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Abstract— We present several modifications to the previously
proposed MSPP algorithm that can speed-up its execution
considerably. The MSPP algorithm leverages a multiscale repre-
sentation of the environment in n dimensions. The information
of the environment is stored in a tree data structure repre-
senting a recursive dyadic partitioning of the search space.
The information used by the algorithm is the probability that
a node in the tree corresponds to an obstacle in the search
space. Such trees are often created from mainstream perception
algorithms, and correspond to quadtrees and octrees in two and
three dimensions, respectively. We first present a new method to
compute the graph neighbors in order to reduce the complexity
of each iteration, from O(|V |2) to O(|V | log |V |). We then show
how to delay expensive intermediate computations until we
know that new information will be required, hence saving time
by not operating on information that is never used during the
search. Finally, we present a way to remove the very expensive
need to calculate a full multi-scale map with the use of sampling
and derive an theoretical upperbound of the probability of
failure as a function of the number of samples.

I. INTRODUCTION

The path-planning problem of an agent moving in a n-
dimensional environment full of obstacles is considered.
It is assumed, without loss of generality, that the search
space is contained within an n-dimensional hypercube. Each
dimension of this hypercube is divided by successive dyadic
partitioning. This partitioning generates a tree data structure
that contains all the environmental data, organized hierarchi-
cally with increasing resolution at each successive depth. In
the 2-D and the 3-D cases this multiresolution data structure
is commonly known as a quadtree and an octree, respectively.
The information stored in each node of the tree is the
probability that the volume of the search space corresponding
to this node is occupied by an obstacle. The problem is then
to find an obstacle-free path between a start point and a goal
point, or to report failure if no obstacle-free path exists.

Path-planning algorithms rely on perception algorithms to
map the environment and localize the agent on the map.
Commonly used data structures to represent perceived en-
vironments include multiresolution representations resulting
from many common perception algorithms [3], [10]. The use
of hierarchical multiresolution data structures is motivated by
several observations: First, information collected about the
environment is not uniform, as each sensor has its own range,
resolution and noise properties. The information used by
perception algorithms is then naturally multiscale; estimation
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and inference is often used to extract the best informa-
tion out of noisy measurements, leading to a probabilistic
representation of the environment [10]. Second, on-board
computational resources might be limited, thus not allowing
an agent to systematically use all perceived information.
Furthermore, precise information about the environment far
away from the agent might not be valid, or may even be
irrelevant, if the robot is far away from the obstacle. A
multiscale representation of the collected data allows to
choose the resolution for each region of the space as needed.
For planning purposes, for instance, local information is typi-
cally important over the short-term (e.g., obstacle avoidance),
while far away information affects only long-term objectives
such as reaching a goal or exploring the environment.

Several approaches have been used in the past to in-
corporate multiscale information during planning. Bottom-
up approaches use the information at the finest resolution
and then combine it in increasingly coarser resolutions.
Top-down approaches solve the path-planning problem at
the coarser resolution and then progressively increase the
resolution of the solution [6], [8]. Using both approaches
can lead to fast optimal algorithms, as shown in [7]. But the
preprocessing of the data required by this approach is too
expensive (in terms of time and memory) for online applica-
tions. Another approach consists in using the information at
different resolutions at the same time. This idea is explored
in [2], where areas near the current vehicle are represented
accurately, while farther-away areas are coarsely-encoded
by using a transformation on the wavelet coefficients. The
approach is shown to be complete and very fast.

A similar approach is used to create a local map in [1],
but quadtrees are used instead of wavelets and only local
planning is done. Other algorithms have been developed
using multi-resolution maps, but they are often applied to
a given non-uniform grid, without using the information
at different resolution scales for the same region of the
search space [4], [9]. More recently, the MSPP algorithm [5]
extended the work of [2] to n dimensions in a reformulation
using 2n trees instead of wavelets. The notion of ε-obstacles
guaranteeing completeness for any value of the threshold ε
was also introduced in the same paper.

