
HAL Id: hal-04307557
https://hal.science/hal-04307557

Submitted on 26 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OpenSoT: a Whole-Body Control Library for the
Compliant Humanoid Robot COMAN

Alessio Rocchi, Enrico Mingo Hoffman, Darwin Caldwell, Nikos Tsagarakis

To cite this version:
Alessio Rocchi, Enrico Mingo Hoffman, Darwin Caldwell, Nikos Tsagarakis. OpenSoT: a Whole-
Body Control Library for the Compliant Humanoid Robot COMAN. 2015 IEEE International Con-
ference on Robotics and Automation (ICRA), May 2015, Seattle, United States. pp.6248-6253,
�10.1109/ICRA.2015.7140076�. �hal-04307557�

https://hal.science/hal-04307557
https://hal.archives-ouvertes.fr

OpenSoT: a Whole-Body Control Library for the Compliant Humanoid
Robot COMAN

Alessio Rocchi∗, Enrico Mingo Hoffman∗, Darwin G. Caldwell and Nikos G. Tsagarakis
Department of Advanced Robotics

Istituto Italiano di Tecnologia
Genova, Italy

∗These authors contributed equally to this work

Abstract— A fundamental aspect of controlling humanoid
robots lies in the capability to exploit the whole body to perform
tasks. This work introduces a novel whole body control library
called OpenSoT. OpenSoT is combined with joint impedance
control to create a framework that can effectively generate
complex whole body motion behaviors for humanoids according
to the needs of the interaction level of the tasks. OpenSoT
gives an easy way to implement tasks, constraints, bounds
and solvers by providing common interfaces. We present the
mathematical foundation of the library and validate it on the
compliant humanoid robot COMAN to execute multiple motion
tasks under a number of constraints. The framework is able to
solve hierarchies of tasks of arbitrary complexity in a robust
and reliable way.

I. INTRODUCTION

In this paper we present a new whole body motion and
compliance control architecture for the humanoid bipedal
robot COMAN [1], Fig. 1, based on a task space whole-body
trajectory generator called OpenSoT. OpenSoT is a novel
control library that implements the idea of decoupling atomic
tasks/constraints descriptions and solvers to execute multiple
tasks and achieve complex motion behaviors. It employs a
solver implementing a cascade of Quadratic Programming
(QP) problems, and a set of tasks and constraints in velocity
space in order to solve a generic hierarchical inverse kine-
matics problem on a humanoid robot. The generated veloc-
ities are integrated and sent to joint impedance controllers
together with computed gravity compensation torques.

OpenSoT has been developed to address the motion and
interaction control problems that the recent DARPA Robotics
Challenge highlighted by integrating advanced and complex
robotic systems, such as humanoids and other legged mobile
manipulation machines, into real world scenarios where
robots need to function and interact in unstructured and
unknown environments. To cope with these scenarios, the
control scheme should allow the robots to generate reliably
complex and efficient motions at whole body level while
accommodating/controlling the contact forces and interaction
with the environment.

Typical methods and techniques to map task-space com-
mands to joint commands can be classified as inverse kine-
matics or inverse dynamics schemes and can be implemented
using a variety of low level controllers. Inverse dynamics
schemes implemented on pure low level torque control [2]
rely on the quality of the dynamic model [3] as well as on
the performance of the joint torque sensing and regulation.

Fig. 1: COMAN is a 29 DOFs humanoid robot equipped with series
elastic actuators

In the majority of the cases it is difficult to achieve adequate
performance due to errors in all components including the
model, the torque sensing accuracy and finally, torque track-
ing. On the other hand, classical stiff PID joint control is
also unsuitable for tasks controlling interaction forces.

