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Abstract—Whilst current minimally invasive surgical robots
offer many advantages to the surgeon, most of them are still
controlled using the traditional master-slave approach, without
fully exploiting the complementary strengths of both the
human user and the robot. This paper proposes a framework
that provides a cooperative control approach to human-robot
interaction. Typical teleoperation is enhanced by incorporating
haptic guidance-based feedback for surgical tasks, which are
demonstrated to and learned by the robot. Safety in the
surgical scene is maintained during reproduction of the learned
tasks by including the surgeon in the guided execution of the
learned task at all times. Continuous Hidden Markov Models
are used for task learning, real-time learned task recognition
and generating setpoint trajectories for haptic guidance.
Two different surgical training tasks were demonstrated and
encoded by the system, and the framework was evaluated using
the Raven II surgical robot research platform. The results
indicate an improvement in user task performance with the
haptic guidance in comparison to unguided teleoperation.

I. INTRODUCTION

Over the last few years, the number of surgeries performed
with the aid of surgical robotics has increased dramatically.
Despite the considerable success of robotic surgical systems,
the question of their overall superiority with respect to non-
robotic techniques is still debated, [1]. Advantages include
motion scaling, tremor reduction and highly dexterous in-
struments. However, these advantages come with trade-offs
such as large footprints in the operating theatre, high cost
and a lack of haptic feedback. Furthermore, there is a need
to incorporate more intelligence into these robotic systems
through shared control by combining the high-level decision
making of the surgeon with the super-human dexterity pro-
vided by the robot.

Robotic Learning from Demonstration (LfD) is a promis-
ing technique which incorporates theory from robotics, statis-
tics, computer science, machine learning, psychology, control
and human-robot interaction. There are three main stages in a
typical LfD framework; task demonstration (usually provided
by a human user), task encoding (generally carried out using
machine learning technique) and, finally, reproduction of the
learned task (executed by the robot). Thus far, there exists a
range of machine learning techniques, from trajectory-level
to symbolic-level learning, batch learning to on-line learning
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for this purpose. Refer to [2] for a comprehensive review of
LfD. LfD is already used in a wide range of applications
including skills analysis, learned task execution and skills
transfer. Furthermore, LfD does not require any conventional
programming skills or knowledge of robotic kinematics from
the task demonstrator. This is particulary suited to repetitive
tasks during minimally invasive surgery (MIS).

In terms of general robotic control, LfD is an attractive al-
ternative to teaching a robot a complex task. The Continuous
Hidden Markov Model (CHMM), which is a trajectory-level
machine learning technique, has been used to autonomously
complete a learned sub-task upon recognised completion of
the previous sub-task, [3]. Another trajectory-level learning
technique based on Gaussian Mixture Models (GMMs) has
been used in conjunction with Dynamic Time Warping
(DTW) to encode and automate various surgical tasks, [4]. A
combination of trajectory- and symbolic-level encoding has
been explored, [5]. This symbolic-level approach is based on
a concept adapted from psychology known as ’scaffolding’
and is realised by providing a high-level description of the
task prior to the demonstration of a surgical knot tying
procedure. A combination of iterative learning control and
an LQR controller is used to increase the speed of execution
up to 10 times that of the original demonstrated executions
of a knot tying task [6].

It can be argued, however, that the prospect of surgeons
handing over full control to autonomous surgical task exe-
cution in the near future is unlikely. Cooperative, or shared,
control between robot and surgeon offers a complementary
compromise between master-slave operation (complete user
control) and full autonomy (complete robot control). Coop-
erative Control (CC) is a paradigm whereby the workload
of a task is distributed between a human and a robot. One
such example applied to a medical scenario utilises a hybrid
control loop combining the force input of the human operator
and the force sensor readings of the robot to adjust the cutting
rate during a bone resection operation for safer outcomes,
[7]. Active Constraints (also known as ’virtual fixtures’) is
another method of CC which renders forces based, typically,
on preoperative scans of the area of interest. A live-stream of
point cloud data from an RGB-D camera is used to construct
a safe-zone around a beating heart, [8].

In the work proposed in the paper, a CC framework is im-
plemented by combining LfD with the concept of safe-zones
borrowed from active constraints. Learned task sequence
recognition is implemented for automated engagement of



haptic guidance. The proposed system brings together a
number of benefits during task execution under guidance;
1) consistency - the order of motions is encoded so that
guided execution will be constrained within the boundaries
of sequential steps of the learned task, 2) efficiency and
economy of motion - short movements without superfluous
motions, and 3) safety - the surgeon remains in the loop, and
is therefore in ultimate control of the robot, at all times. The
novel contributions of this work include an algorithm for on-
line equidistant trajectory resampling, a generalised protocol
for task encoding using CHMMs, a windowed approach to
CHMM evaluation for real-time sequence recognition, and,
finally, the first application of haptic guidance in a CC system
to the Raven II robot.

