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Abstract— Learning from demonstration (LfD) is a common
technique applied to many problems in robotics, such as
populating grasp databases, training for reinforcement learning
of high-level skill sets and bootstrapping motion planners. While
such approaches are generally highly valued, they rely on the
often time-consuming process of gathering user demonstrations,
and hence it becomes difficult to attain a sizeable dataset. In this
paper, we present a tool capable of recording large numbers of
high-dimensional demonstrations of mobile manipulation tasks
provided by non-experts in the field. Our tool accomplishes this
via a web interface that requires no additional software to be in-
stalled beyond a web browser, as well as a scalable architecture
that is capable of supporting 10 concurrent demonstrators on a
single server. Our architecture employs a lightweight simulation
environment to reduce unnecessary computations and improve
performance. Furthermore, we show how our tool can be used
to gather a large set of demonstrations of a mobile manipulation
task by leveraging existing crowdsource platforms. The data set
collected has been made available to the robotics community.
We also present experiments in which we apply demonstrations
collected through our infrastructure to teach a robot how to
grasp, to teach a robot how to perform dexterous manipulation
tasks such as scooping and to accelerate motion planning for
full-body manipulation tasks.

I. INTRODUCTION

Developing robotic systems that learn from human demon-
strations of everyday motions and tasks has proven to be a
popular and useful approach in dealing with many problems
in mobile manipulation over the last two decades [14, 5,
11, 10, 9, 17]. These techniques are valuable because many
of the tasks normally performed by people are complex in
structure, the components of which must be explicitly de-
scribed for the robot. Furthermore, the collection of relevant
demonstrations is an integral part of virtually all Learning
from Demonstration (LfD) techniques.

Gathering human demonstrations is a time-consuming
process that, depending on the application domain, might
involve teleoperating an actual robot or even constructing
hand-crafted trajectories. The higher the dimensionality of
the required trajectories, the more complex and difficult
each of those approaches can become. One potentially faster
method is to use a motion capture system to record actual
human motions and then map them to the robot’s body
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Fig. 1: Capturing demonstrations kinesthetically is a popular
approach; however, logistical issues arise, especially when
trying to gather a large set of demonstrations, such as expense
or difficulty of effectively moving the robot.

using one of several approaches [19, 16]. While existing
approaches have shown promise, determining this mapping
is still an open research problem because of the complexities
that arise from the human having a different kinematic
structure than the robot, which prevents the robot from
simply duplicating the human motion [18]. A high-level
comparison of the methods that are most commonly used
to record demonstrations is shown in Table I.

As is clear from Table I, most of the current methods
require some form of additional hardware or software and
in turn, significant expertise to set up. An actual robot or
motion capture system (e.g. Kinect, Vicon) can become
expensive and difficult to use, especially for non-experts.
At the very least, tailored physics-based simulation software
must be installed on the demonstrator’s computer. In ad-
dition, all of these methods are only capable of recording
one demonstration at a time and the user is required to be
local to the recording equipment (computer or robot). On
the other hand, a web-browser-based client does not have
such requirements and can support concurrent demonstration
recordings. It is also advantageous because it opens the
possibility of employing a large workforce from around
the world, on crowdsourcing platforms such as Amazon’s
Mechanical Turk (AMT).

In this paper, we present a web-based infrastructure that
greatly simplifies the process of collecting large numbers
of user demonstrations on high-dimensional mobile manip-
ulation platforms. It is designed to be used simultaneously
by many users over the web in an internet browser without
any setup. We developed an efficient, lightweight simulation
environment that can support 10 concurrent users on a single
web server. Through a web client, the user can effectively



TABLE I: Common Methods of Recording Demonstrations

Robot Equipment | Software | Multiple
required | required required users
MoCap no yes yes no
Kinesthetic (Fig 1) yes no yes no
Teleop (robot) yes no yes no
Teleop (sim) no no yes no
Web-based Client no no no yes

control the 10 degrees of freedom of the PR2, while the
generated trajectories are recorded by the server process and
organized into a database. The entire framework is built
using Robot Operating System (ROS)', a popular open-
source software suite for robotics applications, and hence
interfaces well with many existing ROS-enabled projects.
Our web interface is available for wuse at
www.teacharobot.org. In addition to the tool itself, a
dataset that we recorded (described in Section IV-A)
is available for download at the same location’. We
welcome the community to use our software for collecting
demonstrations or to utilize our existing dataset.