A trade-off between the two approaches can be represented
by a combination of a centralized kinematic control working
on top of a decentralized joint impedance control. The latter
offers the robustness of decentralized control and adds com-
pliance to the system allowing the possibility to regulate the
impedance both at the joint level and at the Cartesian level
through conservative congruence transformation [2]. Further-
more, it allows to introduce feed-forward torque terms based
on inverse dynamics computations. We believe decentralized
control schemes of this type are fundamental in reliable
robots that must be able to recover from failures. An example
is the case of a humanoid which tries to maintain balance
when a recoverable hardware or software failure occurs: a
decentralized architecture may then allow to keep a stable
configuration while performing failure recovery procedures.
OpenSoT implements these ideas. The goal was therefore
to develop a high performance and flexible library that can
generate reliably complex and efficient motions at whole
body level. This yields the following features that we believe
make the implementation of OpenSoT unique and attractive:

• Demonstrates adequate modularity through the separa-
tion of task descriptions, control schemes and solvers
maximizing customization, flexibility and expandability.

• Provides user friendly interfaces for defining tasks,
constraints and solvers to promote integration and coop-
eration in the emerging field of whole-body hierarchical
control schemes.

• Demonstrates computation efficiency to allow for real
time performance implementations.

• Allows ease of use and application with arbitrary robots
through the Universal and Semantic Robotic Description
Formats (URDF and SRDF).

The rest of the paper is structured as follows. Section
II introduces the related literature on Whole-Body Inverse
Kinematics/Dynamics compliant control, focusing mainly on
schemes actually used in real hardware. Section III presents
the global control scheme for compliant constrained IK
control while Section IV describes the OpenSoT library.
Finally we present experimental results obtained on COMAN
in Section V. Conclusions are addressed in Section VI.

II. RELATED WORKS

Kinematic and dynamic inversion are well known prob-
lems in robotics. In general, given some tasks specified in
Cartesian position, velocity, accelerations or forces, we want
to find the joints positions, velocities, accelerations or torques
that realize those tasks. Many solutions to this problem have
been presented for single and multiple kinematic chains [4]
and [5]. An interesting subset of these algorithms are those
based on numerical optimization, since they allow for the
explicit introduction of unilateral/bilateral constraints in the
inverse kinematic/dynamic problem, which are fundamental
when working on the real robot hardware [6].

In this brief review of the state of the art on full-body
control, we will focus on some of the recent frameworks
that have been used successfully on humanoid robots. One
of the most famous framework oriented to whole-body
control is the Stack of Tasks (SoT) from LAAS [7]. This
work can be categorized under the group of the IK solvers
with different implementations allowing to use both the
classical pseudoinverse approach with null-space projection
or decomposition methods that allow for one-shot solving
of the whole stack (HCOD), to enforce lexycographic order
in the stack. SoT has been used mostly in HRP-2 platform
and our work is mainly inspired by this one. Another
framework for whole-body task specification and control
is iTaSC [8], with the current implementation supporting
velocity-based whole-body control and equality constraints.
It has been successfully demonstrated on the PR2 robot.
In [9] IK is solved using a nonlinear program. Two kind
of nonlinear optimizations are set up: a single-shot IK and
trajectory optimization. This work was used in Atlas during
the DRC trials coupled with a position control. A nonlinear
optimization is also performed in [10] to perform IK on the
iCub platform. There are many other frameworks including
those that are based on Inverse Dynamics, implemented on
top of a pure low level torque control (a notable example
is [11]), yet it is difficult to find hardware platforms mature
enough to implement control schemes of such frameworks

Fig. 2: Proposed control scheme

and up to now no complex tasks have been experimentally
demonstrated yet in humanoid bipedal robots.

III. CONTROL SCHEME

In this section we introduce the Compliant Inverse Kine-
matics scheme as depicted in Fig. 2. The first block consists
in a Constrained Inverse Kinematic engine, eventually in
Closed Loop (CCLIK), that receives Cartesian references
as input to perform a certain task defined in Task Space.
This block generates joint position references and torques for
gravity compensation for the second block that consists in
a joint impedance control. In particular the joint impedance
control is implemented in a decentralized way at each DSPs
in the robot.

Decentralized Joint Impedance Control

The desired torque sent to actuator i is locally computed
as

τd,i = kq,i(qd,i − qi)− kd,iq̇i + g(qd)i (1)

where qi and qd,i are respectively actual and desired joint
positions, q̇i is the actual joint velocity, kq,i is a positive
joint stiffness, kd,i is a positive joint damping and g(qd)i is
a gravity compensation torque computed at the desired joints
configuration. The terms qd,i and g(qd)i are computed by the
CCLIK block. The control in (1) is implemented at the joint
DSP level and is locally stable.

