
IBuILD: Incremental Bag of Binary Words for Appearance Based Loop
Closure Detection

Sheraz Khan and Dirk Wollherr
Chair of Automatic Control Engineering

Technische Universität München (TUM), 80333 München, Germany
{sheraz.khan,dw}@tum.de

Abstract— In robotics applications such as SLAM (Simulta-
neous Localization and Mapping), loop closure detection is an
integral component required to build a consistent topological
or metric map. This paper presents an appearance based loop
closure detection mechanism titled ‘IBuILD’ (Incremental bag
of BInary words for Appearance based Loop closure Detection).
The presented approach focuses on an online, incremental
formulation of binary vocabulary generation for loop closure
detection. The proposed approach does not require a prior
vocabulary learning phase and relies purely on the appearance
of the scene for loop closure detection without the need of
odometry or GPS estimates. The vocabulary generation process
is based on feature tracking between consecutive images to
incorporate pose invariance. In addition, this process is coupled
with a simple likelihood function to generate the most suitable
loop closure candidate and a temporal consistency constraint
to filter out inconsistent loop closures. Evaluation on different
publicly available outdoor urban and indoor datasets shows
that the presented approach is capable of generating higher
recall at 100% precision in comparison to the state of the art.

I. INTRODUCTION

In the domain of autonomous robotics, loop closure de-
tection within SLAM [1]–[5] is required to build a consis-
tent topological or metric map. In literature, graph based
SLAM [1]–[3] consists of two components, the front and
the back-end. The front-end deals with the raw laser data
and generates node and edge constraints. The back-end
estimates the posterior distribution over the robot poses
and landmarks given all edge constraints. The loop closure
detection mechanism is a component of the front-end of the
graph SLAM approach required to generate edge constraints
between nodes once the robot returns to a previously vis-
ited location. An effective performance of the loop closure
detection mechanism is important for SLAM as a single
wrong edge constraint can produce an inconsistent map. The
importance of an accurate loop closure detection mechanism
is further enhanced by the fact that most SLAM back-ends
do not filter the generated edge contraints for consistency and
leave this up to the front-end. To develop truly autonomous
robots that are capable of generating consistent maps, loop
closure mechanisms should work at 100% precision while
maintaining high recall rate.

In the last few decades, cameras have become an integral
part of robotic systems due to an increase in computational
power. Inline with this transition the focus of researchers in
the robotics community has shifted towards development of

appearance based loop closure detection mechanisms [6]–
[9]. The advantage of an appearance based approach is that
it is capable of detecting loop closures even when the robot
pose estimates from odometry might be completely wrong.

sed approach incrementally builds and updates the vo-
cabulary which is based on a binary bag of visual words.
In this paper a simple approach for appearance based loop
closure detection is presented which builds a vocabulary
consisting of binary visual words in an online, incremental
manner by tracking features between consecutive frames. A
likelihood function based on inverse occurence frequency of
features is used to generate the most suitable loop closure
candidates. Additionally, a temporal consistency test is per-
formed to eliminate any incoherent loop closure candidates.
The proposed approach is evaluated on different publicly
available outdoor and indoor datasets to show its robustness.
In addition, a comparison to the state of the art shows that
it is capable of producing high recall at 100% precision.

II. RELATED WORK

A. Related work

Majority of the recent work in appearance based loop
closure has focused on a bag of words representation [10],
[11] for image comparison. Bag of words is a structure that
has been borrowed from the field of language processing and
information retrieval which allows the representation of an
image as a vector by defining the presence or absence of
a visual word. The visual words are obtained by clustering
descriptors obtained from images after the features extraction
process. The literature on appearance based place recognition
can be divided into two categories based on the vocabulary
generation process: i) Offline and ii) Online, incremental
approaches. The work presented in [6], [12], [13] can be
placed in the first category whereas [7]–[9], [14] in the
second category.