In this paper, we propose several modifications to the
MSPP algorithm introduced in [5] to accelerate computations
and extend the range of potential applications. Neighbor
checking, a bottleneck operation of the MSPP algorithm,
is reworked to reduce its complexity from O(|V |2) to
O(|V | log |V |). The order in which operations are executed
is also modified in order to minimize the computations.
The full reduced graph is not computed, only its nodes are
computed; the edges are calculated on-the-fly, which saves
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computations; since most edges are never used by the search
algorithm. Finally, we introduce a way to work without a
multi-scale map, but instead we use a predicate to determine
whether a point of the search space is an obstacle or not.
This modification allows us to remove the expensive map
creation step. It also saves memory, since the full multi-
scale map does not need to be known in advance. The
trade-off here is giving up completeness for the sake of
increased runtime performance and memory reduction, as
well as an extension of the range of potential application
where accurate information about the environment is not
known and is collected incrementally via sampling.

II. NOTATION AND PREVIOUS WORK

In this section, we briefly introduce the notation used in
the rest of the paper. We refer the reader to [5] for more
details on the original MSPP algorithm and the notation used
throughout the rest of the paper.

A. Multiresolution World Representation

The environment W ⊂ Rd is assumed to be a d-
dimensional grid world. Without loss of generality, we as-
sume that each elementary cell of the grid world is a unit
hypercube and there exists an integer ` > 0 such that the
world is contained within a hypercube of side length 2`. The
world W is encoded as a tree T = (N ,R) representing the
multi-scale information, with N being the set of nodes and
R being the set of edges describing their relations. Nodes of
T are represented by two indices, k and p, corresponding to
the depth of the node nk,p in the tree and the position of the
center of the node in the search space. A node nk,p represents
a hypercube in the search space W centered at p and of size
2k, and is denoted by H(nk,p). The children of the node nk,p
are denoted by nk−1,qi , i ∈ [1, 2d] where qi = p+2k−2ei and
where ei is each of the 2d (d-dimensional) vectors generated
by [±1,±1, . . . ,±1]. A node is called a leaf of T if it has
no children.

The information V (nk,p) contained in each node nk,p ∈
N is the probability of the existence of an obstacle in the
space represented by the node, computed by

V (nk,p) =
Volume of obstacles in H(nk,p)

Volume of H(nk,p)
. (1)

B. The Path-Planning Problem

Two nodes in T are neighbors if their corresponding
hypercubes share a hyperface, specifically, their intersection
is a hypercube of dimension d−1. A necessary and sufficient
condition for two nodes nk1,p1 and nk2,p2 to be neighbors is
that both of the following two conditions are satisfied:
• The expression

‖p1 − p2‖∞ = 2k1−1 + 2k2−1 (2)

holds,
• There exists a unique i ∈ [1, d], such that

|(p1 − p2)i| = 2k1−1 + 2k2−1, (3)

where (p1 − p2)i is the ith component of the vector.

In the case of a 2-D or a 3-D environment with a
uniform grid, conditions (2) and (3) imply 4-connectivity
or 6-connectivity, respectively.

We define a path π = (nk1,p1 , nk2,p2 , . . . , nkN ,pN ) in T
to be a sequence of nodes nki,pi ∈ N , each at corresponding
position pi and depth ` − ki, such that two consecutive
nodes of the sequence are neighbors. A path is called a
finest information path (FIP) if all its nodes are leafs of T .
Leaf nodes represent the best resolution, and hence the finer
information contained in the tree T .

Due to noisy measurements, and to prevent overconfidence
and numerical issues, perception algorithms will not allow
V (nk,p) to reach 100%. We therefore introduce the notion of
ε-obstacles. Specifically, given ε ∈ [0, 1), a node nk,p ∈ N
is an ε-obstacle if

V (nk,p) ≥ 1− 2−dkε. (4)

A path π is ε-feasible if none of its nodes are ε-obstacles.
Given the representation of W encoded in the tree T , the

problem is to find an ε-feasible FIP between two nodes in
the tree, nstart, representing the starting node, and ngoal,
representing the goal node, and to report failure if no such
path exists.

