

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 26, 2024

Fable II: Design of a Modular Robot for Creative Learning

Pacheco, Moises; Fogh, Rune; Lund, Henrik Hautop ; Christensen, David Johan

Published in:
Proceedings of 2015 IEEE International Conference on Robotics and Automation.

Link to article, DOI:
10.1109/ICRA.2015.7140060

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Pacheco, M., Fogh, R., Lund, H. H., & Christensen, D. J. (2015). Fable II: Design of a Modular Robot for
Creative Learning. In Proceedings of 2015 IEEE International Conference on Robotics and Automation. (pp.
6134-6139). IEEE. https://doi.org/10.1109/ICRA.2015.7140060

https://doi.org/10.1109/ICRA.2015.7140060
https://orbit.dtu.dk/en/publications/5e237aa3-9c80-4097-a79d-ae1ecf24de2d
https://doi.org/10.1109/ICRA.2015.7140060

Fable II: Design of a Modular Robot for Creative Learning

Moises Pacheco, Rune Fogh, Henrik Hautop Lund and David Johan Christensen

Abstract— Robotic systems have a high potential for creative
learning if they are flexible, accessible and engaging for the
user in the experimental process of building and programming
robots. In this paper we describe the Fable modular robotic
system for creative learning which we develop to enable and
motivate anyone to build and program their own robots. The
Fable system consists of self-contained modules equipped with
sensors and actuators, which users can use to easily assemble a
wide range of robots in a matter of seconds. The robots are user-
programmable on several levels of abstraction ranging from a
simple visual programming language to powerful conventional
ones. This paper provides an overview of the design of Fable for
different user groups and an evaluation of critical issues when
we attempt to integrate the system into an everyday teaching
context.

I. INTRODUCTION
Today’s world is filled with consumer products that con-

stantly encourage us to buy and not to build. Taught to us
from an early age, plagiarism and copyright policies serve
as mental barricades that dry out our curiosity, creativity
and collaboration [1]. In this work we seek to revitalize and
quench our users thirst for knowledge within the domain of
robotics. We believe that, given the right tools, anyone can
become a robot designer.

In this paper1 we present the design of Fable, a mecha-
tronic construction kit that allows users to playfully build and
program their own robots. Our objective is to motivate users
both towards making their own robots and sharing them with
others, that is as a DIY (Do it Yourself) kit and as a DIT
(Do it Together) kit.

We have designed Fable as a modular robotic platform
with a focus on the users’ needs, ranging from a classroom
of kids, and after-school clubs, to hobbyists/makers and even
researchers, as illustrated in Fig 1. This diversity in usability
is achieved by encapsulating key robotic functionalities into
modules that can be combined in numerous configurations
utilizing a shared connector and communication system. This
gives us the freedom to design basic modules for kids and
high-end modules for researchers while making it easy for
makers to start building their own. To support this diversity
of users we enable them to program the system by using their
preferred programming language (Blockly, Python and Java
are currently supported and we plan support for Matlab).

The rest of this paper starts by describing related work
(Sec. II). It continues by presenting the design of Fable, that
is: mechanics, electronics and software (Sec. III). Further in

Technical University of Denmark (DTU), Center for Playware, Depart-
ment of Electrical Engineering, Elektrovej, Building 326, DK-2800 Kgs.
Lyngby, Denmark {mpac| djchr| hhl} @elektro.dtu.dk, rufo@dtu.dk

1An earlier version of this paper was presented at the IROS 2014
workshop on Modular and Swarm Systems [2]

(a) Students

(b) Maker (c) Researcher

Fig. 1. Prospective Fable users with different interests, objectives and level
of experience.

Sec. IV the paper exemplifies how robots can be assembled
in seconds, programmed with Blockly and Python, and we
evaluate Fable as an educational platform based on program-
ming sessions with users and experts.