The paper is organised as follows: Section II describes
the methodology behind the LfD and CC framework, from
task demonstration to encoding to task execution with haptic
guidance, Section III outlines the experimental setup for the
two tasks, Section IV presents the results of the user studies
and, finally, Section V concludes the findings of this work
and where its potential future work lies.

II. METHODS AND MATERIALS

The proposed framework has two phases, with CHMMs
playing a key role in both. 1) The learning phase - the
LfD stage of the framework employs CHMMs to encode the
surgical tasks using multiple demonstrations. This phase is
used only when a new task needs to be encoded. 2) The
task execution phase - this encapsulates the CC element of
the framework. This can be further sub-divided into two
stages; the task-searching stage and the haptic guidance stage.
CHMMs are used here for evaluation of the live trajectories
versus learned models. The learned models are then used to
guide the user based on force-feedback.

In order to set up a common dialogue between the surgical
task demonstrator, the LfD framework and the CC framework
used during haptic guidance, it is first necessary to define how
a task is structured in the context of this system. Two key
definitions are used to describe the surgical tasks, with two
levels of abstractions. At the lowest level is the primitive
movement (PM) of the task. The primitive movements are
elementary motions, which form the most basic units of a
surgical task. A PM is encoded as a single CHMM. At
the highest level of abstraction is the surgical task, which
comprises a short series of PMs. A task is stored as a
sequence of CHMMs.

In the following sections the LfD and CC elements of the
framework are described using an example of a task which
represents a needle-passing sub-task. A peg-transfer task is
also introduced later as a second example of an encoded task.
In Section III, the choice of these two tasks is discussed
in more detail. The framework was initially developed and
tested using a surgical robot simulator, before integrating
the framework into the a real robotic platform. All results
presented in this section are taken from the robot simulator.

Fig. 1: Raw demonstration data of needle-passing sub-task

A. Task Demonstration

In this paper we identified two goals when designing
the LfD framework; 1) generality of task encoding, and 2)
automated encoding. To achieve these two goals, a simple
protocol was established for the task demonstration stage.
When providing example task executions the demonstrator
should ensure smooth movements with minimal jerk or
hesitation. The movements should also consist of simple line
or arc movements with a brief pause in between to aid task
segmentation. Segmentation of the trajectories is performed
based on velocity and path-length thresholds. A segment
is defined as any continuous sequence of end-effector data
points, which satisfy the following two criteria (to ignore
very small or very short movements); the velocity remains
above a low speed threshold and the path length travelled is
above a low distance threshold.

More elaborate movements are decomposed into shorter
motions during the demonstration phase. These will be
stitched together during encoding. The main purpose of
defining how a task is structured and how it should be
demonstrated is to accelerate learning and negate the need
for manual feature extraction. This approach does not require
the framework to have an intrinsic knowledge of specific
surgical tasks, and therefore is widely applicable to any task
demonstrated in the appropriate manner.

The above demonstration rules can cause the demonstrator
to perform the task at a reduced speed. This will also ensure
more well-defined PMs of the task for the encoding step.
Moreover, the speed of the demonstrations has no implication
on the speed of the guided task execution. The framework
is designed to provide positional guidance only and, hence,
it was a design choice for our framework to omit time-
based guidance. The robot guides the user through the desired
trajectory but the surgeon has full control over the pace of
task execution.

Several demonstrations of a needle-passing sub-task pro-
vided using the robot simulator are plotted in Fig. 1. This
task consists of five distinct movement. The five PMs, derived
using the velocity segmentation procedure described above,



Fig. 2: Needle-passing task demonstrations (top row), encoded models and regressed ideal trajectories (bottom row) - 3 left
(red) and 2 right (blue) PMs

of this task are shown separately in the top row of Fig. 2.

B. Continuous Hidden Markov Models
CHMMs are a doubly-stochastic means of encoding time-

dependant or sequential data, such as trajectory information.
A CHMM is represented by;

λ = (π,A, µ,Σ) (1)

In this framework CHMMs are used to encode end-effector
Cartesian position information.

