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Abstract— We propose a method of monocular camera-
inertial based navigation for computationally limited micro air
vehicles (MAVs). Our approach is derived from the recent
development of parallel tracking and mapping algorithms,
but unlike previous results, we show how the tracking and
mapping processes operate using different representations. The
separation of representations allows us not only to move the
computational load of full map inference to a ground station,
but to further reduce the computational cost of on-board
tracking for pose estimation. Our primary contribution is to
show how the cost of tracking the vehicle pose on-board can be
substantially reduced by estimating the camera motion directly
in the image frame, rather than in the world co-ordinate frame.
We demonstrate our method on an Ascending Technologies
Pelican quad-rotor, and show that we can track the vehicle pose
with reduced on-board computation but without compromised
navigation accuracy.

I. INTRODUCTION

We are interested in monocular vision-based, inexpensive,
and potentially disposable MAVs that can be deployed in a
large volume, e.g. a team of MAVs exploring a post-disaster
site on a search and rescue mission. Apart from the obvious
benefits of low cost, using a low-power, lightweight camera
coupled with a small processing unit increases the flight time
of a MAV and allows a smaller form factor.

Amongst the challenges in operating cost-effective MAVs,
we are particularly interested in computationally efficient
techniques for estimating the vehicle pose xt, in order
to control the pose and the velocity of the vehicle. On
a monocular visual-inertial based MAV where we obtain
camera images I0:t, the vehicle pose is given by the max-
imum of P (xt|I0:t). However, there rarely is a way to
compute a globally consistent pose estimate directly from
image pixel values and an IMU. The conventional approach
is to estimate the vehicle pose with respect to a set of
landmarks L = {li}ni=1 ∈ R3 in the world that can be
sensed as features in the images. Without a prior map of
the landmarks, we must then estimate the pose using the
posterior P (xt, L|I0:t), essentially the landmark-based visual
simultaneous localization and mapping (SLAM) problem.

Solving the complete joint posterior over xt and L as
a SLAM process can be computationally demanding, espe-
cially as the number of landmarks grows large. Klein and
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Fig. 1: The MAV occasionally sends the camera image and
its own pose estimate to the ground station for map building.
The ground station sends back a local map in the image space
of the MAV for fast pose tracking.

Murray [1] addressed the cost of solving for the entire joint
posterior by decomposing the computation into two parallel
processes: a full-rate camera tracking process that uses the
best available information, and a global map optimization
process using a subset of representative camera images, i.e.
keyframes. This decoupling requires sharing a single map
in memory where the camera tracking process assumes a
fixed map, while in parallel, the map optimization process
continuously (if slowly) improves the map. Although proven
very successful, this technique still carries the burden of
optimizing a growing global map; this difficulty is amplified
on the kinds of low-power processors found in low-cost air
vehicles that lack support for true parallelism.

An easy solution to reducing the cost of on-board com-
putation is to move the entire pose computation to an off-
board processor at a ground station. Compressed images or
feature-descriptor sets could be sent to a ground station and
a pose estimate could be received in return. However, the
wireless communication channel to an untethered MAV will
typically suffer from packet drops, limited bandwidth and
large transmission delays that make time-critical dependence
on the communication channel unreliable. A complete off-
board scheme that includes an unreliable communication
channel in its control loop is not suitable for a MAV.

To overcome the communication limits while still reducing
the cost of on-board computation, only the costly map opti-
mization can be moved to an off-board processor. A trivial
solution is to send the entire map back and forth between



the MAV and ground station, keeping different copies of
the same information. However, once the on-board process
is restricted to tracking, this process can be reformulated
in the image space, leading to an even greater reduction in
computation. The mapping process can continue to run off-
board, and provide asynchronous copies to the MAV of the
updated map as the communication channel permits, where
the updated map is projected into image space and bounded
by visibility in the current frame, specifically for the purposes
of fast, on-board pose estimation.

The main contribution of this paper is to show that if
we reformulate the tracking and mapping problem so that
the two processes are physically decoupled and no longer
share the same copy of the map, the tracking process can be
entirely in the image co-ordinate frame for fast computation.
We introduce monocular image space tracking (MIST) and
discuss landmark representation in the image space, data as-
sociation using such landmarks, fast pose optimization using
precomputed image space Jacobians, to update the landmarks
frame-to-frame, and forward projection for compensating for
the delay in asynchronous updates from the ground station.