II. RELATED WORK

The Fable system is designed to support the user’s creative
thinking and innovation. In order to guide the development
of creative toolkits for users, Resnick et al. has proposed
a set of design principles such as ”Low Threshold, High
Ceiling, and Wide Walls” [3]. Von Hippel described toolkits
for user innovation as a way to transfer design abilities from
the toolkit developer to the user [4]. Further, Von Hippel
proposed five key objectives for such toolkits: 1) Enable the
user to perform trial-and-error learning, 2) span a solution-
space, that embraces what the user wants to design, 3) is
user-friendly by being familiar and easily accessible to the
user, 4) contains a standard library, that users can combine
with their own designs, 5) automatically translate the user’s
design into the format required to produce the design. In this
work, we are guided by such design principles and objectives
in order to make Fable as valuable as possible for its users.

Fable is a modular robotic system. Such systems achieve
flexibility and versatility through modularity and thereby

provides users with what is known as ”Wide Walls”. Modular
robotic systems consist of a collection of simple robotic
units that can attach and detach from each other to form
a wide range of configurations [5], [6]. While the majority
of modular robots are designed to study self-reconfiguration,
e.g. [7], [8], [9], Fable takes its inspiration mainly from user
reconfigured and interactive systems. Fable is more similar to
Roblocks/cubelets [10], MOSS [11], Topobo [12] and LEGO
Mindstorms in that all these systems aims to enable and
motivate everyone to become a robot designer.

With Fable we aim to provide a creative experience to
its users. Dahl and Moreau defined experiential creation
as ”...activities in which a consumer actively produces an
outcome” [13]. For robots this definition ranges from kits
which the user assembles into a specific predefined robot to
open-ended systems where little or no guidance is given to
the user in how the robot should be designed. The modularity
and granularity of Fable provides constraints, and thereby
guidance, to the solution-space but the system is prepared for
makers to overcome such constrains, e.g. by creating their
own types of modules.

Ideally, Fable should motivate the users to be creative
and learn in the process. As observed by Dahl and Moreau
[13] users are motivated to engage in creative work for
both intrinsic and extrinsic reasons, including a feeling of
accomplishment, a desire to learn and to share a creative
experience with others. Further, users are motivated by the
satisfaction they feel from an immersion in the creative
process [13]. This immersion is related to the mental state
of flow which is characterized by a lost sense of time and
being fully absorbed in the current activity [14]. A state of
flow is more likely when the user feels that the activity i)
has a clear goal, ii) has immediate feedback on the users
performance and iii) has an appropriate balance between
the challenges of the task and the user’s perception of own
skills [14]. Play share many characteristics with flow and,
as argued by Brown, is ubiquitous in nature and critical for
both children and adults development and well being [15].
Play can motivate users to perform learning activities and is
therefore a key objective when designing interactive learning
environments [16]. The PlayGrid is a model which aims to
encapsulate what makes a user enter a state of Play, based on
four types of play: the Assembler, the Director, the Explorer,
and the Improviser [17].

Educational robotic kits such as Lego Mindstorms and
VEX are widely used in classrooms for their mechanical
flexibility and their easy to use programming environment.
These kits, including Fable are inspired by the learning
theory of constructionism [18] and aim to move users away
from the passive individual thinking and into active hands-on
collaborative learning-by-building. An important difference
between Fable and fine granularity systems, such as Lego
Mindstorms, is the reduced effort required by the user to
modify and experiment with their mechanical design.

A visual programming language enables a ”Low Threash-
old” entry to robot programming. For Fable we utilize
Blockly [19], a block programming approach similar to

(a) Small size (b) Medium size (c) Compatibility of two
connector sizes

Fig. 2. Connector design: With the current design any size is possible
and compatible with the rest, having only as a lower limit the small size
connector diameter.

Scratch [20], to allow non expert users to graphically pro-
gram and interact with the system. In order to address the
needs of different users, to provide scaffolding and a ”High
Ceiling” also Python, Java and eventually Matlab can be used
to program the system.

III. FABLE DESIGN

This section provides an overview of the design of our
second version of the Fable system, details about the first
version can be found in our previous work [21], [22], [23].