Inverse Kinematics

We consider a robot that executes n tasks simultaneously,
and for each of these tasks Ti, a proper error function ei(q, t)
is provided, describing the task error. The time derivative of
the error can be computed as

ėi =
∂ei
∂q

q̇ +
∂ei
∂t

= Jiq̇ +
∂ei
∂t

(2)

with Ji the error Jacobian. During the execution of a generic
task it is desirable that the task error converges to 0, by
imposing an exponential dynamic, that is

ėi = −λei ⇒ Jiq̇ = −∂ei
∂t
− λei = ė∗i (3)

If the robot is redundant with respect to a task, secondary
tasks can be also added and executed without affecting the
performance of the primary task, and given a set of tasks
described by the couple Ti = (Ji, ė

∗
i), the robot can be

commanded to execute them using its whole body motion
capabilities. In order to implement the method and obtain
this result, the relative importance between tasks needs first
to be defined. Thus, two kinds of relationships: hard priority
and soft priority needs to be set. A task has hard priority with
respect to another task if the latter can not deteriorate the

solution of the first one. Soft priorities are defined between
tasks at the same level so all the solutions are influenced by
each other proportionally to theirs weights.

The execution of a set of tasks has a well-known solution
in the stack of tasks, where hard priorities are enforced by
the order of the task in the stack. To take into account also
soft priorities the augmented Jacobian formulation [12] can
be employed. It must be noted though that the augmented Ja-
cobian formulation alone cannot enforce hard priorities since
adding many tasks together can generate an ill-conditioned
augmented Jacobian matrix. Therefore, to generate whole-
body motions, a series of QP problems in cascade is instead
solved [13]. This is a well known method to derive motions
by executing tasks adding bilateral constrains to the inverse
kinematics problem [6]. A generic task can be described as

q̇1 = argmin
q̇

‖Jiq̇ − ė∗i ‖

s.t. Ac,1q̇ ≤ bc,1
(4)

The formulation used in (4) for the constraints can be
profitably used to express lower and upper bounds for the
variable value as well as equality constraints.

In general, the nth task will then be written as

q̇d = argmin
q̇

∥∥Jnq̇ + λen + ∂en
∂t

∥∥
s.t. A1q̇ = A1q̇1

...
An−1q̇ = An−1q̇n−1

Ac,1q̇ ≤ bc,1
...

Ac,nq̇ ≤ bc,n

(5)

where q̇d is the desired velocity (control variable). In (5)
the previous solutions q̇i, i < n are taken into account with
constraints of the type Aiq̇ = Aiq̇i ∀i < n, so that the
optimality of all higher priority tasks is not changed by the
current solution. While in (5) the first task has a relationship
of hard priority with respect to the second, and so on, for
each level of priority, a soft priority relationship between
tasks can be imposed introducing the relative weights βi, so
that the augmented Jacobians and the error vectors can be
written as

Jaug =
[
β1J

T
1 . . . βnJ

T
n

]T
eaug =

[
β1e

T
1 . . . βne

T
n

]T (6)

where the soft priority between tasks is altered by tuning the
relative weights βi, with higher priority tasks having larger
βi. As already mentioned, in this case the tasks can still
influence each other performance. A mixture of hard and soft
priorities is in general needed to describe a stack of tasks.
The solution obtained can then be sent directly to a velocity
controlled robot or integrated in a position controlled robot
as

qd = q + q̇δt (7)

where δt is the control loop period.

IV. OPENSOT

OpenSoT is a robotics library tool oriented to Whole-
Body Control. The main idea behind its implementation
is to decouple the task description, and the solver used
to solve the general Inverse Kinematics/Dynamic problem.
This distinction allows to easily switch the control, even
with the same task description, by using a different solver.
OpenSoT aims at providing a standard way to describe
the aforementioned entities in an atomic way, and at the
same time to build a repository of common entities that can
be reused to create a generic stack using a user friendly
development and integration interface.

OpenSoT offers classes to describe different tasks and
constraints and to implement different solvers oriented to
a particular control type (velocity, acceleration, torque). Ac-
cording to the control type, different controllers are available
in literature. Defining a task once in a proper way still allows
to switch between different control laws, as shown in [14],
thus decoupling task description and type of control. The
same applies to constraints and bounds [15].

