universally applicable even in harsh
environments.

The markers are equally distributed in the target region
and placed almost flat on the ground or attached to a
facade. The 3D positions of the marker centers are then
measured by theodolite, total station or differential GPS
with improved location accuracy (DGPS), which is the only
manual step in our reconstruction workflow besides image
acquisition. All input images are then processed for marker
detection. After thresholding and edge detection, we extract
contours from the input images and detect potential markers
by ellipse fitting. The potential markers are then rectified
to a canonical patch and verified by finding circles using
Hough transform. If the verification is positive, we sample
the detected ellipse from the original gray scale image to
unroll it and build a histogram (Figure 7). In the thresholded
and binned histogram we extract the binary code of the
marker if the code probability is high. The marker ID is
obtained by checking the code in a precomputed lookup
table.

The detected ellipse center describes the position of the
image measurement of the respective marker (see Figure 6).
By triangulating multiple image measurements of one and
the same marker seen in several images, we calculate
its 3D object point position in the local reference frame
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of the model. The markers can be directly matched and
automatically associated with their corresponding ground
control reference points as long as they share the same
ID. Once, corresponding point pairs have been established
between model and reference, they are used to calculate the
transformation parameters. This results in a geo-registered
model of the object.

IV. PERFORMANCE EVALUATION AND RESULTS

In this section we analyze the performance of our proposed
approach for acuurate 3D facade reconstruction based on a
multi-scale image sequence obtained from a a micro-aerial
vehicle. All experiments were conducted in an uncontrolled
environment to simulate conditions similar to that experi-
enced by a common user.

A. Accuracy Comparison to Ground Truth.

In order to give a full quantitative evaluation of the
influence of our interactive SfM framework on reconstruction
accuracy we compare our methodology to state-of-the-art
pipelines using ground truth 3D data. The Bundler (open-
source) [1] and Agisoft (commercial) software packages
were used as our primary reference, as they represent the
most popular methods for SfM within the computer vision
community.

1) Absolute Error.: In literature, the reprojection error of
an object or feature points has often been used as an adequate
measure for evaluating the accuracy of the SfM reconstruc-
tion. However, for most end-user applications the accuracy
of the 3D reconstructed object points is of prime interest. We
thus perform a point-wise comparison and evaluation. First,
we calculate the absolute mean over all the points as the
3D eurclidean distance between the corresponding ground
control point and the reconstructed and geo-referenced point.
The results of the experiment have been shown in Table II.
It has to be noted that the results of other pipelines have
been calculated on the dataset acquired without our online
feedback framework.

2) Relative Error.: Next, we calculate the one way Haus-
dorff distance (similarity measure) between the reconstructed
point cloud (densification using PMVS [23]) and the point
cloud obtained from the Laser Scanner. The number of points
in the reconstructed point cloud was about 9 million, with
a GSD of 1 mm. Similar steps were performed for the
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Color coded dense 3D point clouds based on Hausdorff distance obtained using (a) Ours and (b) Bundler. Note: Best seen in color.

Mean Error (mm)
Image Acquisition Method | Ours | Bundler | AgiSoft
Standard BA 23.1 27.2 32.3
Multi-scale BA 9.1 15.5 21.6
Time Taken (sec)
Time Performance Ours | Bundler | AgiSoft
SftM 880 6220 6455
TABLE II
(A) ACCURACY COMPARISON W.R.T GROUND TRUTH DATA. (B) TIME
PERFORMANCE

sparse point cloud obtained from the Bundler software. The
reconstructed point clouds were then color coded based on
the Hausdorff distance and the results have been shown in
Fig. 8.

It can be clearly seen that using our method the absolute
mean error for reconstructed GCPs is in the range of 9 mm
and overall relative accuracy of 90 % of the facade is within
2 mm error range with respect to the laser point cloud,
which is within the uncertainty range of the total station. A
closer inspection reveals that the high errors are only along
the sections of the point cloud missing in the laser scanner
such as roof, missing window panes, etc. Thus, we observe
that our method considerably outperforms the state-of-the-art
methods in both the absolute and relative error analysis to get
highly accurate results comparable to the uncertainty of the
laser point cloud, even when performed by an inexperienced
end-user.

B. Time Performance compared to State-of-the-art

To evaluate the performance of online SfM approach, we
compare running time of presented online SfM to a state-of-
the-art batch-based SfM approach. For both methods, we use
5000 SIFT features per image that have largest scale. The
features are extracted by the SIFTGPU implementation. Our
approach requires 880 seconds to process the 500 images
from the dataset, which is 7.1 times faster than Bundler. On
average, our approach requires 1.75 seconds to integrate a
new image into the structure and to extend the map. This
is within the latency of the time constraints of the MAV to
transmit back a new image from the next possible camera
network position, and hence we can conclude that the online
SfM method is approximately in real-time.



C. Multi-scale Camera Network Benefits

We extend our evaluation to quantitatvely and qualitatively
assess the benefits of multi-scale camera network based
acquisition when applied to incremental 3D reconstruction
methods. Experiments on accuracy evaluation similar to last
section is performed, with and without a multi scale network
based bundle adjustment. The results can be seen in Table II.
We observe that the proposed multi-scale camera network
framework using the constrained bundle block formulation
helps to overcome drift. It facilitates accurate reconstructions
without compromising on scene completeness. The qualitive
benefits on the geometric fieldity of reconstruction has been
shown in Fig. 1. As a ground truth, we know that the
reconstructed wall of the facade should be straight. How-
ever on a detailed inspection, we can clearly see that the
reconstructed wall suffers from significant bending using a
uni-scale acquisition approach, owing mainly to the drift due
to map building in a incremental SfM framework. In contrast,
the use of a multi-scale approach helps constrain the bundle
block from deformation due to error accumulation and con-
sequently results in accurate and complete reconstruction.