II. RELATED WORK

Recently, there have been a number of projects to control
robots through web interfaces. The PR2 Remote Lab is
presented in [15]; it provides the infrastructure necessary to
control a PR2 through the web, allowing robots to be used as
web services by users without physical access to them [12].
In [13], such a robot web service was used in research on
robotic LfD. It was noted that creating effective interfaces
for controlling high-DoF robotic manipulators using just
a mouse and keyboard is difficult; indeed, this is one of
the challenges we face. The primary drawback of these
methods is the reliance on either a physical robot to be
present somewhere, or the need to use existing simulators
that have not been optimized for many simultaneous users.
Consequently, unlike our approach, these methods do not
readily scale to beyond a single user.

More similar to our approach is the Robot Management
System (RMS) [21] and RobotsFor.Me [22] projects, de-
signed for conducting Human-Robot Interaction research
through a web interface, with a focus on crowdsourcing
user studies. RobotsFor.Me, which is built on top of RMS,
provides a web interface through which users can control a
robot in an isolated environment. For RMS, users were first
trained on a robot within a Gazebo-based simulator. The user
was subsequently given control of a physical robot during the
real experiments.

Our motivation and approach differs from these projects
in that we seek to record a large number of full high-
DoF user demonstrated trajectories, specifically for mobile
manipulation tasks. Our infrastructure also features a web
interface, but replaces the robot with a lightweight simulator

designed to scale. Both our infrastructure and RMS rely on
Lwww.ros.org
2A list of recorded demonstrations are available for download and/or
replay at www.teacharobot.org/bagfiles.php
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Fig. 2: A high-level diagram of the system architecture.

the framework provided by RobotWebTools [1] that allow
web applications to communicate with ROS-enabled server-
side applications. RobotWebTools is of great general utility
to the rapidly-evolving field of web robotics.

Increasingly, robotics researchers have turned to crowd-
sourcing to gather data for a variety of studies. In [6],
researchers used online games to gather user demonstrations
of human-human interaction to generate a model for con-
textually correct and task-oriented behaviors. The produced
model was found to apply to scenarios in which a physical
robot interacted with humans.

Researchers employed a web interface in [8] to collect
a large number of demonstrations of users guiding a robot
through a maze. It was found that demonstrations were
effective at training the robot to complete the same task.

In [20], AMT is used to aid perception for robotic manipu-
lators when grasping novel objects. Users were not asked for
full demonstrations; instead, demonstrators provided seman-
tic information about the environment to aid the robot in the
perceptual challenge of completing the task. In our work, we
show how to harness AMT using our infrastructure to collect
high-DoF trajectories for a mobile manipulator.

III. USER DEMONSTRATION INFRASTRUCTURE
A. Overview

Our infrastructure is motivated by the need to crowdsource
the process of capturing human user demonstrations of high-
DoF mobile manipulation tasks. In particular, it features a
lightweight, kinematic simulation of the robot with an exten-
sible constraint framework, as well as a scalable architecture
that allows for a number of simultaneous demonstrators.
Furthermore, the web-based user interface allows for users
to demonstrate from the comfort of their home, avoiding the
logistical issues that arise during kinesthetic, teleoperation,
or motion capture methods. In addition, this infrastructure
allows us to harness existing crowdsourcing platforms, such
as AMT, to collect demonstrations on a large scale, reaching
a largely untapped population of non-robotics experts, as we
describe in Section IV.