Our novel approach of asymmetrically distributing SLAM
onto separate devices results in fully scalable robust pose
estimation on a computationally and bandwidth limited MAV,
while the globally consistent map of arbitrary size can still
be inferred on the ground. We demonstrate the improvements
achieved with MIST using a monocular camera mounted on
an Ascending Technologies Pelican quad-rotor.

II. RELATED WORK

In the field of autonomous navigation and exploration,
using planar laser scanners have shown success in achieving
full autonomy for micro air vehicles [2], [3]. However, these
methods do not adapt well to inexpensive platforms due to
the weight, power requirement, and the cost of laser scanners.
Recent work [4], [5] has demonstrated similar exploration
capabilities using stereo vision as primary sensing means.
Although abandoning the laser scanner reduces the weight
and power requirements, stereo vision techniques are still
computationally expensive. We would like to push towards
the limits of minimal sensor suite and minimal processing
efforts by utilizing a monocular camera.

Past work in using monocular camera on a MAV for
on-board SLAM [6], [7] has used PTAM as a black-box
pose estimation unit. However, originally developed for aug-
mented reality applications in small workspaces where the
explored map is assumed to be small, PTAM’s computational
requirements would still be a burden on computationally
limited MAV platforms exploring a larger area.

Recent work by Forster et al. [8] reduced the processing
requirements greatly, and demonstrated robust high frame-
rate tracking using a small processing unit. Although their
SVO method has low frame-to-frame computational require-
ments, it is not fully scalable due to the burden of storing a
growing map in the MAV’s memory. Also, SVO requires a
two core processor for optimal speed for its parallel tracking
and mapping design; our system only requires a single core

on the MAV with all of the heavy computational load on the
ground station. Lastly, SVO is currently engineered to use
a downward camera. Thus, an algorithm that is as fast on a
single core processor with small memory capacity and that
could work with both downward and forward cameras would
be much more desirable.

As opposed to on-board methods, some previous work
[9], [10], [11] has streamed images from the MAV to a
more capable ground station to off-board the computation.
However, such strategy requires aggressive image compres-
sion and reduced frame rates, leading to overall poor image
quality. Computing the pose of the MAV on a ground station,
and streaming it back to the MAV would also introduce a
large transmission delay in the pose updates needed by the
on-board controllers. There are techniques for mitigating the
controller errors that can result from a delay in the state
estimate [10], but these solutions ultimately are not as robust
as a high-rate on-board state estimation process.

Lastly, there is other previous work [12], [13], [14] that
partitions the SLAM problems to meet different objectives,
but our work is novel in dividing the problem onto two sep-
arate devices to meet the requirements of a computationally
limited system.

III. OVERVIEW

We divide the full SLAM problem of computing
P (xt, L|I0:t) into two processes: fast pose-tracking on the
MAV and keyframe-based smoothing and mapping on the
ground station. On the MAV, we compute the pose xt ∈
SE(3) given the current image It, and the transmitted local
map L̄ of landmarks

{
l̄i
}q
i=1

in the image space, i.e., we
compute the posterior probability P (xt|It, L̄) of the pose.

Conversely, on the ground station, we take the smoothing
and mapping (SAM) approach [15] of solving the SLAM
problem. So, instead of computing P (xt, L|I0:t), we opti-
mize over a selected subset of camera poses X̄ = {xi}ri=1,
i.e. keyframe poses that are far apart each other, and compute
P (X̄, L|Ī). We do this by occasionally receiving a subset of
camera images Ī ⊂ I0:t from the MAV, and optimizing for
the maximum a posteriori (MAP) estimates X̄∗ and L∗,

X̄∗, L∗ = argmax
X̄,L

P (X̄, L|Ī). (1)

This tracking and mapping approach is re-formulated into
a monocular image space tracker (MIST) and a keyframe-
based SAM as described in the following sections.

IV. COMPUTATION ON THE MAV

Using MIST requires observing landmarks in the image
space, updating them frame-to-frame, rapidly calculating
the vehicle pose by leveraging a special structure in the
Jacobians, and finally forward projecting asynchronous land-
mark updates from the ground station to compensate for the
communication delay. This image space tracking framework,
as illustrated in Fig. 2, is discussed in this section.