In [6], the authors’ propose a probabilistic framework
which incorporates co-occurence probabilities between vi-
sual words using a Chow Liu tree [15] in an offline vo-
cabulary generation process to perform appearance based
loop closure detection. The approach can be considered as
the de-facto standard for loop closure detection due to its
robustness. In [16], the authors’ present an approach that
performs loop closure detection and visual odometry using
a vocabulary tree generated offline to produce real time



(a) Loop closure pipeline (b) Feature extraction

Fig. 1. (a) A overview of different components of the loop closure detection mechanism. (b) Keypoint extraction and matching mechanism between
consecutive images to obtain view point invariant features. di

t represents the ith descriptor extracted at the ith keypoint at time index t.

visual maps. Recently an approach for place recognition
using binary bag of words has been presented in [13]. It
uses an offline vocabulary learning phase to generate a
vocabulary tree consisting of binary visual words. Further-
more, it uses temporal and geometric consistency tests to
filter loop closure candidates. In [7], a probabilistic frame
work is presented that combines a vocabulary of SIFT [17]
features and color histograms for loop closure detection. The
features are extracted from a single image and a geometric
consistency test based on epipolar constraints is performed
to validate loop closure hypotheses. In [8], an approach is
presented that incrementally generates a vocabulary using
SIFT features matched over a sliding window of images.

The majority of the related work mentioned in the previous
section relies on vocabularies which are generated offline,
hence are not suitable for robotic applications which require
online, incremental operation without any prior training
data. Although generic online vocabulary generation [18]
mechanisms such as incremental K-means exist, however,
they are not well suited for binary spaces because they
assume real valued descriptors which can be averaged and
rely on the Euclidean distance metric [19]. In contrast, this
paper presents a simple approach of online, incremental
binary vocabulary generation for loop closure detection. The
incremental binary vocabulary generation process is based
on feature tracking between consecutive frames thereby
making it robot pose invariant and ideal for detecting loop
closures in real world scenarios. The advantage of using
binary descriptors to generate a binary vocabulary is that
they offer similar performance to SIFT and SURF features
at reduced storage and computational costs [20]. Evaluation
of the proposed incremental vocabulary generation process
coupled with a simple likelihood function and a temporal
consistency constraint shows that it is capable of generating
higher precision and recall in comparison to the state of the
art on publicly available indoor and outdoor datasets.

III. PRE-PROCESSING

The pipeline of operations performed in the loop closure
mechanism discussed in this paper is shown in Figure 1(a).
The pipeline is composed of two parts: i) Pre-processing

ii) Loop closure detection stage. The features extraction
(keypoint, descriptor extraction and matching) along with
merging of descriptors is placed in the pre-processing step,
whereas the rest of the components of the pipeline belong
to the loop closure detection stage. This section focuses on
the pre-processing components of the pipeline.

A. Feature Extraction

The first step in the pipeline is the extraction of view
point invariant features. The approach proposed in this paper
uses BRISK (Binary Robust Invariant Scalable Keypoint)
features, because they are scale and rotation invariant and
offer similar performance to SIFT and SURF at reduced
storage and computational costs [20].

The majority of the approaches [6], [7], [13] in appearance
based loop closure rely on features extracted from a single
image. In contrast, the approach proposed in this paper
relies on matching features across consecutive images as
shown in Figure 1(b) in a similar manner to [8], [9]. The
purpose of matching descriptors across consecutive images
(during which the robot undergoes slight variation in its
pose) is to determine the most likely descriptors that will be
observed in case the robot returns to the same location with
a different pose. To match binary descriptors a metric has to
be defined to measure similarity. In the proposed approach
the Hamming distance is used which is defined as

H(dt,dt+1) =

p∑
i=1

(dt[i]⊕ dt+1[i]),

where ⊕ represents the ‘exclusive OR’ operator and p is the
dimension of the descriptor vectors. The index i represents
the ith dimension of the p dimensional descriptor vector.
H(∗, ∗) represents the Hamming distance whereas dt, dt+1

are the p dimensional descriptor vectors extracted from im-
age It, It+1 respectively at any keypoint with t representing
the time index. In effect, the descriptors matching process
is an ‘exclusive OR’ between the bits of the descriptor
vectors and a count of set bits along the entire descriptor
dimension. Two descriptors matched across subsequent im-
ages are considered a good match if the Hamming distance
between them is below the matching threshold δ whereas all



descriptors which do not satisfy this threshold are discarded.
The centroid of the matched descriptors is taken as their
representative. The centroid d̄[i] of the ith dimension of the
binary descriptor vector at any time index is calculated as
below