Our infrastructure features a client-server architecture, as
depicted in Figure 2. The client is web-based, and sits in
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Fig. 3: Shown above is the usage by the server process of
the system resources (CPU, memory) as a function of the
number of active users. The server was run on a computer
with an Intel Core i7 (quad-core) and 12 GB of RAM.

the demonstrator’s web browser; a number of clients may
be simultaneously instantiated to accommodate concurrent
demonstrators. A single server manages these clients, as
well as the memory-intensive resources shared between these
processes (such as databases populated with the demon-
strated data, and collision models of the environments in
which the demonstrations take place). We have designed the
infrastructure with a focus on scalability, so as to easily
support up to 10 concurrent demonstrators.

B. Processing on the Server

The server is responsible for the majority of simulation-
related computation, including all kinematics calculations
and executing constraint-checking as necessary, as well as
managing communications between the users and their asso-
ciated client processes running at any given time. We chose
not to use an existing simulator such as Gazebo primarily
to gain additional performance— we tailor this simulator to
meet the needs of mobile manipulation tasks, rather than a
larger superset of robotic tasks in general. Since our design
is motivated by tasks involving robot manipulation of the
environment, our simple simulation framework obviates the
need for high-fidelity simulation of the interaction between
the robot and the environment. Simulating such interactions
is not only computationally intensive but also notoriously
difficult to perform correctly, even by widely used physics
engines.

For example, the simple task of grasping an object in
the world would require high-fidelity simulation of contact

forces, which has proven to be a difficult task for physics en-
gines. We avoid this challenge, albeit with some simplifying
assumptions about the interaction forces (e.g. the object is
not too heavy, and the frictional forces are sufficient so that
it remains at a fixed pose relative to the end-effector while
in motion). The gain in computational efficiency enables our
infrastructure to exhibit very reasonable performance even
when being used simultaneously by multiple demonstrators.
In Figure 3, we show our experiments run on a desktop
computer. Each additional user requires no more than 500
MB of system memory and 5% of the CPU, with the system
requiring around 8 GB of memory and 27% of the CPU at
maximum capacity.

Our infrastructure is designed to accommodate changes
to the level of control of the robot as necessary for the
demonstrations. To this end, movement of the robot is
governed by a set of controller plugins that may be inter-
changed as desired. Depending on the research application,
a simple controller that pulls the base of the robot towards the
input position in a straight line without regard for obstacles
could be employed. This requires that the users impart their
knowledge of navigation through the demonstration. Alterna-
tively, a more intelligent navigation planner or path follower
could be used if the researcher is not interested in how
the demonstrator would navigate the environment. In other
words, these plugins allow the researcher to specify how
many DoF of the robot should take part in the demonstration.

Control of the arm is equally as versatile. The default
controller uses interpolated inverse kinematics to move the
end-effector toward the pose commanded by the demon-
strator. This simple controller requires the user to account
for collision and joint limit avoidance. On the other hand,
in a research domain where the actual joint level motion
of the arm is less important, this simple controller can be
exchanged for a motion planning plugin that generates full
arm trajectories for the user.

In most mobile manipulation tasks, certain constraints
must be observed during the demonstration. A constraint is
implemented as a function that maps the state of the environ-
ment onto the boolean state of the constraint. Examples of
constraints include collision checking, joint limit observance,
as well as constraints on how objects are handled, such as a
coffee cup or other liquid containers that must remain at an
upright orientation. This framework also supports the class
of constraints involving the manipulation of grasped objects
that can only move along a constraint manifold, such as a
door which can only move along a fixed arc as dictated by
its hinges. Being able to enforce a tailored set of constraints
while recording the demonstration is critical to ensuring that
the user-collected data can actually be applied.

