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Abstract— Inference of three-dimensional motion
from the fusion of inertial and visual sensory data has
to contend with the preponderance of outliers in the
latter. Robust filtering deals with the joint inference
and classification task of selecting which data fits the
model, and estimating its state. We derive the optimal
discriminant and propose several approximations, some
used in the literature, others new. We compare them
analytically, by pointing to the assumptions underlying
their approximations, and empirically. We show that the
best performing method improves the performance of
state-of-the-art visual-inertial sensor fusion systems, while
retaining the same computational complexity.

Supplementary video results available at:
http://youtu.be/5JSF0-DbIRc

I. INTRODUCTION

Low-level processing of visual data for the purpose of
three-dimensional (3D) motion estimation yields mostly
garbage: Easily 60 − 90% of sparse features selected
and tracked across frames are inconsistent with a single
rigid motion due to illumination effects, occlusions, or
independently moving objects. These effects are global
to the scene, while low-level processing is local to
the image, so it is not realistic to expect significant
improvements in the vision front-end. Instead, it is
paramount that inference algorithms that use vision
be capable of dealing with such a preponderance of
“outlier” measurements. This includes leveraging on
other sensory modalities, such as inertials. We tackle
the problem of inferring ego-motion of a sensor platform
from visual and inertial measurements, focusing on the
handling of outliers. This is a particular instance of
robust filtering, a mature area of statistics, and most
visual-inertial integration systems (VINS) employ some
form of inlier/outlier test. Different VINS use different
methods, making their comparison difficult. None relate
their approach analytically to the optimal (Bayesian)
classifier.

We derive the optimal discriminant, which is in-
tractable, and describe different approximations, some
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currently used in the VINS literature, others new. We
compare them analytically, by pointing to the assump-
tions underlying their approximations, and empirically.
The results show that it is possible to improve the
performance of a state-of-the-art system with the same
computational footprint.

A. Related work
The term “robust” in filtering and identification refers

to the use of inference criteria that are more forgiving
than the L2 norm. They can be considered special
cases of Huber functions [1], where the residual is re-
weighted, rather than data selected (or rejected). More
importantly, the inlier/outlier decision is typically in-
stantaneous. Our derivation of the optimal discrimi-
nant follows from standard hypothesis testing (Neyman-
Pearson), and motivates the introduction of a delay-
line in the model, and correspondingly the use of a
“smoother”, instead of a standard filter. State augmen-
tation with a delay-line is common practice in the
design and implementation of observers and controllers
for so-called “time-delay systems” [2], [3] or “time
lag systems” [4], [5] and has been used in VINS
[6], [7]. Various robust inference solutions proposed
in the navigation and SLAM literature (simultaneous
localization and mapping), such as One-point Ransac
[8], or MSCKF [9], can also be related to the standard
approach. Similarly, [10] maintains a temporal window
to re-consider inlier/outlier associations in the past, even
though it does not maintain an estimate of the past state.

B. Notation and mechanization

We adopt the notation of [11], [12]: The spatial frame
s is attached to Earth and oriented so gravity γT =
[0 0 1]T ‖γ‖ is known. The body frame b is attached
to the IMU. The camera frame c is also unknown,
although intrinsic calibration has been performed, so
that measurements are in metric units. The equations
of motion (“mechanization”) are described in the body
frame at time t relative to the spatial frame gsb(t). Since
the spatial frame is arbitrary, it is co-located with the
body at t = 0. To simplify the notation, we indicate
gsb(t) simply as g, and so for Rsb, Tsb, ωsb, vsb, thus
omitting the subscript sb wherever it appears. This yields
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a model for pose (R, T ), linear velocity v of the body
relative to the spatial frame:

Ṫ = v T (0) = 0

Ṙ = R(ω̂imu − ω̂b) + nR R(0) = R0

v̇ = R(αimu − αb) + γ + nv

ω̇b = wb

α̇b = ξb.
(1)

where gravity γ ∈ R3 is treated as a known parameter,
ωimu are the gyro measurements, ωb their unknown bias,
αimu the accel measurements and αb their unknown bias.