1) Encoding with CHMMs: Encoding multiple tasks
demonstrations is carried out using the standard Baum-Welsh
(BW) algorithm for model training. Given a set of observa-
tions (demonstrations), O, the BW algorithm maximises (2)

P (O|λ) (2)

to train the CHMM, λ.
In applications where the encoded trajectory is not seg-

mented, it is necessary to choose the optimal number of
states for the CHMM, λ. In this framework, however, because
all of the encoded PMs consist of short lines or arcs, the
number of states for each primitive movements is set to
three states. Choosing a set number of states allows fairer
comparison between encoded PMs in the task execution and
sequence recognition phase of the framework. The velocity-
segmented trajectories are resampled to be distributed equally
in space prior to encoding, and the motivation behind this
step is explained in the following section. Finally, in order
to to regress a trajectory from the CHMMs, a pseudo-time
dimension must also be included prior to task encoding. The
CHMMs, therefore, consist of four dimensions. The pseudo-
time element is required only for the Cartesian regression
step to provide a sequential dimension, and is not used
when evaluating the real-time trajectories. This sequential
fourth dimension, t, for a trajectory of length L is calculated
according to (3).

t = (t0, t1...tl...tL−1) where tl =
1.0

L− 1
(3)

The encoded PMs of the demonstrated needle-passing task
from Fig. 1 are shown (sequentially from left to right) in the
bottom row of Fig 2.

2) Evaluation with CHMMs: Evaluation, in the context
of CHMMs, is the application of the Forward (or Forward-
Backward) algorithm to determine the degree of match be-
tween a CHMM and a trajectory observation. The output
of the Forward algorithm is a probability value. To avoid
data underflow, the log likelihood of the probability value is
usually considered.

The log likelihood of observing a trajectory, T, for a given
CHMM, λ is;

log(P (T|λ)) (4)

A novel method was developed for a real-time evaluation
of trajectories based on a windowing approach. Short ’win-
dows’ of the live datastream are continuously compared with
the encoded PMs of the learned tasks. The Forward algorithm
is of O(N2T ) complexity (where N is the number of states
and T is the number of observations), but since the number
of states is small and the number of observation datatpoints
is also small for the windowing method, this number of
calculations is relatively low and can be carried out at every
data acquisition loop. This approach offers an alternative
method of evaluation to comparing full trajectory segments
with the encoded PM CHMMs. The application of both full
and windowed live trajectory information for learned task
sequence recognition is described in part E of this section.

C. Online Equidistant Resampling of Trajectories

An issue, which was encountered during the encoding and
evaluation phase, was unequal distribution of data points as a
function of demonstration velocity. This occurs as a result of
data collection at a constant frequency, selected to be 20Hz.
Portions of the trajectories where the end-effector moved
quickly resulted in sparse data point distribution, and a dense
clustering of data points resulted in segments of the trajectory
where the end-effector velocity was relatively slow. This was
incompatible with the desire to encode only sequential-based
(and not explicitly time-based) information. Therefore, an
additional preprocessing step is included to remove unwanted
time-related artefacts from the trajectories by resampling the
constant frequency data to be equidistant in 3D space.



The constant frequency trajectory is evaluated one line
segment Lt at a time, where t is the time index for a given
trajectory data point. A line segment is described by the
current and previous Cartesian positions of the end-effector;

Lt = (Tt−1, Tt) (5)

The aim of this algorithm is to resample a trajectory,
Tconstant frequency, to a trajectory which is consists of data
points that are spaced evenly along the direction of motion,
Tequidistant. The equidistance spacing is set as R. The
psuedo-code the procedure is outlined in Algorithm 1.

Data: Set current resampled data point, Tn, as first
trajectory data point of original, non-equidistant
trajectory, Tconstant frequency

while Current resampled, Tn data point is on line
segment Lt do

Find the point of intersection P between current
line segment Lt and sphere centred on current data
point Tn with radius R;
if Intersection occurs then

Add point of intersection to resampled
trajectory, Tequidistant. Reset current data point
Tn as point of intersection P .

else
Stop resampling on current line segment.

end
end

Algorithm 1: Online resampling of three-dimensional tra-
jectory to equidistant points in space

This algorithm is applied separately to the real-time end-
effector positions of both the right and the left instruments
when the velocity is above a threshold (i.e. when the instru-
ment is moving). The intersection between a line segment and
a sphere is calculated using the standard computer graphics
technique know as ’ray-sphere intersection’.

D. Task Encoding

An arbitrary number of tasks can be stored in memory. A
1D matrix stores each of the primitive movements for each
of the K tasks. Each row of the task matrix contains a single
task’s associated PMs, and a PM is associated either with the
left or right instrument.