A. Mechanics

Our approach uses powerful, yet easy to connect modules
that allow users to assemble a functional robot in a matter of
seconds. The Fable system is divided in active and passive
modules. Active modules contain a set of electronic boards
with a microcontroller, onboard power, and a radio device
for wireless communication with a PC. These modules also
provide functionalities through actuation and sensing, e.g.
one active module design is a 2 degree of freedom joint, see
Fig. 4(a). Passive modules consist of a variety of shapes made
out of empty plastic shells. These passive modules help give
the robot structure and shape, e.g. a ’Y’ shaped module is
used to connect three modules together and an ’X’ to connect
four. Both can be seen in the robot configuration in Fig. 4(b).

A key feature in modular systems are the connectors since
they serve as the only contact surface between modules. Our
current connector design, illustrated in Fig. 2, is genderless
and four way redundant, which allows our users to explore
several connection possibilities between modules. Each con-
nector has at least one ring of magnets that attaches to a
matching set on the connecting end. The connector uses a
set of flanges that lock the modules allowing only the user
to disconnect them by pulling them apart. With this design
we obtain a strong connection between modules and yet it’s
easy enough for children to disconnect. The connector design
is scalable, meaning that it is compatible between different
sizes, giving us the possibility of combining large modules
with small ones, as illustrated on Fig. 2(c).

B. Electronics

For the Fable system we have developed a set of electronic
boards, that when combined with commercially available

boards give us a modular electronic configuration. The
electronic boards are designed for simplicity, low produc-
tion cost, flexibility and hackability. The modular approach
enables us to create different active modules by mixing
electronics boards in new configurations. Table I describes
the electronic boards currently used in Fable. Different active
modules and a radio dongle will use a specific subset of the
electronics modules. To facilitate hackability the module and
dongle firmware is executed on an embedded Arduino board.
As we develop new types of Fable modules we will develop
new modular electronic boards to support them.

Board Name Details Description
Module Board 11.1v, 1000mAh

LiPo battery
Main mother board for ac-
tive modules

Dongle Board 5v USB powered Main mother board for
dongles

User Interface
Board

RGB diode,
button, buzzer,
recharge plug,
on/off switch

Functions for user feed-
back and direct interaction
with module/dongle

Motor Board RS232 half-
duplex dual
buffer

Interface board for serial
control of Dynamixel mo-
tors (e.g. AX-12A)

Arduino Pro
Mini

AVR Atmega328,
3.3v, 8MHz

MCU module for dongles
and modules

Radio Board NRF24L01+,
2.4GHz, 2MBit,
SPI interface

Wireless communication
between modules and
dongles

TABLE I
OVERVIEW OF ELECTRONICS BOARDS USED IN FABLE

C. System Network Architecture

The underlying objective of the Fable network architecture
is to make the robot programming as simple and flexible
as possible. Due to a low lag radio communication link to
the modules, the user can program the distributed robots
as if it was centralized and connected directly to the PC.
Therefore, the user avoids the difficulties of cross-compiling,
downloading program to robot and debugging a distributed
embedded platform.

The network architecture of the Fable system is shown
in Fig. 3. The user PC is serially connected to a dongle
which provides a shared 2 Mbit radio communication link
between the user controlled application and the modules.
Modules are addressed using an ID and their module type.
Web services can be used to enhance the possibilities of
the user application, currently we use a web service API
for speech generation. Although the radio communication
is shown here as a master-slave architecture, it can also
function as a peer-to-peer network. This can be exploited
in certain research studies, e.g. on distributed control as
described in Section III-D. In addition, we plan to exploit
asynchronous communication between different dongles to
enable the different users to program collaboratively by
writing different parts of a program and remotely calling
functions developed by other users.

D. Distributed Hardware-in-the-loop Control

Research within modular and swarm robotics often ex-
plores distributed control strategies, e.g. for behaviors such

Fig. 3. Network architecture of the Fable system.

as locomotion, learning and shape-formation [24], [25], [26].
Debugging and validating distributed controllers is challeng-
ing and hardware-in-the-loop simulators can facilitate the
development process [27].