C. The MSPP Algorithm

The MSPP algorithm is a backtracking algorithm that
iteratively builds a solution from the starting node nstart
until the goal node ngoal is reached. At each iteration i, a
local representation Gi of the environment, called the reduced
graph, is computed and the best path to the goal on this graph
is used as a heuristic to decide which direction to follow. The
current candidate solution built by the algorithm at iteration
i is denoted by πistart. Therefore, πistart is an ε-feasible FIP
from nstart to nki,pi , the node reached by the algorithm at
iteration i. The best path from nki,pi to the goal on the
reduced graph Gi is denoted by πgoal

i . The reduced graph Gi
is computed by first identifying its vertices (corresponding
to nodes of T ) via a top-down exploration of T . The first
element of πgoal

i is used to build the global solution πistart.
If the path πgoal

i does not exist, the algorithm backtracks.
The main lines of the MSPP algorithm are shown in

Algorithm 1. Refer to [5] for full details of the MSPP
algorithm.

III. FAST NEIGHBOR COMPUTATION - MSPP-FN

In the original MSPP algorithm [5], neighbors for the
reduced graph are computed by testing whether every pair of
vertices satisfies the neighborhood properties. As shown in
[5], this step is the bottleneck during each iteration, having
complexity O(|V |2), where |V | is the number of vertices. A
new way to compute neighbors by reducing the complexity
from O(|V |2) to O(|V | log |V |) proceeds as follows; for each
vertex, neighbor candidates are generated, and the existence
of these candidate vertices of Gi is verified. The details
are given next. MSPP-FN will be used in the rest of the
paper to refer to the MSPP algorithm using the fast neighbor
computation.



Algorithm 1: The MSPP Algorithm - Simplified for
clarity

Data: Tree T , Start node nstart, Goal node ngoal
Result: ε-feasible FIP from nstart to ngoal or failure

1 i← 0, nki,pi ← nstart,π0
start ← [nki,pi ];

2 while Goal not found AND no failure do
3 (G̃i, vstart,i, vgoal,i)←ReducedGraph(T ,nki,pi );
4 πgoal

i ←ShortestPath(G̃i, vstart,i, vgoal,i);
5 if exists(πgoal

i ) then
6 nki+1,pi+1

←firstElement(πgoal
i );

7 πi+1
start ← [πistart nki+1,pi+1 ];

8 else
9 backtrack;

10 i← i+ 1;

A. Tree Data Structure For Vertices

In order to do fast searches over the vertices of the reduced
graph, we keep them in a tree structure. Let Ti define this
tree structure. As the original tree T is traversed to select
nodes for Gi, Ti is constructed by copying every element of
T traversed by the selection process, except for ε-obstacles.
Ti is then a tree with the same structure as T , but its branches
are shorter. In other words, Ti is a pruned version of T whose
leave nodes are the vertices of Gi.

Note that, for implementation, Ti does not change signif-
icantly between two consecutive iterations, so it is compu-
tationally cheaper to modify Ti−1 than to create a new data
structure at each iteration. Memory allocation is the most
expensive operation when creating new nodes. Modifying
Ti−1 allows to only have to allocate memory for nodes of Ti
that did not exist in Ti−1. The copy process is then modified
to add nodes only if they do not already exist, and remove
excessive nodes when reaching a node corresponding to a
vertex of Gi. The pseudo-code is given in Function 1. The
vertex list is also removed since the information is already
contained in Ti. The function GetRGFastNeighbor is
called with the root of T , the root of Ti (created during
initialization) and the current node nki,pi .