Additionally, our infrastructure provides an extensible
task structure. Researchers construct tasks by specifying an
ordered list of goals, either hand-written or specified through
an additional tool that we developed. Goals, like constraints,
have a function that maps from the state of the simulation to
an indicator of completion. For mobile manipulation tasks,
we implemented goals of two genres: pick up, and place. For



a pick up goal to be satisfied, the end-effector of the robot
must match a grasp pose previously demonstrated by the user
in the frame of the object. For place goals, the pose of the
manipulated object must either match a predetermined goal
pose, or must enter a goal region. We also take into account
rotational symmetries of the object. Similar to constraints,
new classes of goals can be defined by plugins, whereby
new goal completion conditions can be specified.

The server process is also responsible for aggregating the
collected demonstrations and storing them in a database.
Additional metrics to filter for demonstration quality (such
as grasp quality or total path cost) can be implemented on
top of the database, tailored to the application at hand.

C. Processing on the Client

The client is comprised mainly of a web-based interface,
responsible for all 3D rendering of the demonstration scene,
as well as providing a set of controls for guiding the robot. In
common tasks that leverage crowdsourcing, the user specifies
a single variable at a time. For example, in the task of
labeling images, the user labels each feature of the image
one-by-one. In our domain, demonstration of mobile manip-
ulation tasks require that the user specify many “variables”,
or degrees of freedom of the robot, simultaneously; this is
one of the key challenges of demonstrating full 10 DoF
trajectories for a robot with mobile base and 7 DoF arm, for
example. In fact, for single-arm mobile manipulation tasks, a
typical robot may have up to 10 relevant degrees of freedom.

We provide users with a minimal set of controls for
specifying the position and orientation of the base and end-
effector. Basic control over the position of the robot is
achieved by dragging markers that resemble the base and
end-effector to the desired goal positions. As shown in
Figure 4, the green marker on the end-effector allows the user
to translate it in the plane, and the colored rings allow the
user to orient it by specifying the roll, pitch, and yaw as well
as the upper arm roll joint angle. The user is also allowed
to toggle between basic position control of the end-effector
and finer control over the orientation of the end-effector and
the upper arm roll joint angle.

Our framework currently features basic support for dual-
arm manipulation. In particular, the tool may be configured
to allow for both arms to be used during the demonstration
of a task as shown in Figure 4 (upper-right). However, in
the future, we plan to add improvements including a better
user interface for demonstrating dual-arm tasks, and a more
tailored control scheme that accounts for the complexities
that arise when manipulating a single object with two rigid
grasps (e.g. carrying a tray requires both end-effectors to act
in concert so as to maintain or change the orientation of the
tray).

As shown in Figure 5, the user is provided with an
interface that guides him/her through the various goals that
must be completed in order to finish the task at hand.
Additionally, the user has control over the camera, as in other
simulators. As the user progresses through the task, the client
gives performance feedback, based on metrics such as time

)

Fig. 4: The arm and base can be controlled with simple 6
DoF controls, as shown on the upper-left, or with full 10 DoF
controls, as shown in the bottom row. Dual-arm controls are
similar to the single-arm controls, as shown on the upper-
right.

elapsed and distance traveled, and displays visual indications
of what to accomplish next. In future work, we will focus
on improving these feedback mechanisms as described in
Section V-C.

IV. APPLICATIONS

In this section, we present three applications of our infras-
tructure to collect user demonstrations and to apply that data
to benefit existing problems in robotics. First, we describe
how we have harnessed a popular crowdsourcing platform to
collect a large number of demonstrations for a mobile manip-
ulation task. Second, we show how trajectories demonstrated
using our web interface can be used to accomplish tasks on
an actual PR2, including grasping objects and performing
dexterous manipulation tasks. Finally, we show how user
demonstrations, recorded using our framework, improve the
success rate and planning times of a motion planner that
makes use of previously planned or demonstrated trajecto-
ries.

A. Crowdsourcing Demonstrations

Over the past few years, researchers have made use of
web-based crowdsourcing platforms that provide a paid, on-
demand workforce to complete simple tasks in high volume.
AMT (Amazon’s Mechanical Turk), one of such platforms,
has become a standard method for researchers to quickly
attain large datasets, such as labeled training examples, at
relatively low costs for their experiments. Such platforms
have been of great benefit to other fields, such as computer
vision [4] and perception for robot manipulation [7], but
remain generally unused for collecting high-dimensional
demonstrations of mobile manipulation tasks. Traditionally,
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the tasks that crowd workers are asked to complete are
very simple, such as semantic labeling of images or text
documents. In this work, we have used our infrastructure to
harness the crowdsourcing potential of AMT.