A. Feature Extraction and Data Association

We adopt a feature based approach, where we extract a
set of feature locations Ft = {f tk}

p

k=1 in the 2D image
space given the current image It, i.e., Ft = f(It) where
f is a function that selects a set of highly re-observable
locations. At the feature locations, we extract an 8 by 8
patch as the descriptor dtk ∈ [0, 255]64 for each feature f tk.
We do not use any special descriptors [16], [17] to minimize
the computation on the MAV. The descriptors are used to
match the landmarks in the local map L̄ to a feature, forming
associations Jt = {jtk}

m

k=1 where jk ∈ m is index of the
landmark correlation to a feature fk subject to availability,
i.e., m ≤ p. Using this feature based approach, the tracking
problem on the MAV can be written as

P (xt|It, L̄) = P (xt|Ft, Jt, L̄). (2)

To do the feature-landmark association, we normally have
to project all of the known landmarks L onto the current
image It, according to the camera model at a predicted pose
x̃t; the predicted pose is obtained by applying an estimated
rotation Rtt−1 between the frames, i.e., x̃t = Rtt−1xt−1

where the inter-frame rotation is approximated by integrating
the angular rates observed by a gyroscope. However, if we
represent the landmarks directly in the image space, i.e., we
parametrize the landmarks by (uj , vj , Qj)t where (uj , vj)t
is the projection ptj into image co-ordinates, and Qj is the
inverse distance 1, at frame t, we have the local map L̄t−1,
and do not need to perform any projections. We are able
to save computations by having the ground station do the
initial projection for the MAV and creating the local map in
the image space. The ground station also discards landmarks
that are out of the view so that the matching on the MAV
uses only a small local map L̄ ⊂ L immediately usable in
the near future. Note that at the end of the iteration, we do
need to update the local map L̄t−1 to L̄t to represent the
local map in the image plane of the latest pose xt.

Now, for every landmark lj we have a predicted projection
ptj on the current image It, so we can form a feature
association jtj by enforcing a maximum distance in the image
space, i.e., ‖ptj − f tk‖ < maxdist, as well as matching each
descriptor dtj with descriptor dtk of the feature f tk in the
current image. To evaluate a descriptor match, we warp the 8
by 8 patch descriptor to the closest view using the predicted
pose x̃t [1] and perform a sum of square differences (SSD).

In our implementation, we perform FAST [18], [19] corner
extraction at 4 pyramid levels and store the features in a
grid at each level. We use the grids to reduce the number of
potential matches before comparing the actual descriptors or
enforcing the maximum feature distance in the image space.

B. Forward Projection

As we allow the MAV to be autonomous, by the time
it receives the local map L̄, it could have proceeded a few

1In our image space tracking, we do not update the inverse distance Qj .
This update is not crucial since the inverse distance does not change signifi-
cantly between a few frames. We choose the inverse distance representation
over the inverse depth counterpart for this reason.
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Fig. 2: Flow diagram of operations done on the MAV.

frames further. The MAV can linearly project this received
map into its current view by composing the kinematic chain
it estimated while using the previous local map. This forward
projection frees the MAV from time critically depending on
the updates from the ground station and reduce the risk
of crashing with temporary losses in the communication
channel. We also do this forward projection after every
iteration to represent the map in the latest frame, i.e., we
update the projection pt−1

j to ptj .
Let the current frame of the MAV be at the time step t and

t̄(≤ t−1) be the time step where the initial projections were
done for the local map L̄t̄ from the ground station. If we let
the landmark predictions being used for the current frame
be the estimates made in the previous iteration, to bring the
local map L̄t̄ into a map L̄t−1 we have to project it through
the kinematic chain ξt̄+1 . . . ξt−1, where each ξi ∈ R6 is the
motion between the frame at time t = i− 1 and t = i.

We can linearly do this forward projection, using the
projection Jacobian Hj =

∂h(xt,lj)
∂xt

|xt=xt−1
,

h(xt̄, lj) ≈ h(x̃t̄−1, lj) +Hj(ξt̄+1 . . . ξt−1), (3)

where h is the measurement function, xt the state at t,
lj the landmark position. Since our landmarks are directly
represented in the image space, i.e., l̄j = (pj , Qj), we do
not require a measurement function:

pj ≈ pt̄−1
j +Hj(ξt̄+1 . . . ξt−1). (4)

This projection is fast due to a direct look-up of the
Jacobian as discussed in a later section. In addition, if more
computation is available, Runge-Kutta 4 can be used in a
similar fashion to Eq. 4 with the fast Jacobian look-up.