Initially we assume there is a collection of points pi
with coordinates Xi ∈ R3, i = 1, . . . , N , visible from
time t = 0 to the current time t. If π : R3 → R2;X 7→
[X1/X3, X2/X3] is a canonical central (perspective)
projection, assuming that the camera is calibrated and
that the spatial frame coincides with the body frame at
time 0, a point feature detector and tracker [13] yields
yi(t), for all i = 1, . . . , N ,

yi(t) = π(g−1(t)pi) + ni(t), t ≥ 0 (2)

where π(g−1(t)pi) is represented in coordinates as
RT1:2(t)(Xi−T (t))

RT3 (t)(Xi−T (t))
. In practice, the measurements y(t) are

known only up to an “alignment” gcb mapping the body
frame to the camera:

yi(t) = π
(
gcbg

−1(t)pi
)

+ ni(t) ∈ R2 (3)

The unknown (constant) parameters pi and gcb can then
be added to the state with trivial dynamics:{

ṗi = 0, i = 1, . . . , N(j)

ġcb = 0.
(4)

The model (1),(4) with measurements (3) can be
written compactly by defining the state x =
{T,R, v, ωb, αb, Tcb, Rcb}

.
= {x1, x2, . . . , x7} where

gcb = (Rcb, Tcb), and the structure parameters pi are rep-
resented in coordinates by Xi = ȳi(ti) exp(ρi), which
ensures that Zi = exp(ρi) is positive. We also define
the known input u = {ω̂imu, αimu} = {u1, u2}, the
unknown input v = {wb, ξb} = {v1, v2} and the model
error w = {nR, nv}. After defining suitable functions
f(x), c(x), matrix D and h(x, p) = [. . . , π(xT2 (pi −
x1))T , . . . ]T with p = {p1, . . . , pN} the model (1),(4),
(3) takes the form

ẋ = f(x) + c(x)u+Dv + c(x)w

ṗ = 0

y = h(x, p) + n.

(5)

To enable a smoothed estimate we augment the state
with a delay-line: Let g(t)

.
= (R(t), T (t)). Then, for

a fixed interval dt and 1 ≤ n ≤ k, define xn(t)
.
=

g(t− ndt), xk .
= {x1, . . . , xk} that satisfies

xk(t+ dt)
.
= Fxk(t) +Gx(t) (6)

where

F
.
=


0
I 0

. . .
0 . . . I 0

 , G .
=


I 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


(7)

and x
.
= {x, x1, . . . , xk} = {x,xk}. A k-stack of mea-

surements ykj (t) = {yj(t), yj(t − dt), . . . , yj(t − kdt)}
can be related to the smoother’s state x(t) by

yj(t) = hk(x(t), pj) + nj(t) (8)

where we omit the superscript k from y and n, and

hk(x(t), pj)
.
=
[
h(x(t), pj) π(x1(t)pj) . . . π(xk(t)pj)

]T
(9)

Note that nj is not temporally white even if nj is.
The overall model is then

ẋ = f(x) + c(x)u+Dv + c(x)w

xk(t+ dt) = Fxk(t) +Gx(t)

ṗj = 0

yj(t) = hk(x(t), pj) + nj(t),

t ≥ tj , j = 1, . . . , N(t)

(10)

The observability properties of (10), are the same as
(5), and are studied in [14], where it is shown that (5)
is not unknown-input observable (Claim 2), although
it is observable with no unknown inputs [15]. This
means that, as long as gyro and accel bias rates are not
identically zero, convergence of any inference algorithm
to a unique point estimate cannot be guaranteed. Instead,
[14] explicitly computes the indistinguishable set (Claim
1) and bounds it as a function of the bound on the accel
and gyro bias rates.

II. ROBUST FILTERING

In addition to the inability of guaranteeing conver-
gence to a unique point estimate, the major challenge
of VINS is that the majority of imaging data yi(t)
does not fit (5) due to specularity, transparency, translu-
cency, inter-reflections, occlusions, aperture effects, non-
rigidity and multiple moving objects. While filters that
approximate the entire posterior, such as particle filters,
in theory address this issue, in practice the high dimen-
sionality of the state space makes them intractable. Our
goal thus is to couple the inference of the state with a
classification to detect which data are inliers and which
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are outliers, and discount or eliminate the latter from the
inference process.

In this section we derive the optimal classifier for
outlier detection, which is also intractable, and describe
approximations, showing explicitly under what condi-
tions each is valid, and therefore allowing comparison
of existing schemes, in addition to suggesting improved
outlier rejection procedures. For simplicity, we assume
that all points appear at time t = 0, and are present at
time t, so we indicate the “history” of the measurements
up to time t as yt = {y(0), . . . , y(t)} (we will lift this
assumption in Sect. III). We indicate inliers with pj ,
j ∈ J , with J ⊂ [1, . . . , N ] the inlier set, and assume
|J | � N , where |J | is the cardinality of J .