λTask,k = (λPM,k1, λPM,k2, ..., λPM,kM ) (6)

where
λTask,k ∈ λTask,K 1 ≤ k ≤ K (7)

E. Sequence Recognition

A combination of evaluating full velocity-segmented
movements and continuous evaluation of a short, buffered
windows of live trajectory information is used to recognise
when the user initiates the beginning of a learned task. The
purpose of the sequence recognition is to smoothly engage
haptic guidance when the user starts and the robot identifies
a task that has been encoded by the framework.

In order to demonstrate the sequence recognition element
of this framework, the second trained task model is in-
troduced to illustrate the ability to distinguish when and
which task has is being executed. The CHMMs of the
needle-passing and peg-transfer tasks are plotted in Fig. 3.
A trajectory of a reproduction of the peg-transfer task is
also overlaid onto both models. The needle-passing task,
as previously shown, consists of five PMs. The peg-transfer
task is made up of four PMs; the first two from the left
instrument, the second two from the right instrument. The
aim is to identify, in real-time, that the peg-transfer task is
being performed.

From a list of K stored tasks, using the same notation
as the previous section, the most likely task is found by
identifying:
1) a full, velocity segmented trajectory which has a suffi-
ciently high degree of match using the standard Forward
algorithm with the first PM of a learned task

kmost likely = max
K

(P (Tfull segment | (λPM,k1))) (8)

provided

Pk,most likely > Pfull segment threshold (9)

Fig. 4 shows that the first, full velocity segmented move-
ment is most similar to the first PM of the encoded peg-
transfer task, and is also above the probability threshold.
Resampled, equidistant trajectories with a set number of
datapoints are used for evaluation so that a fixed threshold
can be chosen.

2) a consecutive, partial velocity-segmented trajectory
which has a sufficiently high degree of match using the
windowed approach of comparing short segments of live
trajectory data using the Forward algorithm

kmost likely = max
K

(
1

Q

Q∑
t=1

P (Twindowed,i | λPM,k2)) (10)

where Q is the number of data points collected until a
threshold distance is travelled, and provided

Pk,most likely > Pwindowed segment threshold (11)

The window size used in the framework is two data points.
Fig. 5 shows that the next movement matches the second PM
of the peg-transfer task. At this stage haptic guidance can be
engaged for the peg-transfer.

Fig. 3: Reproduction of a peg-transfer task trajectory overlaid
onto encoded peg-transfer and needle-passing models



Fig. 4: Identification of first PM of peg-transfer task from
velocity-segmented left instrument trajectory

Fig. 5: Identification of second PM of the peg transfer task
from windowed left instrument trajectory

F. Task Execution

The framework has three primary states; 1) search -
compares velocity-segmented trajectories with the first PM
of each trained task. 2) identify task - the first PM of a
task is identified; the consecutive movement must match the
next PM of this task in order to engage haptic guidance. 3)
haptic guidance - if the next partial segment matches the
expected PM (determined using the windowing technique)
then haptic guidance is engaged midway through this PM and
for the remainder of the task. Upon completion of the task,
haptic guidance is disengaged. The cooperative control loop
incorporates the learned model as the setpoint, the real-time
trajectories readings of the robot as the loop input and the
output of the control loop is used to provide haptic guidance
to the user via the haptic devices. The haptic devices serve
as both an input and output device, thus providing two-way
communication between the user and robotic CC framework.

The ideal setpoint trajectory Tsp of each PM is derived
using Gaussian Mixture Regression (GMR) using its encoded
CHMM. The regressed trajectories corresponding to the PMs
of the needle-passing task are plotted in grey on the bottom
row of Fig. 2. The current end-effector setpoint Tspclosest

(a
single Cartesian coordinate for each instrument) is found by
calculating the closest single data point on the setpoint (sp)

trajectory to the current end-effector position Pee;

Tspclosest
= Tsp,nmin (12)

where

nmin = min
n
|Tsp,n − Pee| 1 ≤ n ≤ N (13)

and

|Tn−Pee|=
√

(xee−xsp,n)2+(yee−ysp,n)2+(zee−zsp,n)2

(14)
A proportional control law is used to guide the user along

the desired setpoint trajectory. The proportional gain Kp,
which was kept constant for all user studies, was chosen
empirically to be high enough to give the user a good sense
of the trajectory they should follow, but not strong enough
to completely prevent them from straying outside the desired
trajectory, if necessary.