We have collected over 1,100 demonstrations of full 10
DoF trajectories on the PR2, a mobile manipulator com-
monly used in research, from over 100 different workers
on Mechanical Turk across the world. This exhibits the
data collection potential of platforms such as AMT, given
a suitable infrastructure. In these experiments, we presented
the user with a kitchen environment in which he/she is
asked to demonstrate a series of pick-and-place goals within
the context of a larger task. We chose these goals to be
representative of the space of common mobile manipulation
tasks one might encounter in a kitchen. For example, picking
up a carton of eggs from the refrigerator requires fine control
of the base and end-effector through narrow passageways,
and an appropriate selection of how to grasp the object.
Grasping a box from an elevated shelf requires the user
to demonstrate control of the end-effector near joint limits.
In our experiments, we chose the task of baking brownies,
which requires the user to demonstrate a series of pick-and-
place subtasks in order to aggregate the necessary ingredi-
ents.

From our results, we observed that the users experienced
various levels of difficulty in completing the subtasks, which
is attributable to the varying degrees of complexity of the
chosen subtasks. For example, picking up the pan was

cake mix cake pan eggs

hockey oil water
stick bottle

Fig. 6: The average time taken by AMT workers to complete
each pick-and-place goal in the kitchen environment task.
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Fig. 7: The average amount of motion executed by the base
and end-effector during each third of the demonstrated path
(bottom: base, middle: end-effector translation, top: end-
effector rotation).

significantly more difficult than placing the oil, since the
average time is over 400 s for the former and is close to 50
s for the latter, as seen in Figure 6. Another clear observation
is that pick up subtasks are more difficult than place down
subtasks. In fact, for many cases it takes more than twice as
long to pick up an object than to place it down. Because
more degrees of freedom are used in picking up objects
than in placing them, finer control of the arm is required
for the pick up subtasks than the place down subtasks. The
demonstrations also confirm the intuition that when the robot
is further from the start and goal regions, the base is moved
more than the arm. As seen in Figure 7, the user moves
the end-effector more near the start region, to pull away
from the previously completed subtask, and near the goal
region to complete the pick up or place down subtask. Later,
in Section IV-C, we verify the applicability of this data by
showing how it benefits a motion planner that learns from
user demonstrations.

B. Use of Demonstrations on a Real Robot

1) Grasping with Demonstrations: In this application,
we use grasps, demonstrated using our web interface, to
pick up several objects with a real PR2. We first had a
demonstrator record grasps for a wrench (Figure 8) and a
fork (Figure 9) using our web interface. We then employed
a simple perception pipeline using a Kinect sensor to find
each object on a tabletop, match it to a corresponding mesh,
and apply the appropriate demonstrated grasp to pick it up.
To do this, we first converted each mesh into a point cloud,



Fig. 8: Users demonstrated grasps for tools such as the
crescent wrench.

Fig. 9: Subset of demonstrated grasps for fork.

which we used to align with the point cloud produced by the
Kinect. We then subtracted the background from the Kinect
point cloud using a snapshot of the scene prior to the object
being present. We then clustered the remaining points and
aligned the point cloud with the mesh, using Iterative Closest
Point (ICP) at a number of starting orientations and selecting
the best match. Since we already knew the location of the
grasps with respect to the mesh, a simple transformation was
applied to find the pose of the grasp in the Kinect’s frame.
We then used a simple inverse kinematics interpolation
method to send the PR2’s gripper to the object and pick
it up (Figure 10). Using this pipeline, the PR2 succeeded in
picking up the wrench and fork using demonstrated grasps
recorded through our interface (refer to the included video
for these results).

