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Learning Non-Holonomic Object Models for Mobile Manipulation

Jonathan Scholz Martin Levihn

Abstract— For a mobile manipulator to interact with large ev-
eryday objects, such as office tables, it is often important to have
dynamic models of these objects. However, as it is infeasible to
provide the robot with models for every possible object it may
encounter, it is desirable that the robot can identify common
object models autonomously. Existing methods for addressing
this challenge are limited by being either purely kinematic, or
inefficient due to a lack of physical structure. In this paper, we
present a physics-based method for estimating the dynamics
of common non-holonomic objects using a mobile manipulator,
and demonstrate its efficiency compared to existing approaches.

I. INTRODUCTION

One of the central challenges for mobile manipulation
in natural environments is being robust to under-specified
models. For example, navigating through offices and homes
often requires pushing objects such as carts and chairs that
have never been encountered before. Humans are able to
handle such situations by quickly discovering the coarse
behavior of these objects, and adapting their behavior accord-
ingly. Imagine pushing an office table such the one depicted
in Fig. 1. As soon as the table begins to rotate, humans
can quickly infer that a wheel is locked and change their
behavior. This ability is guided by a collection of prior beliefs
about the physics of everyday objects [1]. To learn object
models with only a handful of interactions, robots should
utilize the same inductive bias. This paper brings robots
closer to such capabilities.

To learn efficiently, it is desirable to have a model space
which parameterizes common constraints, such that they
can be estimated from limited manipulation data. In natural
environments, the most important property governing object
behavior is often physical constraints, such as hinges and
wheels. To allow a robot to quickly infer these constraints,
we move away from existing approaches which either require
a dense training set (e.g. classical non-parametric methods [2,
3]), or are purely kinematic [4], and instead focus on quickly
estimating constrained dynamic models. The advantage of
this approach is that it is capable of representing common
non-holonomic objects without resorting to non-parametric
methods, allowing for model estimation with as few as one
or two object interactions.

To achieve this we make the following contributions: First,
we introduce Physics-Based Regression (PBR); a method
adapted from [5] which is based on the idea of performing
Bayesian inference over a space of constrained physical
models designed for indoor environments. Next we define
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(a) Start State
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Fig. 1. Mobile manipulator pushing an office table with lockable wheels.
(a) Start state; robot applies force in the forward (+X) direction. (b) Result:
table rotates around locked wheel.

the necessary pipeline to convert arbitrary manipulation
forces and torques (as measured using a standard wrist-
mounted force-torque sensor) to the input expectations of
PBR. Finally, we address the challenge of fitting approximate
physical models to time-series data on a real robot, and
propose optimization criteria suited for making accurate
long-term predictions.

This paper is organized as follows. Section II provides an
overview of related work. Section III and Section IV detail
the approach and implementation of PBR on a physical robot,
which we evaluate in Section V. We provide closing remarks
and discuss future work in Section VI.

II. RELATED WORK

Within robotics, physical estimation typically focuses on
inferring mechanism parameters, such as for a given robot
manipulator [6, 7] or vehicle [8]. Physical inference of
unknown objects using a manipulator, however, has received
comparatively little attention. Two notable exceptions are [9],
which develops a least-squares estimator for the full 10-DOF
rigid body parametrization of a manipulator payload, and
[10], which estimate a friction for a table. Both of these
methods considered only unconstrained rigid-body motion,
which can be formulated as a linear system.

Our work bears a close resemblance to the field of
Adaptive Control, specifically indirect adaptive control [11].



Indirect adaptive control builds on the idea that a suit-
able controller can be determined online if a model of
the plant (controlled dynamical system) is estimated online
from available input-output measurements [11]. Adaptation
is typically done in two stages: (1) estimation of the plant
parameters using a Parameter Adaptation Algorithm (PAA)
(2) updating controller parameters based on the current plant
parameter estimates. PBR can be understood as a PAA
generalized to support non-linear model estimation using
Bayesian approximate inference. Alternative approaches to
non-linear system identification can be found in [12].

Finally, there are several results in object pushing with-
out explicit physical knowledge [13, 14], however these
approaches are restricted to holonomic objects. We are inter-
ested in tasks in human environments, which can frequently
include objects with wheels and hinges.