∀i ≤ p, d̄[i] = centroid(d1[i], d2[i], ..., dk[i])

=


0 if

∑k
j=1(dj [i]) <

k

2

1 if
∑k

j=1(dj [i]) ≥ k

2

, (1)

where the notation dj [i] represents the ith dimension of the
jth descriptor vector and k represents the total number of
descriptors whose centroid is being calculated. Expression
(1) calculates the centroid for any arbitrary number of
inputs k, however, in the proposed approach the centroid is
calculated for descriptors matched during consecutive time
indices as shown in Figure 1(b) and stored in D̄t at time
index t.

B. Merging Descriptors

The second step in the pre-processing stage as shown in
Figure 1(a) is merging descriptors extracted in the previous
step. The objective is to remove multiple instances of similar
descriptors in case the image contains repetitive patterns.
Let D̄t = [d̄1

t , d̄
2
t , ..., d̄

m
t ]T (T and m denote the transpose

and the total number of descriptors respectively) represent
the centroid of descriptors matched between consecutive
images It and It+1. A descriptor after the merging process is
termed as a visual word. The algorithm starts by matching a
descriptor with all other descriptors in the set D̄t. Descriptors
are merged and replaced by their respective centroid in a
greedy manner if the distance between them is below the
matching threshold δ. This process continues until no further
merging can take place. Initially all descriptors in D̄t are
considered to represent independent visual words, however,
after successful merging of descriptors the number of visual
words present in the image are reduced. The psuedocode
of the merging algorithm is shown in Figure 2. The visual
words obtained after merging denoted D̂t are then passed to
the loop closure detection components of the pipeline.

IV. LOOP CLOSURE DETECTION

This section focuses on the loop closure detection compo-
nents of the pipeline. The most important component of the
loop closure mechanism is the vocabulary. Besides storage
of binary visual words in Vt−1, the vocabulary consists of
two important components:
• Occurence frequency of all binary visual words
• Inverted index for generating loop closure hypothesis
The occurence frequency denoted Ft−1 =

[f1t−1, f
2
t−1, ..., f

n
t−1] contains the number of times a

specific visual word is observed in images till time t − 1.
The term n represents the total number of visual words

Merge(D̄t)
Input: D̄t = [d̄1

t , d̄
2
t , ..., d̄

m
t ]T

// Descriptors from feature extraction
Output: D̂t // Visual words

Procedure:
1 Initialize number of visual words to m;
// |D̄t| represents the number of descriptors

for-all (i ≤ |D̄t|)
for-all (j = i+ 1 till j ≤ |D̄t|)

if (H(d̄i
t, d̄

j
t) < δ)

2 d̂
i

t = centroid(d̄i
t, d̄

j
t );

3 d̄i
t = d̂

i

t; //update descriptor for
next iteration of j

4 D̄t– d̄j
t ; // remove d̄j

t from D̄t

5 decrement m;
6 D̂t ←− d̂

i

t; //copy/overwrite ith

index in D̂t

endif;
if merging not possible for iteration i

7 D̂t ←− d̄i
t;

Fig. 2. The pseudocode of merging descriptors to remove multiple instances
of binary descriptors in the same image

present in the vocabulary. The time index t− 1 is used here
because the update based on the visual words detected in It
occurs at the end of pipeline, hence after the loop closure
likelihood calculations. The vocabulary also maintains an
inverted index to generate loop closure hypotheses based
on visual words detected in It. In the proposed approach
the inverted index is stored as a sparse binary matrix which
describes the presence or absence of a visual word in all
images till time index t− 1 as shown in Figure 3.

1 0
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10
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Fig. 3. An overview of the three main components of the vocabulary. The
vocabulary consists of the binary visual words stored (row wise) in Vt−1

(n×p matrix), the occurence frequency of each visual word and an inverted
index. The inverted index is stored as a sparse binary matrix representing
the absence or presence of visual words in all images till time index t− 1.
Given the indices of the old visual words stored in S generated during the
assignment of bag of word index, it is possible to determine past images
containing the same visual words as shown above.