While a variety of robust statistical inference schemes
have been developed for filtering [16], [17], [1], [18],
most operate under the assumption that the majority of
data points are inliers, which is not the case here.

A. Optimal discriminant

In this section and the two that follow we will assume1

that the inputs u, v are absent and the parameters pi are
known, which reduces (5) to the standard form{

ẋ = f(x) + w

y = h(x) + n.
(11)

To determine whether a datum yi is inlier, we consider
the event I .

= {i ∈ J} (i is an inlier), compute its
posterior probability given all the data up to the current
time, P [I|yt], and compare it with the alternate P [Ī|yt]
where Ī .

= {i /∈ J} using the posterior ratio

L(i|yt) .
=
P [I|yt]
P [Ī|yt]

=
pin(yti |yt−i)
pout(yti)

ε

1− ε
(12)

where y−i
.
= {yj | j 6= i} are all data points but the i-th,

pin(yj)
.
= p(yj | j ∈ J) is the inlier density, pout(yj)

.
=

p(yj | j /∈ J) is the outlier density, and ε .= P (i /∈ J) is
the prior. Note that the decision on whether i is an inlier
cannot be made by measuring yti alone, but depends on
all other data points yt−i as well. Such a dependency
is mediated by a hidden variable, the state x, as we
describe next.

B. Filtering-based computation

The probabilities pin(ytJs) for any subset of the inlier
set yJs

.
= {yj | j ∈ Js ⊂ J} can be computed

1The first assumption carries no consequence in the design of the
discriminant, the latter will be lifted in Sect. II-D.

recursively at each t (we omit the subscript Js for
simplicity):

pin(yt) =

t∏
k=1

p(y(k)|yk−1). (13)

The smoothing state xt for (11) has the property of
making “future” inlier measurements yi(t + 1), i ∈ J
conditionally independent of their “past” yti : yi(t+1) ⊥
yti | x(t) ∀ i ∈ J as well as making time series of (inlier)
data points independent of each other: yti ⊥ ytj | xt ∀ i 6=
j ∈ J. Using these independence conditions, the factors
in (13) can be computed via standard filtering techniques
[19]

p(y(k)|yk−1) =

∫
p(y(k)|xk)dP (xk|xk−1)dP (xk−1|yk−1)

(14)
starting from p(yJ(1)|∅), where the density p(xk|yk)

is maintained by a filter (in particular, a Kalman filter
when all the densities at play are Gaussian). Conditioned
on a hypothesized inlier set J−i (not containing i), the

discriminant L(i|yt, J−i) =
pin(y

t
i |y

t
J−i

)

pout(yti)
ε

(1−ε) can then
be written as

L(i|yt, J−i) =

∫
pin(yti |xt)dP (xt|ytJ−i)

pout(yti)

ε

(1− ε)
(15)

The smoothing density p(xt|ytJ−i) in (15) is maintained
by a smoother [20], or equivalently a filter constructed
on the delay-line [21]. The challenge in using this
expression is that we do not know the inlier set J−i;
to compute the discriminant (12) let us observe that

pin(yti |yt−i) =
∑

J−i∈PN−i

p(yti , J−i ∪ {i}|yt−i) =

∑
J−i∈PN−i

pin(yti |ytJ−i)P [J−i|yt−i] (16)

where PN−i is the power set of [1, . . . , N ] not including i.
Therefore, to compute the posterior ratio (12), we have
to marginalize J−i, i.e., average (15) over all possible
J−i ∈ PN−i

L(i|yt) =
∑

J−i∈PN−i

L(i|yt, J−i)P [J−i|yt] (17)

C. Complexity of the hypothesis set

For the filtering p(xt|ytJ) or smoothing densities
p(xt|ytJ) to be non-degenerate, the underlying model has
to be observable [22], which depends on the number of
(inlier) measurements |J |, with |J | the cardinality of J .
We indicate with κ the minimum number of measure-
ments necessary to guarantee observability of the model.
Computing the discriminant (15) on a sub-minimal set
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(a set Js with |Js| < κ) does not guarantee outlier
detection, even if Js is “pure” (only includes inliers).
Vice-versa, there is diminishing return in computing the
discriminant (15) on a super-minimal set (a set Js with
|Js| � κ). The “sweet spot” is a putative inlier (sub)set
Js, with |Js| ≥ κ, that is sufficiently informative, in the
sense that the filtering, or smoothing, densities satisfy

dP (xt|ytJs) ' dP (xt|ytJ). (18)