C. Measurement Update

Given the deterministic data association J that maps each
observed landmark lj to a feature f tk, i.e., forms associated
landmarks ljk, we can calculate the pose xt by maximizing
the posterior probability

P (xt|F, J, L̄) ∝ P (xt|It−1, L̄)
∏
k

P (f tk|xt, ljk), (5)

where we applied Bayes’ law. Assuming a Gaussian prior
on the pose xt and Gaussian measurement noise, where R
is the covariance matrix, this is equivalent to minimizing the
negative log-likelihood

arg min
xt

‖ xt − x̃t ‖2Σ +

K∑
j=1

‖ ztk − h(xt, ljk) ‖2R, (6)

where h(xt, ljk) is the measurement function, and ztk is the
measurement of a landmark, i.e., associated feature location.

We parametrize the current pose xt as an incremental
change with respect to x̃t−1, defined by xt = exp(ξ̂)⊕ x̃t−1

[20] where ⊕ denotes pose composition in SE(3), ξ̂ ∈ g
represents the Lie algebra element corresponding to the
vector ξ ∈ R6, and the exp operator, exp : se(3) → SE(3)
maps an incremental twist ξ̂ in the Lie algebra se(3) to its
corresponding pose in the Lie group SE(3). Hence, with
linear approximation, the observation model becomes

h(xt, lj) = h(exp(ξ̂)⊕ x̃t−1, lj) ≈ h(x̃t−1, lj) +Hjξ, (7)

where Hj is the 2× 6 Jacobian matrix defined by:

Hj =
∂h(xt, lj)

∂xt
|xt=xt−1 =

∂h(exp(ξ̂)⊕ x̃t−1, lj)

∂ξ
|ξ=0.

(8)
In the MIST framework, we represent the landmarks in image
space, i.e., l̄j = (pj , Qj) for constant Qj , so that we do not
require the measurement function h. Therefore, our tracking
problem can be posed as a linear optimization:

x∗t = arg min
ξ
‖ xt − x̃t ‖2Σ +

K∑
j=1

‖ (zk − pj −Hjξ) ‖2R .

(9)
Since there is no perfect data association in practice, we

iterate the computation a few times by re-weighting R based
on the residuals. This iteratively re-weighted least squares
(IRLS) framework [21] serves two purposes: 1) it reduces
the effect of outliers and 2) the final weights can be used to
evaluate the quality of pose tracking. This quality assessment
along with the percentage of successful data associations J
between the current frame and the local map are used to
judge whether a new frame should be sent to the ground
station for a subsequent local map update.

D. Jacobian Image

The Jacobian matrix Hj used in the measurement update
has a special structure identifiable as
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Fig. 3: Framework showing the ground’s operations in rela-
tion to the MAV’s.

Hj =

[
∂I

∂p

] [
Q 0 −QU −UV 1 + U2 −V
0 Q −QV −1− V 2 UV U

]
.

(10)

The first three columns of Hj correspond to translation
parameters and the second three columns to the rotation pa-
rameters of ξ, where I = (u, v) are the pixel coordinates and
p = (U, V ) are normalized camera coordinates (x/z, y/z).

Thus, the first term, ∂I
∂p =

[
∂u
∂U

∂u
∂V

∂v
∂U

∂v
∂V

]
, depends on the

calibration model of the camera.
Now, in Eq. 10, if we divide the first 3 columns of Hj by

Q, the result only depends on the pixel location (where U, V
are functions of u, v). Therefore, we can pre-calculate this
matrix at every pixel location and store them in an image of
2×6 matrices that can be used at run-time to reconstitute the
Jacobian quickly from a pixel coordinate ptj for any landmark
by retrieving the 2×6 matrix at the location and multiplying
the first 3 columns by Qtj . Note that the Jacobian depends
on changing u, v. We track in image space but only keep the
constant inverse distance for the purpose of retrieving the
image space Jacobian.