2) Scooping Task: Tasks that are complex in structure are
good candidates for LfD because they are often difficult to
explicitly specify as a planning problem. Instead, effective
policies can be learned from demonstrations of the task
successfully executed on the robot [3]. Additionally, for a

Fig. 10: A user-demonstrated grasp is used to pick up the
wrench. The entire action can be seen in the attached video.

Fig. 11: The scooping motion is first demonstrated through
the web interface, and then replayed on the actual PR2.

robot to accomplish such tasks, it is often desirable to replay
the demonstration [2], partly or entirely. In this experiment,
we consider the task of using a spoon to scoop from
one container to another. This task is difficult to explicitly
specify because there are many smaller subtasks that must
be performed carefully. Unlike the mobile pick-and-place
tasks described in Section ['V-A, this scooping task cannot be
specified by a single start state and goal state. We show how
our web interface can be used to record a demonstration of
this scooping task, which can then be replayed with success
on an actual robot. Figure 11 displays the experimental setup,
both in the simulator and the real world. The results on the
robot may be seen in the included video.

C. Motion Planning with Demonstrations

Our final application makes use of recorded trajectories
in a motion planner capable of learning from experiences
and demonstrations [14]. We collected demonstrations in a
kitchen scenario where users were asked to collect the ingre-
dients to make brownies (e.g. brownie mix, eggs, water, oil,
pan, etc.) as described in Section I'V-A. For each ingredient
the user demonstrated the pick-up motion associated with
moving the object from its initial pose, as well as the motion
of placing the object at the appropriate pose or region. The
environment and tasks were constructed using tools provided
by our infrastructure. Figure 14 shows the scene.

We chose the Experience Graphs (E-Graphs) motion plan-
ner [14] to show the benefits of our data since previous
work has shown that the planner’s performance improves
as demonstrations are added. Planning with E-Graphs is a
variant of Weighted A* search, where the heuristic function
guides the search to reuse parts of previously planned or
demonstrated trajectories (in this case demonstrations) that
may help the search find a path to the goal quickly.

Our experiment involved planning for the base (3 DoF),
prismatic spine (1 DoF), and right arm of the PR2 (7 DoF).
From a starting configuration, the motion planner had to
find a path to get the robot’s end-effector to a goal pose in
the kitchen environment. We generated 30 random start/goal
pairs, each of which was chosen proximally to the objects



Fig. 12: The purple spheres are the end-effector goals for the
motion planning experiment.

Fig. 13: A visualization of the E-Graph constructed from
user demonstrations, projected onto the 3D (x,y, z) position
of the end-effector.

that were manipulated in the task given to the demonstrators.
This ensured that the demonstrations would be relevant. The
environment and goals are shown in Figure 12. When run-
ning the E-Graph planner we provided it with 60 arbitrarily
chosen demonstrations which came from 7 different users.
Figure 13 shows the resulting E-Graph, which is the union
of all the user demonstrations (for visualization purposes, we
only show the lines which display the path of the gripper).
We compared the E-Graph planner against Weighted A*,
which is essentially E-Graphs without any data. We gave
the planners 4 seconds to solve each query.

Table II shows the results of our experiment. We can
see that by using the user demonstrations, our success rate
doubles and our average planning time drops. Not only
are the collected demonstrations clearly applicable to the
planning domain, but they are also beneficial.

TABLE II: Performance Benefits from using Demonstrations

Success Rate
E-Graphs 80%
Weighted A* 40%

Average Planning Time
2.28s
2.37s

Fig. 14: The kitchen scene with the ingredients used in the
brownie task. The consensus from demonstrators was that
retrieving the eggs from the refrigerator required the most
complex maneuvers of all of the goals.

S

Fig. 15: A red sphere appears as feedback to the user stating

that a collision would occur if the robot were to execute the
requested motion.