III. APPROACH

Our goal is to enable robots to be able to reliably ma-
nipulate large, unknown furniture-like objects along desired
trajectories. We therefore do not assume that the robot has
a priori models of the object dynamics, but rather needs to
estimate them online based on force sensor readings and state
trajectories during object manipulation. This work builds
on methods from Physics-based Reinforcement Learning
(PBRL), a model-based RL framework specifically designed
for agents interacting with physical objects [5].

A. Physics-Based Reinforcement Learning

In this section we summarize the relevant model and
inference methods used in PBRL as presented in [5]. The
core purpose of the physics-based model used in PBRL is to
capture the coarse behavior of common objects with a small
number of parameters. For example, the most salient property
of a shopping cart is that the rear wheels resist lateral motion
along the handle axis. Less relevant are the inertial properties
of those wheels, or the caster orientations in the front, as they
don’t qualitatively affect the control choices of the robot (for
our intended applications).

PBRL utilizes this insight by defining probability distri-
butions over the relevant physical quantities, such as masses
and friction coefficients. Transitions are obtained by taking
the expectation of the model’s output over those random
variables. With an appropriate choice of constraints, this
allows us to handle a broad class of objects, while remaining
tractable to estimate.

The focus of this work is on manipulation of a table
with lockable wheels, which is one of the constraint types
considered in PBRL. For convenience, we first review the
relevant parameterization of inertia and anisotropic friction.

In the general case, inertia requires ten parameters: one
for the object’s mass, three for the location of the center
of mass, and six for its inertia matrix /. However, if object
geometry is known, we can reduce this to a single parameter
m by assuming uniform distribution of mass per body fixture
(e.g. polygon or sphere), from which I can be computed
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Fig. 2. Square table with wheel parameters overlay

!. Because this paper focuses on physical constraints we
utilize the scalar mass parameterization, however for a full
parametrization see [9, 16].

Anisotropic friction is a velocity constraint that allows
separate friction coefficients in the x and y directions,
typically with one significantly larger than the other. An
anisotropic friction joint is defined by the 5-vector J, =
(Wg, Wy, Wo, fg, fy), corresponding to the joint pose in the
body frame, and the two orthogonal friction coefficients. Fol-
lowing [17], we employ a viscous-friction model to describe
table motion. The instantaneous world-frame force from an
anisotropic friction constraint is obtained by computing the
constraint velocity in the object frame, scaling the body
velocity components by their respective coefficients, and
rotating back to the world frame:

= ([E]4 [0 F]a[2]) o
Fhl:R|:'ux 0:|Ub' (2)
whee 0 thy obj
Here R is a rotation matrix describing the object’s current
orientation, and z, ¥, 6 represent the object’s planar velocity.
Anisotropic friction constraints can be used to model
wheels, tracks, and slides. One wheel is sufficient for model-
ing the bodies typically found indoors, such as shopping carts
and wheelchairs, because they have only one constrained
axis (multiple coaxial wheels can be expressed by a single
constraint). The overall set of model parameters for a single
body containing a single anisotropic friction constraint can
be represented by the vector ¢:

d) = <nlvwmawva97ﬂxvﬂy> (3)
These parameters are visualized on Fig. 2.

B. Physics-Based Regression

We now describe how PBRL can be adapted for appli-
cations on real robots. We consider object dynamics of the

'Mass is often parameterized in this fashion in modern simulation tools,
such as Box2D [15].



following form:
= f(ﬂ?, u) = IilFtotal = Iﬁl(Frobot + Euheel) (4)

where  denotes the full 2D state of the object, and F},iq;
the total force applied, which is decomposed into the applied
robot forces u = F).,pot, and the constraint forces Fi peel.
I~! is the object’s inverse inertia matrix.

Eq. 4 describes a standard second-order differential equa-
tion for table dynamics that depends on the control choices of
the robot, F).,p0¢, and the constraint forces, Fi,peer, generated
by the wheel(s). Any numerical integration method can be
used to simulate f(ax,w), but PBR preserves the use of a
planar physics engine (Box2D, [15]) from PBRL to be able to
handle collisions. This “greybox” approach is useful for our
ultimate purpose, which is to enable robots to fit complete
world-models using all the physical knowledge encoded in
modern simulation tools (for further justification see [5]).