Fable is mainly centralized controlled given that it re-
ceives commands wirelessly from a PC and lacks dedicated
neighbor-to-neighbor communication. However, Fable can
also be used as a hardware-in-the-loop simulator for de-
veloping and validating distributed control strategies. The
software API supports distributed control where each module
controller executes in a separate thread on the PC. Also,
passive modules will run independently in a control thread to
take part in the communication network. Given an adjacency
matrix of the robot the modules can simulate neighbor-
to-neighbor communication. Fable supports two modes of
distributed communication:

Simulated: Messages are exchanged between module
control threads locally on the PC. Transmissions are per-
formed without significant lag, without payload length limits
and messages are never lost.

Hardware-In-The-Loop: Messages are wirelessly trans-
mitted between two real-world modules for a more realistic
performance. The lag of transferring such a message varies
from approx. 6 ms to 13 ms with the length of the payload (0
to 26 bytes respectively). Message loss heavily depends on
the specific setup, for example in one setup with 15 meters
between two modules we measured package loss to increase
from 4.6 ± 2.7% to 43.4 ± 22.6% when a human moved
within the line-of-sight between the modules.

E. User Programming

The user develops the system application from a per-
sonal computer using one of the supported programming
languages. When the user executes the application program
it is not cross-compiled but run locally on the PC. Simple
APIs enable the user-program to call functions on the remote
modules through the dongle connected to the PC (based
on module IDs). The round-trip lag for a simple remote
procedure call is around 4.2 ms, longer if the remote module
needs to perform processing. This is sufficiently low for most
applications and can be reduced even further in future work.

We developed a Graphical User Interface (GUI), based on
Blockly [19], as a means for non-programmers to quickly

(a) Modules

(b) Quadruped

Fig. 4. (a) Four active joint modules and eight passive modules. (b) A
Fable quadruped robot assembled from the above twelve modules.

start developing applications. Blockly is an open-source
framework for building application specific visual program-
ming languages inspired by the Scratch programming en-
vironment [20]. An example of a Blockly program for
controlling a simple interactive Fable robot is shown in Fig.
5(a). The source output generated from Blockly is written in
Python. This string of Python code is send from the Blockly
JavaScript web-application through an HTTP request to a
Python server which executes the Python control application.
Further, the Blockly interface enables users to collect and
analyze data from the robot, e.g. as real-time-plots of sensor
values.

More experienced users can also write applications di-
rectly in either Python or Java based on APIs. Further,
we plan to add Matlab support for research and university
education in future work.

IV. EXAMPLES AND EVALUATION

This section describes an experiment to measure the
assembly time of a robot, present an example of Blockly
programming and present qualitative observations based on
programming sessions with Fable.

A. Assembly and Disassembly Speed

This example illustrates the assembly of a typical robot
that could be built and programmed by most non-expert
users. In programming sessions students have previously

programmed similar quadruped with different gait patterns,
and in the process learned about programming, robotics,
and mathematics. In such sessions, we have observed the
importance of fast and easy reconfiguration which motivates
the students to explore and experiment with the robot mor-
phology.

Fig. 4(a) shows the modules as an exploded view of the
Quadruped shown in Fig 4(b). The quadruped consist of eight
passive modules: four feet, two ’Y’, one ’X’ and one tail
module. In addition, four active joint 2DOF modules are used
in the quadruped.

We have measured that it takes on average 16.9 seconds
to assemble and 9.8 seconds to disassemble the robot for
an experienced user. This corresponds to 1.5 second for
connecting two modules and 0.8 seconds to disconnect. For
comparison, Davey et al. reported on the assembly time of
CKBot with the ModLock connector which took 7 seconds
per connection and 3 seconds per disconnect in a snake
configuration [28]. Compared to many other systems, both
Fable and CKBot are fast to assemble, e.g. it takes 1917
seconds to assemble a simple Bioloid snake, as reported by
Davey et al. [28].

B. Visual User-Programming

A simple example of a Blockly program, which can be
used to control Fable, is shown in Fig. 5(a). This program
controls a joint module to random angles and reports to the
users which angles are positive and negative while illustrating
the angles on a plot. Students can build such a program as an
exercise to help them visualize angles in different contexts:
plots, motors, degrees.