V. CONCLUSION AND FUTURE WORK

In this paper we have revisited and improved the classic
incremental 3D reconstruction framework. Our technique
enables real-time computation of structure from motion
and provides users with online feedback to ensure that all
relevant parts of the environment have been captured with
enough overlap and with the desired resolution. Further,
we also present a novel framework to modify the image
acquisition to acquire images at various depths. This formu-
lation helps constrain the error accumulation due to drift,
which is inherent in incremental mapping methods. The
overall framework greatly improves the reliability of image-
based 3D reconstruction when image acquisition is done
deliberately. We show that combining these technologies
with developments in drone technology can return micro-
metrically accurate data that has immense applications in
Architecture, Engineering and Construction domains.

In the future, we will extend our method by adding a path
planner to the approach, making it suitable for autonomous
image acquisition and active multi-scale camera network
design. Even without this feature, our method supports users
to judge the quality and the completeness during image
acquisition on site and makes the eventual reconstruction
result predictable. Furthermore, the software for the proposed
interactive calibration approach, the benchmarking dataset
for multi-scale image sequence along with ground truth
(Laser Scans and GCP positions in global coordinates) will
be made publicly available, so that a wide audience can
benefit from our findings.

REFERENCES

[1] N. Snavely, S. M. Seitz, and R. Szeliski, “Modeling the world from
internet photo collections,” International Journal of Computer Vision
(IJCV), vol. 80, no. 2, pp. 189-210, 2008.

[2]

[3]

[4]

[9
[10

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Y. Furukawa and J. Ponce, “Accurate, dense, and robust multiview
stereopsis,” IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), vol. 32, no. 8, pp. 1362-1376, 2010.

H.-H. Vu, P. Labatut, J.-P. Pons, and R. Keriven, “High accuracy and
visibility-consistent dense multiview stereo,” IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), vol. 34, no. 5, pp.
889-901, 2012.

S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski,
“A comparison and evaluation of multi-view stereo reconstruction
algorithms,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2006.

A. Irschara, C. Zach, and H. Bischof, “Towards wiki-based dense
city modeling,” in [EEE International Conference on Computer Vision
(ICCV), 2007.

C. Strecha, W. von Hansen, L. Van Gool, P. Fua, and U. Thoennessen,
“On benchmarking camera calibration and multi-view stereo for high
resolution imagery,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2008.

Z. Zhang, “A flexible new technique for camera calibration,” IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI),
vol. 22, no. 11, pp. 1330-1334, 2000.

G. Bradski, A. Kaehler, and V. Pisarevsky, “Learning-based computer
vision with intel’s open source computer vision library,” Intel Tech-
nology Journal, vol. 9, no. 2, pp. 119-130, 2005.

J.-Y. Bouguet, “Camera calibration toolbox for matlab.”

S. Daftry, M. Maurer, A. Wendel, and H. Bischof, “Flexible and user-
centric camera calibration using planar fiducial markers,” in British
Machine Vision Conference (BMVC), 2013.

C. Hoppe, M. Klopschitz, M. Rumpler, A. Wendel, S. Kluckner,
H. Bischof, and G. Reitmayr, “Online feedback for structure-from-
motion image acquisition.” in British Machine Vision Conference
(BMVC), 2012.

A. Irschara, C. Zach, J.-M. Frahm, and H. Bischof, “From structure-
from-motion point clouds to fast location recognition,” in /EEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2009.

D. Nister and H. Stewenius, “Scalable recognition with a vocabulary
tree,” in IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2006.

M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381-395, 1981.

P. Labatut, J.-P. Pons, and R. Keriven, “Efficient multi-view reconstruc-
tion of large-scale scenes using interest points, delaunay triangulation
and graph cuts,” in [EEE International Conference on Computer Vision
(ICCV), 2007.

Q. Pan, G. Reitmayr, and T. Drummond, “ProFORMA: Probabilistic
Feature-based On-line Rapid Model Acquisition,” in British Machine
Vision Conference (BMVC), 2009.

S. Yu and M. Lhuillier, “Incremental reconstruction of manifold sur-
face from sparse visual mapping.” in Joint 3DIM/3DPVT Conference:
3D Imaging, Modeling, Processing, Visualization & Transmission
(3DIMPVT), 2012.

C. Hoppe, M. Klopschitz, M. Donoser, and H. Bischof, “Incremental
surface extraction from sparse structure-from-motion point clouds,” in
British Machine Vision Conference (BMVC), 2013.

P. Kohli and P. Torr, “Dynamic graph cuts for efficient inference in
markov random fields,” IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), vol. 29, no. 12, pp. 2079-2088, 2007.

S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski, “Bundle
adjustment in the large,” in European Conference on Computer Vision
(ECCV), 2010.

P. J. Huber, “Robust estimation of a location parameter,” The Annals
of Mathematical Statistics, vol. 35, no. 1, pp. 73-101, 1964.

M. Rumpler, S. Daftry, A. Tscharf, R. Prettenthaler, C. Hoppe,
G. Mayer, and H. Bischof, “Automated end-to-end workflow for pre-
cise and geo-accurate reconstructions using fiducial markers,” ISPRS
Annals of Photogrammetry, Remote Sensing and Spatial Information
Sciences, vol. 1I-3, pp. 135-142, 2014.

Y. Furukawa and J. Ponce, “Accurate, dense, and robust multi-view
stereopsis,” IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), vol. 32, no. 8, pp. 1362-1376, 2010.