V. DISCUSSION
A. Dynamics

Currently, our infrastructure supports simulation of the
robot’s kinematics, necessary for demonstrating most mo-
bile manipulation tasks. Physics of the interaction between
the robot and the environment are not taken into account.
As robotics researchers begin to study more than strictly
kinematics-based approaches to mobile manipulation and
grasping, the need will increase for user demonstrations
that include dynamics, such as velocities and accelerations.
We are interested in extending our infrastructure to include
dynamics but believe that the most straight-forward approach
is to employ an existing physics-enabled simulator such as
Gazebo and run it selectively, according to the task.

B. Other Robotic Platforms

While this paper is heavily focused on the PR2 platform,
our infrastructure is capable of supporting any other mobile
manipulation platform built on a mobile base. However, the



software’s efficiency is the result of a few highly-optimized
components that are PR2-specific. These pieces include a
very fast collision checking library and inverse kinematics
function. As long as these components are available, the code
and performance of our system will port to other mobile
manipulators.

C. User Interface Improvements

Performing a high-dimensional demonstration is a difficult
task even for an experienced robotics researcher, and can
be nearly impossible for non-expert users unfamiliar with
the low-level specifics of the robot. We believe that an
intelligent feedback mechanism, capable of notifying a user
when potentially problematic situations are detected, would
significantly improve the user interface. In our implementa-
tion, the user is notified of potential collisions, as seen in
Figure 15, but some non-expert users undoubtedly require
additional guidance to fully understand how to avoid certain
problematic situations (i.e. rolling the redundant joint keeps
the end-effector steady but can avert a collision). We believe
that further feedback mechanisms would improve efficiency
for inexperienced users; such mechanisms might offer help
when progress has halted due to confusion. This could be
implemented as a helpful text box that appears or a button
that suggests the next best move as determined by some
heuristics.

VI. CONCLUSION

In this paper, we described a novel tool for collecting
high-dimensional user demonstrations of mobile manipula-
tion tasks. Human demonstrations are becoming increasingly
important as the manipulation community embraces LfD
techniques for research in various areas such as grasping,
motion planners that use prior experience, and cost function
analysis. Featuring a web interface and scalable architec-
ture, our tool interfaces well with popular crowdsourcing
platforms, tapping a large and diverse demographic of non-
robotics experts. Our lightweight simulator supports demon-
strations of a variety of mobile manipulation tasks in a
simulated environment, including those requiring one or
more constraints, yet remains computationally efficient on
both the client- and server-side; a single server can support
10 users in parallel. By using a popular crowdsourcing
platform, AMT, in conjunction with our interface we have
collected over 1,100 10 DoF demonstrations. Furthermore,
we applied grasps demonstrated through our tool to the task
of grasping objects on a real PR2 with success. We have
also shown how dexterous motions can be demonstrated
and replayed directly to accomplish the same task on an
actual PR2. Finally, we have applied this data to benefit an
existing a motion planner that makes use of demonstrations
to improve its performance.

ACKNOWLEDGEMENTS

This research was partially sponsored by ARL, under the
Robotics CTA program grant W911NF-10-2-0016. It was
also in part sponsored by the NSF grant IIS-1409549.

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

(19]

[20]

[21]

[22]

REFERENCES

B. Alexander, K. Hsiao, O. C. Jenkins, B. Suay, and R. Toris.
Robot web tools [ros topics]. Robotics Automation Magazine, IEEE,
19(4):20-23, 2012. 1I

S. Alexandrova, M. Cakmak, K. Hsiao, and L. Takayama. Robot
programming by demonstration with interactive action visualizations.
In Proceedings of Robotics: Science and Systems, Berkeley, USA, July
2014. IV-B.2

B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of
robot learning from demonstration. Robotics and Autonomous Systems,
57(5):469-483, 2009. IV-B.2

T. L. Berg, A. Sorokin, G. Wang, D. A. Forsyth, D. Hoiem, 1. Endres,
and A. Farhadi. It’s all about the data. Proceedings of the IEEE,
98(8):1434-1452, Aug 2010. IV-A