The program runs in an infinite loop where it starts by
assigning a random integer to a variable. The variable is
then used as an angle set-point on the joint module with ID
number 10. Then it continues to plot the motor’s angular
position and evaluates if the position is positive or negative
and speaks its correspondent sentence. The speak function
uses a web API to speak a sentence, with local playback
on the PC. Further, the plot function plots the position in
real-time on a graph which is an integrated part of the
graphical user interface. Plotting is useful for debugging and
educational purposes.

In Fig. 5(b) the equivalent Python source code generated
from the Blockly program is shown. We anticipate that the
similarity between Blockly and Python will ease beginner
programmers’ to transition from a visual programming lan-
guage to a general purpose programming language. More
advanced control strategies e.g. for research experiments
could be implemented in Python, Java and in the near future
also in Matlab.

C. Programming Sessions

In order to evaluate Fable as an educational platform we
arranged a number of programming and building sessions
with educational experts, schoolteachers, and students from
different age groups (ages 8 and up). Some of the sessions
were combined with semi-structured interviews. The focus

(a) Blockly (b) Python

Fig. 5. (a) A simple example Blockly program for controlling a single Fable joint module (ID=10). (b) The corresponding Python code output by Blockly.

was on late primary and secondary school in order to learn
how the system could be integrated in a school context. For
practical reasons we focused our attention on the Danish
school system but we anticipate that our observations may
generalize to other school systems as well. Based on these
sessions we identified critical themes that will guide the
further development of Fable:

a) Classroom integration: The structure of everyday
teaching in schools affects how robotics can be integrated
in the classroom. In the Danish school system the classes
are organized in 45 minute lessons. In a typical lesson the
teacher first lectures the topic followed by students working
on exercises related to the topic. In order for robotics to fit
in this time-scarce context, it is important that the setup time
of the system is kept to a minimum. However, most robotic
kits require more time in the assembly phase, e.g. the LEGO
Mindstorms Education EV3. A minimal EV3 mobile robot
requires the user to follow a 40-step assembly manual (equ-
vivalent to estimated 20-40 min.) [29]. Mechanical assembly
arguably has valuable learning outcomes, but in practice it
limits the use of robots to longer integrated projects or the
use of pre-assembled fixed morphology robots. In order to
address this issue, in the design of Fable our objective is to
keep the setup and assembly time as low as possible.

b) Educational material alignment: Creating and pro-
gramming robots freely based on intrinsic motivation can
be a highly rewarding and educational experience for the
students. However, in order to achieve acceptance within
the conventional school system educational material must be
designed in order to realize specific learning outcomes. In the
Danish school system such learning objectives are defined at
a national level, but how to teach them is left up to the
individual schools. Most schools base their teaching on a
standard text books which are written for a specific grade
covering one class. For Fable the most relevant classes are
Math and Physics, and to a lesser extent Biology and English.
Therefore, in order for Fable to fit in a classroom context ed-
ucational material must be developed that is closely aligned
with the national learning objectives. We anticipate that such

educational material will most likely lead to the development
of new Fable module types.

c) Motivating teachers: Robotic toolkits have the po-
tential to provide engaging hands-on learning experience to
students. However, as noted by Bers et al., few teachers
have the experience and skills necessary to integrate such
toolkits in the classroom [30]. This stresses the importance
of designing an easily accessible robot system, training the
teacher in their usage and providing them with familiar
materials that will make the learning process for them both
enjoyable and rewarding. It is a primary concern of the Fable
system to motivate the teachers and give them the necessary
confidence to use the system in the classroom.

d) Motivating students: Students enjoyment is affected
by how the learning situation is structured. In one extreme
the students follow a strict tutorial to build and program a
specific robot. At the other extreme the students are left
without any constraints to build whatever they want. Dahl
and Moreau found that providing users with instructions and
a general goal, but no specific target, would result on a
higher feeling of competence, autonomy and task enjoyment
compared to situations with no instruction or a specific target
[13]. In the context of Fable, we have observed that a lack
of instruction and clear goals are likely to quickly make
the students frustrated. On the other hand, we have also
observed how good instruction combined with clear goals
such as challenges, competitions and performances made the
students highly engaged in the activity. How to integrate
such motivating activities in a time-scarce context with well
defined learning objectives is a critical topic for further
research.