OpenSoT Tasks

In OpenSoT, a task Ti is in general defined as:

Ti = (Ji, ė∗i) (8)

including a set of constraints for that task. Tasks are imple-
mented through the class Task which provides an interface to
obtain A and b, a weight matrix W and a scalar weight λ for
the task (getA(), getb(), getWeight(), getlambda()).
In our framework it is possible to augment a task with an
operation called Aggregation.

Aggregated: The aggregated task constructs an augmented
Jacobian starting from a definition of more basic tasks as

Tagg =
([
AT

1 AT
2

]T
,
[
bT1 bT2

]T)
(9)

Cartesian: It is possible to define a general Cartesian
task as the aggregate of a Cartesian position task and a
Cartesian orientation task. The Cartesian task computes the
(relative) Jacobian between any given base and distal links
in the kinematic tree, bJd. The Cartesian errors in position
and orientation are computed respectively as:

ep = pd − p

eo = −(ηdε− ηεd + [εd×]ε)
(10)

and the task is defined as:

TC,p =
(
bJd,p, ṗd +Kpep

)
TC,o =

(
bJd,o, ωd +Koeo

) (11)

where pd = [xd yd zd] is the desired position and αd =
[ηd ε1,d ε2,d ε3,d] is the desired orientation expressed as
a quaternion [14], Kp and Ko are positive definite matrices
and ξd = [ṗd wd] is the desired Cartesian velocity for
the end-effector. A particular case is the CoM task which
is defined as a Cartesian position task.

Postural: A postural task is defined in joint space as:

Tp = (I, q̇d +Kq(qd − q)) (12)

Minimum Effort: The minimum effort task is again defined
in joint space as:

Tg =
(
I, αg∇(g(q)T g(q))

)
(13)

where the gradient is computed numerically by means of
two-point estimation and the Hessian is set to identity as in
the Gradient Projection Method [16].

Constraints and Bounds
Constraints model equalities and bilateral/unilateral in-

equalities using the simple form:

C = (Ac, bc) (14)

Bounds are a particular kind of constraints, applied to all the
tasks in the stack, where Ac is always the identity. We can
specify lower and upper bounds as

b = (lb, ub) (15)

Constraints and bounds are implemented in OpenSoT
through the class Constraint which implements a simple
interface providing equality constraints (getAeq(),
getbeq()), inequality constraints (getAeineq(),
getbLowerBound(), getbUpperBound()) and bounds
(getLowerBound(), getUpperBound()).

Aggregated: The aggregated constraint performs merging
of a list of constraints into a single constraint, in particular
piling the equalities and inequalities constraints, and merging
the bounds as follows:

Cagg =
([
AT

c,1 AT
c,2

]T
,
[
bTc,1 bTc,2

]T)
(16)

bagg = (max (l1, l2) , min (u1, u2)) (17)

ConvexHull: CoM is bounded to lay inside the convex
hull defined by the contacts with the environment, where we
can write

CCH =

 a0 b0

...
...

an−1 bn−1

 ,
 −c0...
−cn−1

 (18)

with ai,bi,ci coefficients of the implicit equation of the line
aix+biy+ci = 0, bounding the convex hull. These lines are
expressed in a frame attached to the CoM and parallel to the
inertial frame, and are obtained by finding the coefficients of
a line passing through two consecutive points of the convex
hull of the support polygon. The convex hull is obtained by
creating a hull of a point cloud of contact points between the
foot and the ground, which can be obtained by skin sensors
or, in current implementation, by the foot model assuming
full-foot contact with the ground.

CartesianLinearVelocity: This task implements limits on
the Cartesian velocity of any link w.r.t. another link, or the
inertial frame

CC,p =
(
bJd, bvmax,d

)
(19)

The constraints CoMVelocity are a peculiar case where
instead of the distal link we use the CoM.