V. COMPUTATION ON THE GROUND

A computationally powerful ground station is used to build
and maintain a global map while occasionally providing
a local map to the MAV for the short-term tracking. We
describe the process (illustrated in Fig. 3) in this section.

A. Bundle Adjustment

The ground station computes a global map of landmarks
L and keyframe camera poses X̄ , given visual measurements



by recovering the maximum a posteriori (MAP) estimate

X̄∗, L∗ = argmax
X̄,L

P (X̄, L|Z)

= argmax
X̄,L

∏
i

P (xi)
∏
i,j

P (zij |xi, lj). (11)

This map-building problem can be posed as inference on
a factor graph [15]. The variable nodes are camera poses xi
and the landmarks lj while the factor nodes are the prior
densities P (xi) on the variable nodes, and the measurement
likelihoods P (zij |xi, lj) constraining a pose xi and a land-
mark lj , given the corresponding visual measurement zij .
This measurement likelihood is equivalent to the observation
model used on the MAV, described in Eq. 6. By eliminating
the factor graph, we can solve for all the camera poses and
the landmarks. We omit the details of this process, since
we use standard inference techniques for the camera poses
and landmarks in the world co-ordinate frame, rather than
inference in the image frame as we do on-board the vehicle.

B. MAV Pose Estimation

Parallel to the process of bundle adjustment, the ground
station periodically receives images from the MAV. We
perform a similar pose estimation done on the MAV, in the
standard world co-ordinate frame to estimate the pose at
the image frame. This pose optimization is the well-known
camera re-sectioning problem, i.e., computing the optimal
camera pose x∗t given measurements ztj of known landmarks:

x∗t = argmax
xt

P (xt| {ztj , lj}j=1..m)

= argmax
xt

P (xt)
∏
j

P (ztj |xt, lj), (12)

where we use the MAV’s pose estimate as a prior P (xt).
One thing to note is that the MAV and the ground station

can use different corner features and feature descriptors since
the pose tracking on the MAV is repeated on the ground
station. Accurate but computationally expensive methods
such as SIFT [22] can be used on the ground station in place
of the lightweight algorithms on the MAV.

C. Projection to View

The ground station can apply the MAV’s camera model
to obtain estimated image co-ordinates pk in MAV’s image
space for each probably-visible landmark and communicate
these rather than the metric locations. Furthermore, at any
given time step, the MAV only needs to know about the
landmarks that it is likely to observe, and so the ground
station only needs to transmit a map of these landmarks.

Thus, using the optimized MAV pose, we first project the
landmarks L into the calibrated coordinates (Ui, Vi);

(Ui, Vi) = K[Rcw|tcw]lwi , (13)

and then project to in-image pixel coordinates (ui, vi) =
f(Ui, Vi) using f the fish-eye lens model [23]. Out of these
projections pi = (ui, vi) in pixel coordinates, the ones
matched with corner features within the image boundaries
are included as a local map and transmitted to the MAV.

Fig. 4: Way-points were manually selected to generate the
trajectory. MIST was used as the primary pose estimator
while laser scan-matching was performed in parallel to
provide a ground-truth trajectory and a pseudo-scale input for
alignment in the map for planning purposes. The occupancy
grid built with the laser scan-matching is displayed in light
blue and overlaid with the building floor plan.

D. Keyframe Adder

The two initial frames are created in a separate initial-
ization process using homography with a locally planar
assumption as done in [1]. During the initialization stage,
all of the frames are transmitted from the MAV to track a
trail of features on the ground station. After initialization, the
ground station waits for the MAV to send a new frame, while
optimizing the global map in parallel. Once a new frame is
received, the ground station prepares a new local map in the
image plane of the frame and sends it back to the MAV.
Then the frame’s distance to all the keyframes in the global
map are calculated to judge whether it is far enough to other
keyframes to qualify as a new keyframe. The ground station
then searches through all of the known keyframes to make
data associations with the newly received frame. This dense
association stage is critical to building a globally salient map.