An overview of the loop closure detection components
is mentioned here with further details in the following
subsections. After the pre-processing steps, the visual words
stored in D̂t are assigned a bag of words (BOW) index to



Assign-BOW-Index(D̂t, Vt−1)
Input: D̂t // visual words

Vt−1 // visual words in vocabulary
at time index t− 1

Output: S //set of indices of old visual words
found in D̂t

Nnew // number of new visual words

Procedure:
for-all (i ≤ |D̂t|)

word found = false;
for-all (j ≤ |Vt−1|)

if (H(d̂
i

t, v
j
t−1) < δ)

S ←− j; // store visual word index
word found = true;
break;

endif;
if (∼ word found)

increment Nnew;
endif;

Fig. 4. The pseudocode of assigning merged descriptors a BOW index

generate the loop closure candidates. The next step is the
evaluation of the likelihood of loop closure candidates and
the selection of the best candidate as shown in Figure 1(a).
Finally the chosen loop closure candidate is passed through
a temporal consistency check. The details of the loop closure
detection components are described below.

A. Assignment of the BOW index

The visual words D̂t obtained from the pre-processing
component of the pipeline are compared with the visual
words present in the vocabulary denoted Vt−1. This oper-
ation is performed to determine the number of the new and
old visual words in D̂t. The matching threshold δ is used
to match the descriptors in D̂t with the visual words in the
vocabulary to determine the indices of the old visual words.
The indices of all the old visual words are stored in the
set S. The pseudocode of the above mentioned process is
shown in Figure 4. An important point to mention here is
that the vocabulary index t − 1 is used here because the
update based on the visual words detected in It occurs at
the end of pipeline, hence after the loop closure likelihood
calculations. Initially, at time t = 0 the vocabulary is empty,
hence all visual words are initialized as new and stored in
V−1.

B. Loop closure hypotheses and Likelihood evaluation

Given the set S generated during the assignment of BOW
index to the merged descriptors, the loop closure hypothesis
set can be generated by using the inverted index. As shown
in Figure 3, given the indices of the old visual words detected
in It and stored in the set S, their occurence frequency and
presence in previous images can be easily extracted. A tem-
poral constraint threshold β (where β > 0) is used to prevent
the algorithm from generating loop closure hypotheses with
images observed close to the current time index. Hence, loop
closure hypotheses are limited from time index ti = 0 till
tL. ti = 0 represents the initial time index when the loop

closure algorithm started and tL = t−β, where t represents
the current time index. Let L = {Ii, ..., Ij} (where i ≥ 0
and j ≤ tL) represent the set of loop closure hypothesis
generated from the inverted index and U represents the set
of common visual words between loop closure hypothesis
image Ii and currently observed image It. The loop closure
likelihood of hypothesis Ii with the current image It is
calculated as

L(Ii, It) =

∑
∀m≤|U |(f

m
t−1)−1|U |∑

∀m≤|U |(f
m
t−1)−1|U |+

∑
∀k≤|T |(f

k
t−1)−1|T |+Nnew

,

where T consists of indices of visual words (extracted from
the inverted index) present in Ii but not found in It. The
notation |T | and |U | represents the cardinality of the set.
f jt−1 represents the occurence frequency of the jth visual
word in the vocabulary. Nnew is the number of new words
detected in It. The normalized likelihood of the loop closure
candidates is calculated as

L̂(Ii, It) =
L(Ii, It)∑
∀I∈L L(I, It)

,

where L as defined earlier is the entire hypotheses set. The
final loop closure candidate is chosen as the maximum of
this normalized likelihood function as

max
∀I∈L

L̂(I, It).

C. Temporal Consistency

The loop closure candidate chosen in the last step of the
pipeline goes through a simple temporal consistency test.
The temporal consistency test is based on the time index of
the previously observed loop closure. Consider a scenario in
which a robot at time index t−1 returns to a location which
was previously visited at time index t−k where k > β. The
temporal consistency test states that after the loop closure
event between It−1 and It−k, all future loop closure events
detected in the interval of t and t+ β are constrained to lie
between t−k and t−k+β. In Figure 5, it can be seen that due
to the temporal consistency constraint given the loop closure
event at time index t− 1, the loop closure event between It
and Ij is rejected (shown in red) whereas the loop closure
event in the interval of t− k till t− k+ β (shown in green)
is accepted. In case the robot return to the same location
multiple times in the past, the temporal consistency test has
to be extended to all such time intervals.