J. Bruce and M. Veloso. Real-time randomized path planning for
robot navigation. In Intelligent Robots and Systems, 2002. IEEE/RSJ
International Conference on, volume 3, pages 2383-2388 vol.3, 2002.
I

S. Chernova, N. DePalma, E. Morant, and C. Breazeal. Crowdsourcing
human-robot interaction: Application from virtual to physical worlds.
In RO-MAN, 2011 IEEE, pages 21-26, July 2011. II

M. Ciocarlie, C. Pantofaru, K. Hsiao, G. Bradski, P. Brook, and
E. Dreyfuss. A side of data with my robot. Robotics Automation
Magazine, IEEE, 18(2):44-57, June 2011. IV-A

C. Crick, S. Osentoski, G. Jay, and O. C. Jenkins. Human and robot
perception in large-scale learning from demonstration. In HRI, pages
339-346, 2011. 1I

C. Fernandez, M. A. Vicente, R. P. Neco, and R. Puerto. Robot grasp
learning by demonstration without predefined rules. [International
Journal of Advanced Robotic Systems, 9:156-168, 2012. 1

N. Jetchev and M. Toussaint. Trajectory prediction: learning to map
situations to robot trajectories. In Proceedings of the 26th Annual
International Conference on Machine Learning, ICML 09, pages
449-456, New York, NY, USA, 2009. ACM. I

X. Jiang and M. Kallmann. Learning humanoid reaching tasks in
dynamic environments. In Intelligent Robots and Systems, 2007. IROS
2007. IEEE/RSJ International Conference on, pages 1148—1153, 2007.
I

S. Osentoski, G. Jay, C. Crick, B. Pitzer, C. DuHadway, and O. C.
Jenkins. Robots as web services: Reproducible experimentation and
application development using rosjs. In ICRA, pages 6078-6083, 2011.
II

S. Osentoski, B. Pitzer, C. Crick, G. Jay, S. Dong, D. Grollman, H. B.
Suay, and O. C. Jenkins. Remote robotic laboratories for learning from
demonstration. International Journal of Social Robotics, 4(4):449—
461, 2012. 11

M. Phillips, B. Cohen, S. Chitta, and M. Likhachev. E-graphs:
Bootstrapping planning with experience graphs. In Proceedings of
Robotics: Science and Systems, Sydney, Australia, July 2012. I, IV-C
B. Pitzer, S. Osentoski, G. Jay, C. Crick, and O. C. Jenkins. Pr2 remote
lab: An environment for remote development and experimentation. In
Robotics and Automation (ICRA), 2012 IEEE International Conference
on, pages 3200-3205, 2012. II

N. S. Pollard and J. K. Hodgins. Generalizing demonstrated manip-
ulation tasks. In Proceedings of the Workshop on the Algorithmic
Foundations of Robotics (WAFR ’02), 2002. 1

N. Ratliff, J. A. Bagnell, and M. Zinkevich. Maximum margin
planning. In International Conference on Machine Learning, July
2006. 1

A. Safonova, N. Pollard, and J. K. Hodgins. Optimizing human motion
for the control of a humanoid robot. In 2nd International Symposium
on Adaptive Motion of Animals and Machines (AMAM2003), March
2003. 1

A. P. Shon, K. Grochow, and R. P. N. Rao. Robotic imitation from
human motion capture using gaussian processes. In Humanoids, pages
129-134. IEEE, 2005. 1

A. Sorokin, D. Berenson, S. S. Srinivasa, and M. Hebert. People
helping robots helping people: Crowdsourcing for grasping novel
objects. In IROS, pages 2117-2122, 2010. II

R. Toris. Bringing human-robot interaction studies online via the robot
management system. Worcester Polytechnic Institute Masters Thesis,
October 2013. Masters Thesis. II

R. Toris and S. Chernova. Robotsfor.me and robots for you (extended
abstract). In Interactive Machine Learning Workshop, Intelligent User
Interfaces Conference, IUI *13, March 2013. Extended Abstract. II