VI. EXPERIMENTS

We autonomously flew an Ascending Technologies Pelican
quad-rotor, shown in Fig. 5, in an unknown indoor environ-
ment using a 30 fps PointGrey Chameleon camera (640x480
images), a Microstrain IMU, a Hokuyo laser scanner, and



a Gigabyte dual-core i72 to evaluate MIST as a visual
pose estimation module on a MAV. We then analyzed the
accuracy of our pose estimates by comparing them to the
pose estimates generated using PTAM. We also compared
the time to pose estimates for MIST, PTAM running on-
board, PTAM running on-board with mapping process turned
off, and PTAM running off-board with image streaming.
The data-set used for this benchmarking was collected by
carrying the quad-rotor around an indoor environment, and
saving camera images and other sensor data using LCM
[24]. We also show performance from flight data using the
heading to control the vehicle. The saved data was played
back at the original intervals on the quad-rotor, to simulate
the MAV flying while providing the exact same input to
different algorithms used in comparison. For the ground-
station, we used a quad-core i7 laptop.

A. Autonomous Flight using MIST

During the autonomous flight, we ran a laser-scan match-
ing algorithm [2] in parallel. The pose estimates and the
occupancy grid from the laser scan-matcher were treated as
ground truth; we obtained metric pseudo-scale input from
the pose estimates, and used the occupancy grid to plan a
collision-free trajectory as shown in Fig. 4. The use of the
laser-scanner was for these purposes only, and our algorithm
does not require the laser-scanner to estimate its pose.

We formed the flight trajectory by selecting way-points
and using a polynomial trajectory generator [25] to smoothly
connect them within the laser-built occupancy grid. We
controlled the quad-rotor using a nonlinear controller [26]
and increased the frequency of the pose estimation by relying
on an EKF to fuse our MIST estimates with a 100 Hz IMU.

In order to align the laser-based poses with our MIST
pose estimates, we transformed the MIST pose updates in
the camera frame to updates in the robot body frame, and
continuously composed to an initial laser pose estimate.
Then to align the MIST poses with the laser-built map for
planning purposes, MIST poses and the laser-based poses
were collected between two consecutive local map updates
and the difference in translation was used as a pseudo-scale
input to re-scale the map for the following frames.

As shown in Fig. 4 and 6, while the MAV could reliably
follow the trajectory, continuously composing the MIST
pose updates on a single initial laser pose resulted in the
trajectory drifting away from the laser-estimated trajectory as
errors accumulate. One source of systematic error between
the vision-based estimates and the laser-based estimates is
the approximate transformation between the camera and the
laser frame, caused by an approximate hand-alignment of the
camera, the IMU, and the laser on the quad-rotor. Another
source of approximation error is the linear interpolation
performed on the laser pose estimates when finding the pose
chronologically closest to a camera timestamp. A final source
of error is the heavy dependence on the pseudo-scale inputs,
which would corrupt the translation if estimated poorly.

2Not a low-cost PC but allowed us to benchmark to the heavier load of
PTAM, and support laser scan-matching in parallel during experiments.

(a) Ascending Technologies Pelican quadrotor

(b) Camera frame and tracked features

Fig. 5: The vehicle and the camera used for the flight
experiment are shown. The MAV uses the monocular camera
and tracks landmarks in the image space to estimate its
pose. Video of the flight is available at https://www.
youtube.com/watch?v=VWWvjSHZCNo

B. MIST Tracking Accuracy

To evaluate the accuracy of MIST in the presence of
external systematic errors, we collected camera images and
sensor data and played them back as an identical input to
PTAM and MIST. To demonstrated the ability to come back
to a known location and update the global map, we selected
a 50 meter trajectory with loops as shown in Fig. 6. Our
pose estimates were approximately as good as the trajectory
estimated using PTAM.

We compared the error in rotation and translation of frame-
to-frame updates in the robot body frame for PTAM and
MIST, with the laser scan-matching as the ground-truth. It
can be seen in Fig. 7 that our system performed similar to
PTAM at an average absolute rotation error of 0.34 degrees
and an average absolute translation error of 2.97 cm. In
rotation, PTAM performed similarly while in translation the
error for PTAM was slightly higher at 4.51 cm.

https://www.youtube.com/watch?v=VWWvjSHZCNo
https://www.youtube.com/watch?v=VWWvjSHZCNo


Fig. 6: The laser-based trajectory estimate in red, MIST pose
estimates in green and PTAM estimates in blue. During the
total distance of approximately 50 meters, the vision-based
trajectory drifts away from the laser estimates. However, our
method is approximately as accurate as PTAM.
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Fig. 7: Errors in translation and rotation for PTAM and
MIST, compared to the laser scan-matching counterpart. It
can be seen that MIST is on par with the accuracy of PTAM.