D. Vocabulary Update

Once the likelihood evaluation has taken place, the vocab-
ulary is updated by expanding the vocabulary size based on
the number of new visual words detected in It. Additionally,
the occurence frequency of all the old visual words has to
be updated and for all the new visual words it has to be
initialized to 1. Finally, the inverted index is updated based
on the visual words detected in the current time index.

After the vocabulary update the loop closure mechanism
waits for the next input image and then repeats the steps of
the pre-processing and the loop closure detection stage.



TABLE I
DETAILS ABOUT DATASETS USED IN EVALUATION

Dataset Description Camera position Image size # Images
Malaga6L [21] Outdoor, slightly dynamic Frontal 1024 x 768 3474

City Centre [22] Outdoor, urban, dynamic Lateral 640 x480 1237
Lip6 Indoor [7] Indoor, static Frontal 240x192 388

Lip6 Outdoor [7] Outdoor, slightly dynamic Frontal 240x192 531

TABLE II
RESULTS OF MAGALA6L AND CITY CENTRE DATASET

Dataset Approach Precision (%) Recall (%)
Gálvez-López [13] 100 74.75

Malag6L FAB-MAP 2.0 [6] 100 68.52
IBuILD 100 78.13

Gálvez-López [13] 100 30.61
City Centre FABMAP 2.0 [6] 100 38.77

IBuILD 100 38.92

TABLE III
RESULTS OF LIP6 INDOOR DATASET

Dataset Approach True positives False Positives Ground truth loop closure events
Angeli [7] (SIFT) 68 0 217

Lip6 Indoor Angeli [7] (SIFT + Color Histograms) 80 1 217
IBuILD 91 0 217

Angeli [7] (SIFT) 70 0 301
Lip6 Outdoor Angeli [7] (SIFT + Color Histograms) 71 0 301

IBuILD 77 0 301

Fig. 5. (Best visualized in color) Given the accepted loop closure at time
index t− 1 (shown in blue), the loop closure at time index t is constrained
to lie in t−k till t−k+β (shown in green). The loop closure with image
Ij (shown in red) is rejected as it does not satisfy the temporal constraint.

V. EXPERIMENTAL EVALUATION

In this section the proposed approach is evaluated on
different publically available datasets, as shown in Table I
and compared to state of the art methods such as FAB-
MAP 2.0 [6], Gálvez-López [13] and Angeli [7] . For all
dataset evaluations mentioned in this section the descriptor
dimension p is 512 and the temporal constraint threshold β
is set to 10. All experiments were performed on an Intel
i5-2500K 3.3 GHz processor with 16 GB RAM.

A. Methodology

The correctness of the results for Malaga6L and City
centre datasets is established by using the ground truth
information and script used by the authors in [13] as a black
box, hence without any modification in the parameters. The
script determines the precision and recall of the algorithm
given the ground truth information. The precision of an

algorithm is defined as the ratio of correct loop closures
to the total number of detected loop closures. The recall is
the ratio of the number of correct detections to the ground
truth loop closure events. The ground truth information (used
in [13]) contains a manually created list of loop closures.
‘The list is composed of time intervals, where each entry
in the list encodes a query time interval associated with a
matching interval’.

The proposed approach is also compared with Angeli [7]
on the Lip6 indoor and outdoor dataset. The ground truth
image to image correspondence matrix provided along with
the dataset is used to evaluate the number of true and false
positives generated by the algorithm. The rows and columns
of this matrix correspond to the images at different time
indices and an element is set to 1 if loop closure occured
and 0 otherwise.