If g(;, u;, 6t;; @) denotes the discrete-time integration of
Eq. 4 for time-step 0t; under model parameters ¢, then the
PBR regression model can be written:

x; = g(x;,u;, 6t @) + @)

where ¢ is zero-mean Gaussian noise with variance o2
Like a standard Bayesian regression model, PBR includes
uncertainty both in the process input parameters, via a
prior P(¢), and in output noise ¢ 2. Therefore, our target
parameter space is {¢, o}, and the target density is:

P(¢,0lh) < P(h|¢, o) P(p)P(c) (6)

We assume that the input to the estimator is collected by
a real robot and is therefore sequential:

Lo Uo
1 U1

h = . . (N
T Uur

Estimating the PBRL model in [5] involved MCMC sam-
pling guided by the log of Eq. 6. The (log) priors P(¢) and
P(0) were be evaluated directly, and typically chosen to be
uninformative. The log-likelihood log(h|¢, o) was obtained
by summing squared distances between the observed value
and the predicted state for each state and action:

In P(h]®,0) oc = > (] — g(ai, wi, 6ti5.0))”  (8)
=0
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A challenge when attempting to fit Eq. 8 in practice
is that the trajectory data on real robots will be densely
sampled, and contain both noise and un-modeled dynamical
effects (e.g. static friction or caster orientation). In our
initial experiments this lead to large data sets for relatively
short manipulation episodes, as well as inaccurate long-term
predictions.

2Priors must be chosen to restrict support to legal values. See [5] for
details

To address this, PBR uses a log-likelihood term that
penalizes the final integrated error, rather than incremental
displacements:

In P(h|g,0) oc — (x7 — ) ©)

*

recursively as ] =

where ] is defined :
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The main difference with Eq. 8 is that this function
maintains a separate predicted state =* over time. Therefore
the actual states x; in the trajectory are only used to evaluate
the transformation of each control input w; to the object
frame (as necessary to omit grasp variables), and final error
for t =T This can be understood as a method for handling
an under-parameterized model: By not penalizing deviations
from intermediate points in the trajectory we allow greater
flexibility to fit the overall displacement.

In summary, PBR can be estimated by maximizing the log-
probability of Eq. 9. By contrast to [5], which uses MCMC to
obtain samples from the model posterior, we utilize L-BFGS
[18] to directly maximize the model log-probability.

IV. IMPLEMENTATION

In this section we define a framework that allows the
approach described above to be used on real robots.

A. Prerequisites

There are two basic requirements for implementing our
approach on a real robot. The first is a method for measuring
the reaction forces and torques during manipulation. The
process presented here assumes access to measurements from
a wrist-mounted force-torque sensor as well as an end-
effector suitable for manipulating the target objects. We
denote the raw 6-axis force-torque measurement at time ¢
as Fy*w = [Fy, 7T, which contains linear component
F = [F,, F,, F.| and moment T = [7,, Ty, T2].

The second requirement is a method for tracking the tra-
jectories of objects over the course of manipulation episodes.
In this work we are interested in planar-dynamics, and
require the planar pose and velocity of the target object. We
denote the 6-dimensional state vector containing the target
object’s position and velocity as © = [y, ys, 0, T+, Ut 9,5]
We also require the world-frame pose of the gripper, =&
during the episode for mapping applied forces to the object
frame, considered next. We use O; and G; to denote the
corresponding homogeneous transforms.

B. Gathering Data

To gather data the robot applies in-plane manipulation
forces to some point on the object, and records the force-
torque response as well as resulting object trajectory. To
avoid having to introduce the end-effector contact point in
the model presented in Eq. 4, the sensor readings must be
adjusted to compensate for the weight of the end-effector,
and transformed to the object frame.