C. Timing Comparisons

We compare the time to pose estimates between MIST,
PTAM running on-board, PTAM with raw streamed images,
and PTAM with JPEG-compressed streamed images. Pre-
recorded data were played back on the MAV to simulate
the vehicle flying while providing identical sensor data to
different methods. We did not perform this analysis in flight
since the loss of a pose estimate due to network latency
would cause a loss of control. In the case of streaming
methods, the time to pose estimate includes the round-trip
transmission time over Wi-Fi as well as the pose computation
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Fig. 8: Comparing the time to pose estimate for MIST, PTAM
running on-board, PTAM with streamed images. It can be
observed that it was infeasible to track using raw streaming
method, while the JPEG-compressed images still take more
than a full frame to arrive at the MAV.
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Fig. 9: A single-core computationally limited system was
emulated to better highlight the difference between PTAM
running on-board, PTAM tracker running on-board, and
MIST. It can be observed that the computation time for MIST
remained constant, while PTAM gradually took longer due
to the mapping process. Comparing against only the tracking
process in PTAM, MIST was nearly twice as fast.

time on the ground station. For MIST and PTAM running
on-board, this time is only the computation time taken since
the camera image was available.

As shown in Fig. 8, sending uncompressed images took
191.17 ms on average, causing the pose estimates to arrive
8 frames later. On the other hand, streaming JPEG images
was relative fast, with the estimates lagging only two frames
behind. While the transmission delay may seem manageable
on slow moving vehicles, the inconsistency (over twice at
times) and the potential danger of dropped packets could
cause the vehicle to crash at any point in time.

It can be observed that the time taken for PTAM and
MIST was not very different. The reason is that on the
dual-core i7, the computation done by PTAM’s mapping
process was parallel to the tracking thread, and did not add
to the computation time to pose estimate. While this shows
the strength of the parallel design, we emulated a more
computationally limited platform typically found on low-cost
MAVs by enabling only a single core. We also quadrupled



Approach Time to pose estimate (ms)

Single-core, 4x speed
MIST 4.3858

PTAM On-board (Tracker) 7.6195
PTAM On-board 12.7133

Dual-core, 1x speed PTAM Stream (JPEG) 62.9230
PTAM Stream (Uncomp.) 191.1747

Roll (deg) Pitch (deg) Yaw (deg) Translation (m)
MIST 0.2979 0.3266 0.3896 0.0297
PTAM 0.3037 0.3209 0.3896 0.0451

TABLE I: Computation time and mean absolute error in
incremental updates for MIST and PTAM-based methods.

the playback speed of the sensor data and produced camera
images at 120 Hz, and IMU outputs at 400 Hz.

As shown in Figure 9, on an emulated single-core ma-
chine, MIST still retained a constant time to pose estimates.
However, for PTAM running on-board, as the processor
jumped from the tracking process to the mapping process,
the time to pose estimate grew with the growing map, due to
increasing difficulty in bundle adjustment. We also disabled
the entire mapping process of PTAM, and ran only its tracker
to compare against MIST. The average computation time for
MIST was 4.39 ms, capable of estimating the pose at over
200 Hz, while the average for PTAM tracker was 12.71 ms.
It can be seen that the computation time for PTAM tracker
also grew slowly since it had to project the growing map
into its measurement space. A summary of the computation
time and the average error in frame-to-frame pose updates
for the algorithms are shown in Table I.

VII. CONCLUSION

We have divided the full SLAM problem into a fast
monocular image space tracking (MIST) on the MAV and
a keyframe-based smoothing and mapping on the ground
station. Using our fully decoupled tracker and mapper design
and fast image space tracking, we are able to compute the
pose estimates on the MAV in constant time at 4.39 ms while
building the growing global map on the ground station. The
quality of this global map is as accurate as PTAM when
compared to the laser scan-matcher ground-truth.

For future work, we can explore utilizing MIST in a multi-
robot scenario where a team of disposable MAVs cooperate
to explore a post-disaster scene. Having a single ground-
station supporting multiple low-cost MAVs while building a
single globally consistent map may be a trivial solution to
creating a centralized multi-robot system.
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