In this case, (12) which can be written as in (17) by
marginalizing over the power set not including i,

can be broken down into the sum over pure (J−i ⊆ J)
and non-pure sets (J−i 6⊆ J), with the latter gathering
small probability2

L(i|yt) '
∑

J−i∈P−i, J−i⊆J

L(i|yt; J−i)P [J−i|yt−i]

(19)
and the sum over sub-minimal sets further isolated and
neglected, so

L(i|yt) '
∑

J−i∈P−i, J−i⊆J, |J−i|≥κ

L(i|yt; J−i)P [J−i|yt−i].

(20)
Now, the first term in the sum is approximately constant
by virtue of (15) and (18), and the sum

∑
P [J−i|yt−i]

is a constant. Therefore, the decision using (12) can be
approximated with the decision based on (15) up to a
constant factor:

L(i|yt) ' L(i|yt; Js)
∑

J−i ∈ P−i,
J−i ⊆ J,
|J−i| ≥ κ

P [J−i|yt−i] ∝ L(i|yt; Js)

(21)
where Js is a fixed pure (Js ⊆ J) and minimal (|Js| =
κ) estimated inlier set, and the discriminant therefore
becomes

L(i|yt; Js) =

∫
pin(yti |xt)dP (xt|ytJs)

pout(yti)

ε

(1− ε)
(22)

While the fact that the constant is unknown makes
the approximation somewhat unprincipled, the deriva-
tion above shows under what (sufficiently informative)
conditions one can avoid the costly marginalization and
compute the discriminant on any minimal pure set Js.
Furthermore, the constant can be chosen by empirical
cross-validation along with the (equally arbitrary) prior
coefficient ε.

Two constructive procedures for selecting a minimal
pure set are discussed next.

2P [J−i|yt−i] should be small when J−i contains outliers, i.e.
J−i 6⊆ J .

1) Bootstrapping: The outlier test for a datum i,
given a pure set Js, consists of evaluating (22) and com-
paring it to a threshold. This suggests a bootstrapping
procedure, starting from any minimal set or “seed” Jκ
with |Jκ| = κ, by defining

Jκ
.
= {i | L(i|ytki , Jκ) ≥ θ > 1} (23)

and adding it to the inlier set:

Ĵ = Jκ ∪ Jκ (24)

Note that in some cases, such as VINS, it may be
possible to run this bootstrapping procedure with fewer
points than the minimum, and in particular κ = 0, as
inertial measurements provide an approximate (open-
loop) state estimate that is subject to slow drift, but with
no outliers. Note, however, that once an outlier corrupts
the inlier set, it will spoil all decisions thereafter, so
acceptance decisions should be made conservatively.
The bootstrapping approach described above, starting
with κ = 0 and restricted to a filtering (as opposed
to smoothing) setting, has been dubbed “zero-point
RANSAC.” In particular, when the filtering or smoothing
density is approximated with a Gaussian p̂(xt|ytJs) =
N (x̂t;P (t)) for a given inlier set Js, it is possible
to construct the (approximate) discriminant (22), or to
simply compare the numerator to a threshold∫

pin(y
t
i |xt)p̂(xt|ytJs)dx

t ' G(yti−h(x̂t);CP (t)CT+R)

≥ 1− ε
ε

pout(y
t
i) ' θ

where C is the Jacobian of h at x̂t. Under the Gaussian
approximation, the inlier test reduces to a gating of the
weighted (Mahalanobis) norm of the smoothing residual:

i ∈ J ⇔ ‖yti − h(x̂t)‖CP (t)CT+R ≤ θ̃ (25)

assuming that x̂ and P are inferred using a pure inlier
set that does not contain i. Here θ̃ is a threshold that
lumps the effects of the priors and constant factor
in the discriminant, and is determined by empirical
cross-validation. In reality, in VINS one must contend
with an unknown parameter for each datum, and the
asynchronous births and deaths of the data, which we
address in Sections. II-D and III.