V. CONCLUSION

In this paper we described the design of the second
version of Fable. Fable is a modular robotic platform that
enables non-technical users, ranging from young students,
makers and researchers to assemble and program their own
interactive robots. We described the mechanics of the system
with passive and active modules and a scalable and robust

connector design, that enables users to build and reconfigure
a robot in a matter of seconds. The paper also provides
an overview of our modular electronic design and how
this allows us to build and develop new types of modules
faster. Further, we described how the user could program
the system as if it was a centralized robot at different
levels of abstraction ranging from a visual programming
language to conventional languages such as Python and
Java. We also described how the system can be used as
a hardware-in-the-loop simulator for research in distributed
control strategies. We evaluated the robot and found that a
typical configuration could be assembled or disassembled in
less than 20 seconds which is important to motivate users
for trial-and-error learning and for classroom integration.
Further, we identified critical themes for integrating Fable
in a school context based on programming sessions with
different user groups. In future work we will continue to
optimize the Fable system to meet the requirements of its
users. Currently, we are extending the system with more
passive and active modules, including a gripper, a head
module with various sensors and a rotational base module
which can also be used as a wheel. Furthermore we are
working on interfacing Fable with Matlab and Simulink to
allow researchers to simulate algorithms with hardware in
the loop.

VI. ACKNOWLEDGMENTS

This work was performed as part of the “Modular Play-
ware Technology” project funded by the Danish Advanced
Technology Foundation as well as additional funding from
the Dr. Techn. A.N. Neergaard og Hustrus foundation and the
Siemens Foundation. Thanks to all the members of Center
for Playware for their contributions to the project.

REFERENCES

[1] P. Goodman. Compulsory miseducation. Penguin Harmondsworth,
1971.

[2] M. Pacheco, R. Fogh, H. H. Lund, and D. J. Christensen. Fable: A
modular robot for students, makers and researchers. In Proceedings
of the IROS workshop on Modular and Swarm Systems: from Nature
to Robotics, 2014.

[3] M. Resnick, B. Myers, K. Nakakoji, B. Shneiderman, R. Pausch,
T. Selker, and M. Eisenberg. Design principles for tools to support
creative thinking. In NSF Workshop on Report on Creativity Support
Tools, 2005.

[4] E. Hippel. User toolkits for innovation. Journal of product innovation
management, 18(4):247–257, 2001.

[5] M. Yim, WM Shen, B. Salemi, D. Rus, M. Moll, H. Lipson,
E. Klavins, and G. S. Chirikjian. Modular self-reconfigurable robot
systems [grand challenges of robotics]. Robotics & Automation
Magazine, IEEE, 14(1):43–52, 2007.

[6] K. Stoy, D. Brandt, and D. J. Christensen. Self-reconfigurable robots:
an introduction. MIT Press, 2010.

[7] H. Kurokawa, K. Tomita, A. Kamimura, S. Kokaji, T. Hasuo, and
S. Murata. Distributed self-reconfiguration of M-TRAN III modular
robotic system. International Journal of Robotics Research, 27(3-
4):373–386, 2008.

[8] E. H. Østergaard, K. Kassow, R. Beck, and H. H. Lund. Design of the
ATRON lattice-based self-reconfigurable robot. Autonomous Robots,
21:165–183, 2006.

[9] A. Sproewitz, A. Billard, P. Dillenbourg, and A. J. Ijspeert. Roombots-
mechanical design of self-reconfiguring modular robots for adaptive
furniture. In Robotics and Automation, 2009. ICRA’09. IEEE Inter-
national Conference on, pages 4259–4264. IEEE, 2009.

[10] E. Schweikardt and M. D. Gross. roblocks: a robotic construction
kit for mathematics and science education. In Proceedings of the
8th international conference on Multimodal interfaces, pages 72–75.
ACM, 2006.

[11] ModularRobotics. Moss robot construction system. http://www.
modrobotics.com/moss/. Accessed: 2014-06-26.