TABLE I: Solver Time

Stacks Tasks Time [s]
2 postural, CoM 0.003
3 postural, CoM, left arm 0.005
4 postural, CoM, left arm, right arm 0.007

JointLimits:

bJointLimits = (µ (qmin − q) , µ (qmax − q)) (20)

JointVelocity:

bJointVelocity = (−αiq̇max∆t, αiq̇max∆t) (21)

with uj lims and lj lims the q̇ where αi ≤ αi+1 scales the
bounds in order to implement a simple velocity allocation
scheme between tasks at different priority levels.

OpenSoT Solver
OpenSoT provides a class to implement different Solvers

that uses the classes Tasks, Constraints and Bounds to solve
the IK problem for a desired control type. The actual solver
supported in OpenSoT is based on (5) and is currently
supporting only velocity based task and Constraints. There-
fore velocity control is the available control type in the
current state of implementation while other type of solvers
which support different control modalities are due to be
integrated soon. The solver uses qpOASES [17], an open-
source C++ implementation of an on-line active set strategy
[18], part of the ACADO suite. qpOASES implements an
automatic regularization technique (therefore there is no need
for explicit singularity avoidance and escaping) and warm-
start functionalities. The solver permits to define any type of
stack and it handles the bounds in a global way. To test the
performances of the solver we have prepared a benchmark
were a variable sized stack is created and solved. The lowest
priority task is always a postural task (12) while the others
are Cartesian tasks (11), bounds on joint limits and velocities
are also added to the optimization. Table I shows the results
to solve one control step of optimization1 for 29 variables.

V. EXPERIMENTS

To evaluate the performance of OpenSoT, experiments
were performed using a compliant humanoid robot. Apart
from demonstrating the implementation and fundamental
functionality of the library, the experiments were targeting
at demonstrating also the effect of changing on-line the low-
priority joint space task from pure postural to pure minimum
effort.

Control Scheme
In the experiment a Control Computer runs the whole-

body inverse kinematic framework in open-loop. Gravity
compensation terms are derived at each desired configuration
computed by OpenSoT and are used by the joint-level
impedance controller running inside the motor driver DSPs.
The Joint active stiffness and damping are kept constant
during the experiment. In the experiment the joint impedance
control is enabled only in the upper body/arms, while a joint
position control is used in the lower body.

1These results were obtained using a Intel Core i7 with 6GB of RAM

Tasks Description

The stack is composed by two tasks, where J1 is an
Aggregated Task composed of Cartesian tasks that control
the hands and swing foot end-effectors, and a CoM task
to control the Center of Mass considering the whole body.
Using the augmented Jacobian[19] formulation provided by
Aggregated, we have

J1 =
[
JT

l wr JT
r wr JT

CoM JT
sw ft

]T
e1 =

[
eTl wr eTr wr eTCoM eTsw ft

]T (22)

where Jl wr and Jr wr are the (6×29) Jacobians of the left and
right arms respectively computed w.r.t. the base link of the
robot. Notice that Jl wr and Jr wr share the torso kinematic
chain. JCoM is the (3 × 29) Jacobian of the CoM of the
robot computed w.r.t. the left foot (support foot) and finally
Jsw ft is the (6× 29) Jacobian of the right foot (swing foot)
computed w.r.t. the left foot. The second task is again an
Aggregated in joint space needed to stabilize auto-motions
due to redundancy, which aggregates a MinimumEffort and
Postural task. Again, the solution of the second task lies in
the null-space of the first QP problem, meaning the residuals
of the first task remain constant after solving the second

J2 =
[
βITnJ (1− β) ITnJ

]T
e2 =

[
βλ11b

T
p + (1− β)λ12b

T
g

]T (23)

The parameter β ∈ (0, 1) allows to smoothly weight be-
tween a postural joint space task to minimum effort joint
space task. Each level of the stack is bounded by an Ag-
gregated constraint containing one JointLimits Bound and
a JointVelocity Bound. The CoM is not controlled in a
higher level task, meaning we do not wish to control its
exact position, rather we set an admissible region bounded
by the convex hull by imposing fixed margins from the
convex hull vertices. This is done by creating a constraint
of type ConvexHull, and a constraint of type CoMVelocity to
constraint the maximum Cartesian speed of the CoM. The
optimization algorithm uses the reliable default settings
of qpOASES, with regularisation enabled and regularisation
ε set as epsRegularisation*=2E2, the maximum number
of working set calculations nWSR=32. A reference configu-
ration for the postural task qref and a reference pose for all
the controlled end-effectors is set by sensing their respective
values during the start-up phase of the control. During the
experiment, the gain β is tuned manually on-line. Speed of
execution is obtained by using the warm-start method, which
allows to have an initial guess for the active-set in the QP
solver. This allows to solve this stack within 4ms.