2) Cross-validation: Instead of considering a single
seed Jκ in hope that it will contain no outliers, one can
sample a number of putative choices {J1, . . . , Jl} and
validate them by the number of inliers each induces. In
other words, the “value” of a putative (minimal) inlier
set Jl is measured by the number of inliers it induces:

Vl = |Jl| (26)

and the hypothesis gathering the most votes is selected

Ĵ = Jargmaxl(Vl) (27)
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As a special case, when Ji = {i} this corresponds
to “leave-all-out” cross-validation, and has been called
“one-point Ransac” in [8]. For this procedure to work,
certain conditions have to be satisfied. Specifically,

CjPt+1|tC
T
i 6= 0. (28)

Note, however, that when Ci is the restriction of the
Jacobian with respect to a particular state, as is the case
in VINS, there is no guarantee that the condition (28) is
satisfied.

3) Ljung-Box whiteness test: The assumptions on the
data formation model imply that inliers are conditionally
independent given the state xt, but otherwise exhibit
non-trivial correlations. Such conditional independence
implies that the history of the prediction residual (inno-
vation) εti

.
= yti− ŷti is white, which can be tested from a

sufficiently long sample [23]. Unfortunately, in our case
the lifetime of each feature is in the order of few tens,
so we cannot invoke asymptotic results. Nevertheless,
in addition to testing the temporal mean of εti and its
zero-lag covariance (25), we can also test the one-lag,
two-lag, up to a fraction of k-lag covariance. The sum
of their square corresponds to a small sample version of
Ljung-Box test [23].

D. Dealing with nuisance parameters

The density p(yti |x(t)) or p(yit|xt), which is needed
to compute the discriminant, may require knowledge of
parameters, for instance pi in VINS (5).

The parameter can be included in the state, as done in
(5), in which case the considerations above apply to the
augmented state {x, p}. Otherwise, if a prior is available,
dP (pi), it can be marginalized via

p(yti |xt) =

∫
p(yti |xt, pi)dP (pi) (29)

This is usually intractable if there is a large number of
data points. Alternatively, the parameter can be “max-
outed” from the density

p̂(yti |xt)
.
= max

pi
p(yti |xt, pi). (30)

or equivalently p(yti |xt, p̂i) where p̂i =
arg maxd p(y

t
i |xt, d). The latter is favored in our

implementation (Sect. III), in line with standard
likelihood ratio tests for composite hypotheses.

III. IMPLEMENTATION

The state of the models (5) and (10) is repre-
sented in local coordinates, whereby R and Rcb are
replaced by Ω,Ωcb ∈ R3 such that R = exp(Ω̂)
and Rcb = exp(Ω̂cb). Points pj are represented in
the reference frame where they first appear tj , by the

triplet {g(tj), yj , ρj} via pj
.
= g(tj)ȳj exp(ρj), and

also assumed constant (rigid). The advantage of this
representation is that it enables enforcing positive depth
Z = exp(ρj), known uncertainty of yj (initialized by
the measurement yj(tj) up to the covariance of the
noise), and known uncertainty of g(tj) (initialized by
the state estimate up to the covariance maintained by the
filter). Note also that the representation is redundant, for
pj = g(tj)ḡḡ

−1ȳj exp(ρj)
.
= g̃(tj)ỹj exp(ρ̃j) for any

ḡ ∈ SE(3), and therefore we can assume without loss
of generality that g(tj) is fixed at the current estimate of
the state, with no uncertainty. Any error in the estimate
of g(tj), say ḡ, will be transferred to an error in the
estimate of ỹj and ρ̃j [14].

The groups will be defined up to an arbitrary reference
frame (R̄i, T̄i), except for the reference group where
that transformation is fixed. Note that, as the reference
group “switches” (when points in the reference group
become occluded or otherwise disappear due to tracker
failure), a small error in pose is accumulated. This error
affects the gauge transformation, not the state of the
system, and therefore is not reflected in the innovation,
nor in the covariance of the state estimate, that remains
bounded. This is unlike [9], where the covariance of
the translation state TB and the rotation about gravity
θ grows unbounded over time, possibly affecting the
numerical aspects of the implementation.

Given that the power of the outlier test (22) increases
with the observation window, it is advantageous to make
the latter as long as possible, that is from birth to death.
The test can be run at death, and if a point is deemed an
inlier, it can be used (once) to perform an update, or else
discarded. In this case, the unknown parameter pi must
be eliminated using one of the methods described above.
This is called an “out-of-state update” because the index
i is never represented in the state; instead, the datum yi
is just used to update the state x. This is the approach
advocated by [9], and also [24], [25] where all updates
were out-of-state. Unfortunately, this approach does not
produce consistent scale estimates, which is why at least
some of the dj must be included in the state [26].