These are standard operations [19] which we reproduce
here for completeness. First, let g'T denote a force-moment
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Fig. 3. Raw force-torque readings from robot effector during two
manipulation episodes. Robot executes a forward (+X) velocity action to
(a) a table with a locked wheel, and (b) a utility cart.

transformation which maps force measurements from frame
B to frame A:

FA=4TFB (10)
_ AR 0 FP (an
T | 4P x4R 4R || NE

where 44 R and 4 P denote the rotation matrix and translation
vector, respectively, from frame B to A.

Next, a straightforward method for gripper compensation
is to cache an initial sensor offset ;" and gripper pose G
(before object contact), and transform it to the current frame
G using Eq. 11 at each time step:

t* — f:aw _ g;TJ—_'gaw (12)

This reading can now be transformed to the object frame
using the current transform between the gripper and the
object:

FP=GTiF (13)

This method can handle changes in the pose of the gripper
with respect to gravity, which is sufficient for our purposes,
but we note that it cannot handle changes in conformation
(e.g. finger movement) or inertial effects which may be
relevant for different applications. We also note that in
practice the sampling rate of the object-tracker and force-
sensor may differ, so Eq. 13 should be computed using
the most recent relative transforms from the object tracking
system.

V. EVALUATION

To evaluate the usefulness of our approach for real robotic
systems, we implemented the complete framework on an
actual mobile manipulator. Additionally, to obtain insight
into the scalability of the approach across a range of different
objects and robotic systems with different signal-to-noise
ratios, we implemented the framework in realistic physical
simulation.

A. Real Robot

We implemented the proposed framework on the mobile
manipulator Golem Krang [20]. Golem Krang has a segway-
like base with a slider in the back to provide static stability,

(a) Start State

(b) Result

Fig. 4.  Humanoid robot manipulating a cart with a non-holonomic
constraint. (a) Start state; robot applies force in the forward (+X) direction.
(b) Result: cart rotates and slides along wheel direction.

two 7-DOF arms with 6-axis force-torque sensors in the wrist
joints and 1-DOF gripper end-effectors. To obtain position
estimates in the world coordinate system, we used external
sensing consisting of 4 cameras tracking AR-Markers on the
robot end-effector and environment objects.

As discussed in Section IV-B, the main difference between
these experiments and those in [5] is that here we consider
actions as measured by a robot-mounted force-sensor that is
potentially in non-rigid contact with the target object, rather
than simulated forces defined at the object center-of-mass.

We performed a series of experiments using different
configurations of a standard office table, and on a utility cart
with fixed front wheels. The robot was tasked with applying
a closed-loop velocity controlled push-action on the objects,
and estimating the physical parameters of the object based
on the force-torque readings as well as position estimates.

Fig. 1(a) and Fig. 1(b) show the starting and final config-
urations for an experiment on an office table with lockable
wheels. As the robot did not know a priori that the lower-
left table wheel was locked, the expected outcome was that
it would move in a straight line. Fig. 5(a) visualizes the
expected and actual obtained behavior.

The presented framework uses the observed behavior
as well as the obtained force-torque readings, shown in
Fig. 3(a), to estimate a model. The first attempt at model
learning employed loss function utilized in Eq. 8. As can be
seen in Fig. 5(b), this approach failed to produce accurate
long-term predictions when applying the measured force-
torque signal to the starting table configuration.

Utilizing the pipeline described in the previous section,
and the integrated-error loss function Eq. 9, our method
obtained a model for the object that included a wheel in
the lower left quadrant of the table, with high friction in the
push direction. This result consistent with the training data,
but did not match our expectations, as will be discussed in



(a) Expected result: table translates  (b) Attempted learning: inappropri-

ate loss function

(c) Fitting unlocked table (d) Fitting table with locked wheel

(e) Expected result: cart translates (f) Fitting a cart with fixed wheels

Fig. 5. Overlay of observed data (green) and model predictions (blue)
with and without PBR model learning. (a,e) Without learning: robot expects
object to move straight forward. (b) With learning, using the full trajectory
likelihood function: large error in final position estimate. (c) Learning on
unlocked table: robot correctly estimates a mass and friction that reproduce
the observed trajectory. (d) Learning on locked table: robot estimates that
a wheel-constraint is active on the lower-left corner. (f) Learning on utility
cart: robot estimates a fixed wheel on the right side of the cart.