III. EXPERIMENTAL SETUP

To evaluate the framework, eight subjects were recruited to
carry out two surgical sub-tasks with and without haptic guid-
ance. The experimental setup and tasks used are described in
the following sections.

A. Robot Simulator and Raven II Robot Platform

A surgical robot simulator was used for the initial in silico
development of the learning and cooperative control frame-
work. This simulator was created in-house at the Hamlyn
Centre. The Raven II robot (Applied Dexterity, Seattle, WA)
is an open-source surgical robot research platform which was
developed at University of Washington. The robot consists
of a two 7 degree of freedom arms. Each arms includes
detachable instrument which ends in a gripper. Both the
surgical robot simulator and the Raven II robot are interfaced
with using two Geomagic Touch (Geomagic, Morrisville,
NC) haptic devices.

B. Surgical Tasks

Two tasks were chosen for evaluation of the framework
using the Raven II robot. The tasks were sub-tasks of a peg-
transfer task and a needle-passing task, which are the same as
those encoded in the simulator. Both of these tasks are based
on two surgical skills procedures from the Fundamental of
Laparoscopic Surgery (FLS) program [9]. The FLS program
is a well-established method of assessing the technical per-
formance and hand-eye coordination of trainee surgeons.

The peg transfer task is carried out using a standard FLS
peg transfer board. The needle passing task is a modified
version of the FLS intracorporeal suturing task; instead of
requiring the user to pierce the penrose drain, the user was
asked to pass a suture needle through a hole in a piece of card
for minimal resistance. Both tasks, trained with the simulator
and the Raven II, are depicted in Fig. 6.

These two tasks were chosen as they both involve bimanual
interactions between the tools and an additional object. In this
respect they are similar, but the peg transfer task is an easier

The kinematics of the simulator will be made available online



Fig. 6: Equivalent encoded peg-transfer and needle-passing tasks for the robot simulator and the Raven II robot

and more well-defined task due to the clearly visible pegs on
the board. The experiments are conducted by observing the
task via a live, non-stereo camera (as is typically used with
the FLS program) feed on a monitor. For the needle-passing
task, without stereo vision, the location of the hole is much
more difficult to gauge and compromised depth perception
makes the task somewhat challenging. The usefulness of the
haptic guidance can then be evaluated on the grounds that
it should help to keep the user within the constraints of the
learned task model.

C. User Study Tasks

Prior to task executions, the tools are returned to a prede-
fined start position. This ensures consistent initial conditions
and a fair comparison between all evaluation studies. Once
the left and right instrument end-effectors are in their initial
positions, task execution begins. For the guided tasks, haptic
guidance is always initiated by the user using the learned
sequence recognition procedure described in the previous
sections.

1) Needle-Passing User Study: For the needle-passing
user study, each user was initially shown a figure describ-
ing the steps of the guided task, Fig. 7. Each user was
allowed two to three practice sessions with and without
haptic guidance. The purpose of the practice session was two-
fold; (a) to become familiar with the Raven II teleoperation,
and (b) to become accustomed to the haptic guidance and
automatic engagement of the haptic guidance. After the
practice sessions, the guided and unguided task performances
were recorded for analysis.

The steps of the needle-passing task are 1) bring the left
instrument (holding the suture needle) towards the hole in
the obstacle, 2) bring the right instrument to grab the needle
through the hole, 3) bring the right instrument above the
obstacle, 4) bring the left instrument above the obstacle to
grab the needle and 5) pull the suture needle to the left.
The start of the task is defined by crossing a vertical plane
slightly to the right of the initial position. The end of the task

Fig. 7: Needle-passing task

Fig. 8: Peg-transfer task

is determined by the left instrument crossing a boundary on
the left of the workspace.

2) Peg-Transfer User Study: The peg-transfer user study
was carried out in the same manner as the needle-passing
user study, and a diagram of the steps are shown in Fig. 8.
In this case, however, users were allowed just one or two
practice sessions with and without guidance due to the the
fact that they had already performed the needle-passing task.

The steps of this task are 1) bring the left instrument down
to grab the triangle, 2) pull the triangle off the peg, 3) bring



Fig. 9: Trajectories of needle-passing users studies with and
without haptic guidance

the left instrument to meet the right instrument, 4) pass the
triangle from the left to the right instrument and move the
right end-effector above the right peg and 5) bring the triangle
down onto the right-hand side peg. Unlike the needle-passing
task, there is a lot less room for variation in this task. The
start of the peg-transfer is defined as the beginning of the
downwards movement from the initial position. The task is
considered complete when the triangle is successfully placed
on the right-hand side peg.