B. Results for City Centre and Malaga6L Dataset

Figure 6(a) shows the precision and recall of the proposed
approach for different δ thresholds on the above mentioned
datasets. The maximum possible recall rate with 100%
precision is mentioned in Table II. The results mentioned
in Table II (for FABMAP 2.0 and Gálvez-López) have been
taken from [13] as the same script and groundtruth has been
used for evaluation. It can be seen that the proposed approach
is capable of producing higher recall with 100% precision
in comparison to other methods. Figure 6(b) shows the
evolution of the vocabulary size for the precision and recall
highlighted in Table II. Figure 7 shows the loop closures
detected by the approach in red on the City centre and
Malaga6L trajectory. Since Malaga6L is the largest dataset
(containing 3474 images) used in this paper, the execution



TABLE IV
AVERAGE EXECUTION TIME (MILLI SEC) OF PIPELINE FOR A SINGLE IMAGE ON MALAGA6L DATASET CONTAINING 3474 IMAGES

Property Keypoint detection Descriptor extraction Clustering Assignment to BOW Loop closure hypoth-
esis + Evaluation

Vocabulary update

Mean 3.4 1.9 0.038 45 0.1120 0.0088
Standard deviation 0.45 0.44 0.068 37 1.5 0.063
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Fig. 6. (a) Precision recall curves of the proposed approach (b) Vocabulary
size as a function of time for different datasets

time of the entire pipeline is mentioned in milliseconds
in Table IV. The computation time of the entire pipeline
is around 50 millisecond on average per image. Figure 8
shows an example of a loop closure detected by the proposed
approach on the City Centre and Malaga6L dataset.

C. Results for Lip6 Indoor and Outdoor Dataset

Figure 6(a) also shows the precision-recall of the proposed
approach on the Lip6 Indoor and Outdoor dataset for differ-
ent δ thresholds. Table III shows the results obtained on the
datasets in the same pattern as presented in [7] i.e. greatest
number of true positives detected without any false positive
whereas Figure 6(b) shows the evolution of the vocabulary
size for the highlighted cases in the above mentioned table.
It can be seen that the proposed approach is capable of
detecting a greater number of loop closures without any false
positives. Figure 9 shows an example of the loop closure
detected by the proposed approach on the Lip6 Indoor and
Outdoor dataset.

VI. DISCUSSION

The experimental evaluation in the previous section raises
two important issues about the proposed approach: Firstly,
the issue of scalability (handling large vocabularies) and
secondly the selection of an appropriate δ threshold.

The first issue is related to the scalability of the proposed
approach in context of large vocabularies. In principle this

CityCentre

(a) Detected loop closures on City Centre dataset

Malaga6L

(b) Detected loop closures on Malaga6L dataset

Fig. 7. Loop closures detected (marked in red) by the proposed approach
on the map of City Centre and Malaga6L dataset

issue can be addressed by formulating an incremental version
of the ‘vocabulary tree’ [23] which is suitable for binary
descriptors. The advantage of such an incremental version
would be that it would reduce compuational complexity
during the BOW assignment process (Section IV-A) and
allow the approach to scale well for large scale datasets and
vocabularies containing 1 million or more words. A complete
discussion and evaluation of such an approach is beyond the
scope of this paper and is left as future work.

Consider the second issue of selecting an appropriate δ
threshold. The factors that influence the δ threshold include
the operating conditions i.e. lighting conditions as current
state of the art feature detectors are not completely invariant
to such changes and the amount of overlap present between
images for feature tracking. In principle, a simple mechanism
can be used to estimate the δ threshold for a particular
dataset. This mechanism requires matching descriptors (us-
ing a specific δ threshold) between a pair of consecutive
images and reducing the δ threshold until the false matches
are eliminated. It is important that this pair should be a
true representative of the operating conditions and expected
overlap between images in that dataset.



Fig. 8. An example of loop closure detected by the proposed approach on the City Centre and Malaga6L dataset.

Fig. 9. Different examples of loop closure detected by the proposed approach on the Lip6 Indoor and Outdoor dataset.

VII. CONCLUSION

In this paper an online, incremental approach of binary
visual vocabulary generation for loop closure detection is
presented. The proposed binary vocabulary generation pro-
cess is based on tracking features across consecutive frames
making it invariant to the robot pose and ideal for detecting
loop closures. An approach for generating and updating
the binary vocabulary is presented which is coupled with
a simplistic likelihood function to generate loop closure
candidates. The proposed approach is evaluated on different
publicly available outdoor and indoor datasets. In comparison
to the state of the art the proposed approach is capable of
generating higher recall at 100% precision.
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