Results

Fig. 3 presents the 2-norm of the torques in all the 29
joints of the robot. It is easy to recognize the different part
where the last task is pure postural (β = 1.0) and where
the last task is pure min effort (β = 0.0). The difference
between the 2-norm of the torques in pure postural task

0 10 20 30 40 50 60 70
15

16

17

18

19

20

21

22

23

24

t [sec]

τ
[N

m
]

β = 1.0

β = 0.0

Fig. 3: 2-norm of torques during switching from a pure postural
task to a mix of postural and minimum effort task

Fig. 4: 2-norm of Cartesian errors for CoM and end effectors

and in pure min effort task is around 2[Nm] for the given
references. The second figure in Fig. 4 depicts the 2-norm
of CoM position error. The error for a certain kinematic
chain is computed as the sum of the 2-norms of 10 between
the desired and computed Cartesian pose. It can been seen
that the CoM is adequately maintained with the predefined
reference position even during the switching of the tasks.
Error in joint trajectory generation increases only during
switching phases. The 2-norm of the vector of the joint
errors is presented in the first figure in Fig. 4. Finally in
Fig. 5 the COMAN is shown in different postures arising by
changing β in the secondary task. This particular stack of
tasks, constraints and bounds have been also used to perform
tasks with high level of interaction with the environment such
as a writing task, Fig. 6 and a cleaning task, Fig. 7. The
joint impedance control makes the interaction possible and
safe reducing impact/contact forces that may compromise the
robot stability, damage the robot itself or the environment.
The whole-body IK runs in open loop to prevent the action of
the feedback during interaction from counteracting the effect
of compliant behavior.

VI. CONCLUSIONS

This work introduced a novel whole-body control li-
brary called OpenSoTs. OpenSoT is combined with joint
impedance control to create a framework tool that can ef-
fectively generate complex whole-body motion behaviors for
humanoid robots. Such framework allows to control the robot
by solving a hierarchy of tasks with linear constraints. The

Fig. 5: COMAN holding end-effectors pose while executing a
postural task (left) or a minimum effort task (right)

Fig. 6: COMAN performing a drawing task on a desk, interaction
is handled by joint impedance control

framework provides an easy way to implement new tasks,
constraints, bounds and solvers by providing common inter-
faces. The theoretical foundation of OpenSoT was presented
and its performance was demonstrated in a multi-objective
task in which the motion of all end-effectors of the robot
and the centre of mass (CoM) were controlled while taking
into account joint limits and joint velocity limits. At the
same time, a minimum-effort task in the null-space of these
tasks is imposed at lower priority. Compliant behavior was
obtained through a low level joint impedance control with
gravity compensation at the desired configuration. OpenSoT
is released free and open source at https://github.
com/robotology-playground/OpenSoT.

VII. ACKNOWLEDGEMENT

The research leading to these results has received
funding from the European Union Seventh Framework
Programme [FP7-ICT-2013-10] under grant agreements

Fig. 7: COMAN erasing a whiteboard, interaction is handled by
the joint impedance control

n.611832 WALKMAN and ERC Advanced Grant no. 291166
SoftHands.

REFERENCES

[1] A. Ajoudani, J. Lee, A. Rocchi, M. Ferrati, E. M. Hoffman, A. Settimi,
D. G. Caldwell, A. Bicchi, and N. G. Tsagarakis, “Manipulation
framework for compliant humanoid coman: Application to a valve
turning task,” in IEEE-RAS International Conference on Humanoid
Robots, Humaoids 2014, (Spain), In Press.

[2] C. Ott, Cartesian Impedance Control of Redundant and Flexible-Joint
Robots. Springer Publishing Company, Incorporated, 1 ed., 2008.