[12] H.S. Raffle, A. J. Parkes, and H. Ishii. Topobo: a constructive assembly
system with kinetic memory. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 647–654. ACM, 2004.

[13] D. W. Dahl and C. P. Moreau. Thinking inside the box: Why con-
sumers enjoy constrained creative experiences. Journal of Marketing
Research, 44(3):357–369, 2007.

[14] M. Csikszentmihalyi. Flow: The psychology of optimal performance.
1990.

[15] S. L. Brown. Play: How it shapes the brain, opens the imagination,
and invigorates the soul. Penguin, 2009.

[16] L. P. Rieber. Seriously considering play: Designing interactive learning
environments based on the blending of microworlds, simulations, and
games. Educational technology research and development, 44(2):43–
58, 1996.

[17] R. Fogh and A. Johansen. The play grid. Proceedings of the 12th
International Conference on Interaction Design and Children - IDC
’13, pages 356–359, 2013.

[18] Y. B. Kafai and M. Resnick. Constructionism in practice: Designing,
thinking, and learning in a digital world. Routledge, 1996.

[19] Google. blockly - a visual programming editor. https://code.
google.com/p/blockly/. Accessed: 2014-06-26.

[20] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. East-
mond, K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman,
and Y. Kafai. Scratch: programming for all. Communications of the
ACM, 52(11):60–67, 2009.

[21] M. Pacheco, M. Moghadam, A. Magnusson, B. Silverman, H. H.
Lund, and D. J. Christensen. Fable: Design of a modular robotic
playware platform. In Robotics and Automation (ICRA), 2013 IEEE
International Conference on, pages 544–550. IEEE, 2013.

[22] A. Magnússon, M. Pacheco, M. Moghadam, H. H. Lund, and D. J.
Christensen. Fable: Socially interactive modular robot. In The
Eighteenth International Symposium on Artificial Life and Robotics
2013, 2013.

[23] B. Heesche, E. MacDonald, R. Fogh, M. Pacheco, and D. J. Chris-
tensen. Playful interaction with voice sensing modular robots. In
Social Robotics, pages 180–189. Springer, 2013.

[24] D. J. Christensen, U. P. Schultz, and K. Stoy. A distributed and
morphology-independent strategy for adaptive locomotion in self-
reconfigurable modular robots. Robotics and Autonomous Systems,
61(9):1021–1035, 2013.

[25] WM Shen, P. Will, A. Galstyan, and CM Chuong. Hormone-
inspired self-organization and distributed control of robotic swarms.
Autonomous Robots, 17(1):93–105, 2004.

[26] M. Rubenstein, A. Cornejo, and R. Nagpal. Programmable self-
assembly in a thousand-robot swarm. Science, 345(6198):795–799,
2014.

[27] R. Lal and R. Fitch. A hardware-in-the-loop simulator for distributed
robotics. In Proceedings of ARAA Australasian Conference on
Robotics and Automation (ACRA), pages 544–550, 2009.

[28] J. Davey, J. Sastra, M. Piccoli, and M. Yim. Modlock: A manual
connector for reconfigurable modular robots. In Intelligent Robots and
Systems (IROS), 2012 IEEE/RSJ International Conference on, pages
3217–3222, Oct 2012.

[29] LEGO Education Mindstorms EV3 Building Guide, 2014.
[30] M. U. Bers, I. Ponte, C. Juelich, A. Viera, and J. Schenker. Teachers

as designers: Integrating robotics in early childhood education. Infor-
mation Technology in Childhood Education Annual, 2002(1):123–145,

2002.

http://www.modrobotics.com/moss/
http://www.modrobotics.com/moss/
https://code.google.com/p/blockly/
https://code.google.com/p/blockly/

	INTRODUCTION
	Related Work
	Fable Design
	Mechanics
	Electronics
	System Network Architecture
	Distributed Hardware-in-the-loop Control
	User Programming

	Examples and Evaluation
	Assembly and Disassembly Speed
	Visual User-Programming
	Programming Sessions

	Conclusion
	Acknowledgments
	References