Section VI. Fig. 5(d), visualizes an overlay of the observed
table positions and a physical simulation of the estimated
model when the same forces are exerted on it. In a second
experiment in which all wheels were unlocked we obtained
the results in Fig. 5(c), in which the mass and friction were
tuned to produce the appropriate straight-line trajectory.

Fig. 5(e) shows a similar false prediction on a utility cart,
resulting in the updated model shown in Fig. 5(f), containing
a fixed wheel.

B. Simulation

While the previous series of experiments demonstrated
the usefulness of the presented framework on a real robot,
we now evaluate the scalability of the framework across a
range of objects and force-torque signal-to-noise ratios. To
obtain sufficient data for evaluation, these experiments were
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Fig. 7. Visualization of the 10 objects used for the evaluation.

performed in simulation. Further, to assess the quality of
the predictions obtained by our method, we implemented
Locally-Weighted Regression (LWR) [21] and Linear Re-
gression (LR). These methods were selected because they
represent common approaches at two different extrema of the
bias-variance spectrum, and have complementary strengths:

o« LWR is a non-parametric method with high expressive
power, but requires many data points.

o LR is a parametric method which can only represent
linear functions, but is very sample efficient.

Both regression methods were trained on data from Eq. 7,
packaged as x;11 = f(xy,us; B) for model parameters 3.
In LR S corresponded to the regression coefficients, and for
LWR § corresponds to the Gaussian kernel hyper-parameters
(for details see [5]).

1) Model Quality: Fig. 6 compares the efficiency of each
model across the ten objects depicted in Fig. 7. The five
left-most objects contained a nonlinear constraint in some
configuration. The remaining objects were linear and only
vary in shape and mass. For each object, 50 noisy training
observations were gathered online and used to train a model
(o = 0.50).

For each object, bar height indicates the number of ob-
servations required by the model to obtain a given test
accuracy, as measured by an r2-statistic evaluated on 200 test
samples. The samples were generated by the same procedure
as used for training. The accuracy threshold was set to
r?2 > 0.995. Although it may appear strict, this threshold
was empirically determined such that a planner was able to
solve a short ( 50 step) open-loop pushing task around a
static obstacle with final error less than the object radius.
This criterion is appropriate for the intended purpose of
our model, which is to determine kinematically feasible
trajectories for manipulation with velocity or force controlled
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effectors.

As expected, LR fails to achieve the target accuracy for
all five non-linear objects. However, it is efficient for the
remaining ones. LWR achieves the accuracy threshold for
all objects except the kitchen table. PBR was the most
sample-efficient model, and reached the accuracy threshold
for all objects. However, it was the worst-performing model
on the bed object. Since the bed model was representable,
this indicates a failure in the MCMC estimator. We plan on
investigating the use of different estimators in future work.

2) Signal-To-Noise Ratio: To evaluate the generality of
the proposed framework across a range of signal-to-noise
ratios, we compared model variance on data gathered from a
simulated shopping cart (Fig. 8). These results demonstrate
that for cases in which PBR can represent the target
dynamics, it is more robust to Gaussian noise than both
regression methods. The inset indicates that while LWR can
achieve zero-error with no noise, its performance quickly
falls off as noise increases. Overall these results suggest that
if an appropriate physics-based model can be defined, it can
outperform more general-purpose alternatives.

VI. CONCLUSION

In this paper we presented a method for online esti-
mation of non-holonomic object dynamics with a mobile
manipulator. Our results suggest that anisotropic friction is
a useful coarse model of wheeled object behavior which
can be efficiently estimated from data available to a real
robot. However, while the obtained model successfully fit
the data gathered in these experiments, the estimated wheel
positions didn’t correspond to their actual locations on the
cart and table. This could be caused by the fact that our
sample space did not include all potentially relevant attributes
such as static friction. It is therefore not yet clear whether
the current model will be sufficiently accurate to allow
appropriate control choices, such as where to grasp the object
or which way to push. Future work will investigate the
performance of this method in online manipulation tasks,

and determine whether a richer model space is necessary for
accurate planning.
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