If a minimum observation interval is chosen, points
that are accepted as inliers (and still survive) can be
included in the state by augmenting it with the unknown
parameter pi with a trivial dynamic ṗi = 0. Their
posterior density is then updated together with that of
x(t), as customary. These are called “in-state” points.
The latter approach is preferable in its treatment of the
unknown parameter pi, as it estimates a joint posterior
given all available measurements, whereas the out-of-
state update depends critically on the approach chosen
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to deal with the unknown depth, or its approximation.
However, computational considerations, as well as the
ability to defer the decision on which data are inliers
and which outliers as long as possible, may induce a
designer to perform out-of-state updates at least for some
of the available measurements [9].

The prediction for the model (10) proceeds in
a standard manner by numerical integration of the
continuous-time component. We indicate the mean
x̂t|τ

.
= E(x(t)|yτ ), where yτ denotes all available

measurements up to time τ ; then we have{
x̂t+dt|t =

∫ t+dt
t

f(xτ ) + c(xτ )u(τ)dτ, xt = x̂t|t

x̂kt+dt|t = F x̂kt|t + Cx̂t|t
(31)

whereas the prediction of the covariance is standard from
the Kalman filter/smoother of the linearized model. The
update requires special attention since point features can
appear and disappear at any instant. For each point pj , at
time t+ dt the following cases arise (in addition to the
baseline models that test the instantaneous innovation
with either zero-point (m1), or one-point RANSAC
(m2)):
(i) t + dt = tj (feature appears): ŷj

.
= yj(tj) ' yj is

stored and g(tj) is fixed at the current pose estimate (the
first two components of x̂t+dt|t).
(ii) t− kdt < tj < t+ dt (measurement stack is built):
yj(t) is stored in ykj (t).
(iii) t = tj + kdt (parameter estimation): The measure-
ment stack and the smoother state x̂t|tj are used to infer
p̂j :

p̂j = arg min
pj
‖ε(t, pj)‖ (32)

where
ε(t, pj)

.
= yj(t)− hk(x̂t|tj , pj). (33)

(Inlier test): the “pseudo-innovation” ε(t, p̂j) is com-
puted and used to test for consistency with the model
according to (25) and, if pj is deemed an inlier:
(Update): the state at t = tj + kdt is computed as:[

x̂
x̂k

]
t|t

=

[
x̂
x̂k

]
t|tj

+ L(t)ε(t, p̂j) (34)

where L(t) is the Kalman gain computed from the
linearization. Alternatively, if resources allow, we can
insert pj into the state, initialized with p̂jt|tj

.
= p̂j and

compute the “in-state update”: x̂
x̂k

p̂j


t|t

=

 x̂
x̂k

p̂j


t|tj

+ L(t)ε(t, p̂jt|tj ) (35)

(iv) t > tj + kdt: If the feature is still visible and in
the state, it continues being updated and subjected to the
inlier test. This can be performed in two ways:
(a) – batch update: The measurement stack yj(t)
is maintained, and the update is processed in non-
overlapping batches (stacks) at intervals kdt, using the
same update (35), either with zero-point (m5) or 1-point
RANSAC (m6) x̂

x̂k

p̂j


t+kdt|t+kdt

=

 x̂
x̂k

p̂j


t+kdt|t

+

+ L(t+ kdt)ε(t+ kdt, p̂jt+kdt|t) (36)

after a standard robustness test on the smoothing inno-
vation ε; alternatively,
(b) – history-of-innovation test update: The (individual)
measurement yj(t) is processed at each instant while the
stack yj(t + dt) is used to test the inlier status either
with zero-point (m3) or 1-point RANSAC (m4): x̂

x̂k

p̂j


t+dt|t+dt

=

 x̂
x̂k

p̂j


t+dt|t

+

+ L(t+ dt)
(
yj(t+ dt)− h(x̂t+dt|t, p̂jt+dt|t)

)
(37)

only for those points j for which the history of
the (pseudo)-innovation ε(t + dt, p̂jt+dt|t) is sufficiently
white, measured as described in Sec. II.

Note that in the first case one cannot perform an
update at each time instant, as the noise nj(t) is not
temporally white. In the second case, the history of
the innovation is not used for the filter update, but just
for the inlier test. Both approaches differ from standard
robust filtering that only relies on the (instantaneous)
innovation, without exploiting the time history of the
measurements.