[3] O. Khatib, “A unified approach for motion and force control of
robot manipulators: The operational space formulation,” IEEE J. Rob.
Autom., vol. 3, no. 1, pp. 43–53, 1987.

[4] B. Siciliano, “Kinematic control of redundant robot manipulators: A
tutorial,” Journal of Intelligent and Robotic Systems, vol. 3, no. 3,
pp. 201–212, 1990.

[5] P. M. Wensing and D. E. Orin, “Generation of dynamic humanoid
behaviors through task-space control with conic optimization,” in
Robotics and Automation (ICRA), 2013 IEEE International Conference
on, pp. 3103–3109, IEEE, 2013.

[6] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation,” The
International Journal of Robotics Research, vol. 33, pp. 1006–1028,
Jun 2014.

[7] N. Mansard, O. Stasse, P. Evrard, and A. Kheddar, “A versatile gen-
eralized inverted kinematics implementation for collaborative working
humanoid robots: The stack of tasks,” in International Conference on
Advanced Robotics (ICAR), p. 119, June 2009.

[8] R. Smits, H. Bruyninckx, and J. De Schutter, “Software support
for high-level specification, execution and estimation of event-driven,
constraint-based multi-sensor robot tasks,” in Proceedings of the 2009
International Conference on Advanced Robotics, (Munich, Germany),
2009.

[9] M. Fallon, S. Kuindersma, S. Karumanchi, M. Antone, T. Schnei-
der, H. Dai, C. Perez D’Arpino, R. Deits, M. DiCicco, D. Fourie,
T. Koolen, P. Marion, M. Posa, A. Valenzuela, K.-T. Yu, J. Shah,
K. Iagnemma, R. Tedrake, and S. Teller, “An architecture for online
affordance-based perception and whole-body planning,” Journal of
Field Robotics, 2014.

[10] U. Pattacini, F. Nori, L. Natale, G. Metta, and G. Sandini, “An
experimental evaluation of a novel minimum-jerk cartesian controller
for humanoid robots.,” in IROS, pp. 1668–1674, IEEE, 2010.

[11] L. Sentis, J. Park, and O. Khatib, “Compliant control of multicontact
and center-of-mass behaviors in humanoid robots.,” IEEE Transactions
on Robotics, vol. 26, no. 3, pp. 483–501, 2010.

[12] P. Chiacchio, S. Chiaverini, L. Sciavicco, and B. Siciliano, “Closed-
loop inverse kinematics schemes for constrained redundant manipu-
lators with task space augmentation and task priority strategy,” The
International Journal of Robotics Research, vol. 10, no. 4, pp. 410–
425, 1991.

[13] O. Kanoun, F. Lamiraux, and P.-B. Wieber, “Kinematic control of
redundant manipulators: Generalizing the task-priority framework to
inequality task,” Robotics, IEEE Transactions on, vol. 27, no. 4,
pp. 785–792, 2011.

[14] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, “Operational
space control: A theoretical and empirical comparison,” no. 6, pp. 737–
757, 2008.

[15] F. Flacco, A. D. Luca, and O. Khatib, “Motion control of redundant
robots under joint constraints: Saturation in the null space,” in IEEE
International Conference on Robotics and Automation, ICRA 2012,
14-18 May, 2012, St. Paul, Minnesota, USA, pp. 285–292, 2012.

[16] N. Mansard and F. Chaumette, “Task sequencing for high-level sensor-
based control.,” IEEE Transactions on Robotics, vol. 23, no. 1, pp. 60–
72, 2007.

[17] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl,
“qpoases: A parametric active-set algorithm for quadratic program-
ming,” Mathematical Programming Computation, pp. 1–37, 2013.

[18] H. J. Ferreau, H. G. Bock, and M. Diehl, “An online active set strategy
to overcome the limitations of explicit mpc,” International Journal of
Robust and Nonlinear Control, vol. 18, no. 8, pp. 816–830, 2008.

[19] A. De Santis, G. Di Gironimo, L. Pelliccia, B. Siciliano, and
A. Tarallo, “Multiple-point kinematic control of a humanoid robot,” in
Advances in Robot Kinematics: Motion in Man and Machine, pp. 157–
168, Springer, 2010.