IV. RESULTS

Results of trajectories with and without haptic guidance for
the needle-passing and peg-transfer tasks are shown in Fig.
9 and Fig. 10, respectively. The raw trajectory data already
shows how the haptic guidance helps to keep the users within
the desired region.

Four metrics were calculated from the raw trajectory data
to assess the performance of task executions, including path
length, workspace volume (a cuboid calculated based on the
minimum and maximum values of the trajectory Cartesian
values), time taken to complete the task and the root-mean
squared (RMS) error. The RMS error is calculated based on
the minimum distance between each trajectory point from the
user’s task execution and the regressed setpoint trajectories.

The results of these for the eight user studies for the
needle-passing task are plotted in Fig. 11 and for the peg-
transfer task in Fig. 12. There is a statistically significant
improvement in the workspace volume and RMS for both
tasks (p ≤ 0.05). As expected, the guided tasks result
in far smaller RMS error. This metric proves that for the
guided cases there is good consistency between the different
users. For the unguided cases there is a large variation in
the trajectories between users. For all four metrics, upon
inspecting the results of individual users, it can be seen that in
the most cases the haptic guidance improves the performance

Fig. 10: Trajectories of peg-transfer users studies with and
without haptic guidance

(a) Needle-passing path length (b) Needle-passing volume

(c) Needle-passing time taken (d) Needle-passing RMS error

Fig. 11: Needle-passing task analysis

TABLE I: Individual user improvement with haptic guidance

Individual user task im-
provement with guidance

Needle-Passing Peg-Transfer

Path length 7/8 4/8

Workspace volume 8/8 8/8

Time taken 6/8 7/8

RMS error 8/8 8/8

in all measured respects. Table I shows that, in the majority
of cases, there is an improvement made by each user with
haptic guidance.

Overall, based on these user studies, the contribution of
haptic guidance appears to be greater for the needle-passing



(a) Peg-transfer path length (b) Peg-transfer volume

(c) Peg-transfer time taken (d) Peg-transfer RMS error

Fig. 12: Peg-transfer task analysis

task. This is due to the fact that there is a lot more room
for error caused by poor depth perception in this task. The
peg-transfer task is much simpler and the pegs serve as depth
cues to the user. In the case of the needle-passing task, where
there were fewer landmarks to use as visual aids, the guidance
particularly helped by keeping the user within the correct
plane of the task and ensures that the instruments were kept
roughly in line with each other. Therefore, the value in this
framework lies with more complex tasks that benefit from
help with depth awareness.

Another aspect of the user studies was to evaluate the
ability of the framework to recognise the beginning of the
learned model for automatic engagement of haptic guidance.
In some cases this took more than one attempt, in which
case the end-effector position were re-initialised to the fixed
starting position before starting the task again. All instances
of guided task execution were initiated using the sequence
recognition procedure.

The strength of the force feedback applied was propor-
tional to the error between the current position and the closest
point on the current desired trajectory. The scaling factor
is parameter which could be experimented with in future
studies. In addition, instead of proportional force-feedback,
a number of alternative functions could be used to modulate
the force, including Gaussian covariance based or velocity
based force feedback.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated cooperative control
based on LfD for surgical task execution using haptic guid-
ance. Surgical robotics have already proven their value by
bringing many benefits to the operating theatre, but there is
a great potential to further enhance human-robot interaction
beyond the current paradigm of master-slave control. The
main contributions of this work include 1) a LfD framework

with a generalised method of surgical task encoding with
minimal manual input, 2) a method of sequence recognition
based on the proposed surgical task model encoding which
looks at both full and partial trajectories to identify the start
of learned model. When the start of a learned model is
identified, guidance is initiated and 3) a cooperative control
framework incorporating haptic guidance for the learned
task models on the Raven II robotic platform. The results
from two user studies have shown statistically significant
improvements in workspace volume and RMS error. Path
length and time taken were also improved, in general, on
an individual-basis.

This proposed framework has scope for applications in
several areas of surgical task execution, from surgical training
to skills evaluation to preoperative assistance. The immediate
applications of the proposed framework lies in skills transfer
and, with further enhancements, applications in real surgical
scenarios. For future experiments, an interesting investigation
would be to compare the rate of improvement for task perfor-
mance using haptic guidance for training versus performance
improvement without haptic guidance using two groups of
subjects. The hypothesis would be that guided demonstrations
of tasks will speed up the rate of performance improvement
versus learning the task through observation alone.
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