IV. EMPIRICAL VALIDATION

To validate our analysis and investigate the design
choices it suggests, we report quantitative comparison of
various robust inference schemes on real data collected
from a hand-held platform in artificial, natural, and
outdoor environments, including aggressive maneuvers,
specularities, occlusions, and independently moving ob-
jects. Since no public benchmark is available, we do
not have a direct way of comparing with other VINS
systems: We pick a state-of-the-art evolution of [15],
already vetted on long driving sequences, and modify the
outlier rejection mechanism as follows: (m1) Zero-point
RANSAC; (m2) same with added 1-point RANSAC, ;
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(m3) m1 with added test on the history of the inno-
vation; (m4) same with 1-point RANSAC; (m5) m3
with zero-point RANSAC and batch updates; (m6) same
with 1-point RANSAC. We report end-point open-loop
error, a customary performance measure, and trajectory
error, measured by dynamic time-warping distance wd,
relative to the lowest closed-loop drift trial. Figures 1
to 4 show a comparison of the six schemes and their
ranking. All trials use the same settings and tuning,
and run at frame-rate on a 2.8GHz Core i7 processor,
with a 30Hz global shutter camera and an XSense MTi
IMU. The upshot is that the most effective strategy is
a whiteness testing on the history of the innovation
in conjunction with 1-point RANSAC. Based on wd,
the next-best method (m2, without the history of the
innovation) exhibits a performance gap equal to the gap
from it to the last-performing.

Fig. 1. ∼275m loop through specular hallways with handheld
motion. Note that less effective robustness strategies lead to
inconsistent estimates not necessarily evident in the end point
drift, with wd providing a more effective ordering.

V. DISCUSSION

We have described several approximations to a robust
filter for visual-inertial sensor fusion (VINS) derived
from the optimal discriminant, which is intractable. This
addresses the preponderance of outlier measurements
typically provided by a visual tracker, Sect. II. Based
on modeling considerations, we have selected several
approximations, described in Sect. III, and evaluated
them in Sect. IV.

Compared to “loose integration” systems [27], [28],
[29] where pose estimates are computed independently
from each sensory modality and fused post-mortem,
our approach has the advantage of remaining within a
bounded set of the true state trajectory, which cannot be
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m6 − drift: 0.09m (~0.23%), wd: 1.04
m2 − drift: 0.15m (~0.37%), wd: 1.03
m1 − drift: 0.30m (~0.74%), wd: 0.99
m5 − drift: 0.15m (~0.37%), wd: 0.99
m3 − drift: 0.20m (~0.51%), wd: 0.88
m4 − drift: 0.09m (~0.22%)
Origin

Fig. 2. Top-down view of ∼40m aggressive hand-held motion
loop in a controlled laboratory environment. In the absence
of significant tracking outliers, all robustness models perform
comparably, and are robust to challenging motions/motion blur.

Fig. 3. ∼180m loop through natural forested area with abundant
occlusions due to foliage. Poor outlier handling in natural
environments severely degrades performance.

guaranteed by loose integration [14]. Also, such systems
rely on vision-based inference to converge to a pose
estimate, which is delicate in the absence of inertial
measurements that help disambiguate local extrema and
initialize pose estimates. As a result, loose integration
systems typically require careful initialization with con-
trolled motions.

Motivated by the derivation of the robustness test,
whose power increases with the window of observation,
we adopt a smoother, implemented as a filter on the
delay-line [20], like [9], [30]. However, unlike the latter,
we do not manipulate the measurement equation to
remove or reduce the dependency of the (linearized
approximation) on pose parameters. Instead, we either
estimate them as part of the state if they pass the test,
as in [15], or we infer them out-of-state using maximum
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Fig. 4. ∼160m loop through a crowded hall during a poster
session, with many independently moving objects constantly in
view. Less effective robustness strategies see similar estimate
biases as they do for occlusions and specularities.

likelihood, as standard in composite hypothesis testing.
We have tested different options for outlier detection,

including using the history of the innovation for the
robustness test while performing the measurement up-
date at each instant, or performing both simultaneously
at discrete intervals so as to avoid overlapping batches.
Our experimental evaluation has shown that in practice
the scheme that best enables robust pose and structure
estimation is to perform instantaneous updates using 1-
point RANSAC and to continually perform inlier testing
on the history of the innovation.
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