B. Same Size Neighbors

Generating neighbors is easy when the nodes have the
same size, so we will consider this case first. Given a node
nk,p, we want to find all its neighbors having the same size
that correspond to vertices of Gi. Same size implies the same
depth in T , so every neighbor will have the same depth index
k. Also, the neighbor conditions and the fact that the nodes
are centered on a grid, imply that only one dimension of
the position vector can be changed at a time, that is, the
neighbors’ positions pnhb,i can only be

pnhb,i = p+ 2kbi, 1 ≤ i ≤ 2d

with

bi =

{
di if i ≤ d,
−di otherwise,

Function 1: GetRGFastNeighbor()
Data: Node nk,p (in T ), Node tk,p (in Ti), Current

node nki,pi
1 if (‖p− pi‖2 −

√
d
2 2ki ≥ α2k OR isLeaf(nk,p)) AND

doesNotContainPath(nk,p) then
2 if nk,p is not a ε-obstacle then
3 Remove all descendants of tk,p;
4 else
5 Remove tk,p and its descendants;

6 else
7 foreach (m, q) index of children of (k, p) do
8 if tm,q does not exist then
9 Create tm,q child of tk,p;

10 GetRGFastNeighbor(nm,q,tm,q,nki,pi);

p pnhb,1

pnhb,2

pnhb,3

pnhb,4
d1

d2

Fig. 1: Generating neighbors for the construction of Gi.
Same size neighbors case: H(nk,p) is the center square
and the pnhb,i are the generated position candidates for the
neighbors.

where di is the ith vector of the standard basis of Rd. If
pnhb,i is within the bounds of the search space, nk,pnhb,i

is
in Ti and nk,pnhb,i

is a leaf of Ti, then nk,pnhb,i
is a valid

neighbor of nk,p. Figure 1 shows in the center the hypercube
corresponding to nk,p and the neighbor candidates around it.
The red arrows represent the vectors 2kbi.

Searching the tree Ti can be done on average in
O(log |V |), and the number of candidates to check is 2d.

C. Larger Neighbors

Consider now the case of finding the larger neighbors of
nk,p. The previous result can still be used, but it will generate
points inside larger neighbors instead of their positions. The
search through the tree works as follows. It starts with the
root of the tree, representing the entire environment, as the
current node. As long as the current node has children (recall
that our data structure assumes that they either all exist or
none of them exists), the child whose hybercube contains the
searched point pnhb,i is selected as the current node. That
is, at each step, the search process selects the node at the
next level of resolution whose hypercube contains pnhb,i.
The search stops if either the current node is at pnhb,i or
the current node does not have children. At the end of the
process, the current node is a neighbor of nk,p and if it is



p pnhb,1

d1

d2

Fig. 2: Generating neighbors for the construction of Gi.
Larger neighbors case: H(nk,p) is the smaller square around
p and pnhb,1 is the first generated position candidate for
the neighbors. The dashed squares represents the hypercubes
corresponding to nodes visited during the search for pnhb,1
in the tree.

a leaf, then it is also a vertex of Gi. A larger node could
contain p and then not be a neighbor, but since nk,p exists,
that node would have children and the search process will
never stop in such a situation.

Figure 2 shows, in dashed lines, the last four nodes that
would be explored while searching for pnhb,1. If nk,pnhb,1

does not exist, the algorithm will stop at one of its ancestors,
which will be a neighbor of nk,p. Note that the search cannot
stop at the largest ancestor shown, since it contains nk,p, so
all the children exist.

D. Smaller Neighbors

The last case to consider is when there are smaller
neighbors of nk,p. The search for pnhb,i in Ti will return
a node that is not a leaf. In this case, the exploration of

p pnhb,1

d1

d2

Fig. 3: Generating neighbors for the construction of Gi.
Smaller neighbors case: H(nk,p) is the left square and pnhb,1
is the first generated position candidate for the neighbors.
The larger dashed square is H(nk,pnhb,1

) and the blue squares
correspond to the descendant of nk,pnhb,1

that are neighbors
of nk,p.

children of pnhb,i can lead to the neighbors. Note that pnhb,i
was generated by moving in the direction bi, but since the
neighbors are smaller, the move was too large, and hence

neighbors of nk,p are leaf nodes, descendant of pnhb,i in the
direction −bi.

Figure 3 shows what happens for smaller neighbors. The
larger dashed square is the hypercube corresponding to the
candidate neighbor pnhb,1, but that node is not a leaf, so it is
not a vertex of Gi. Exploring its children (until leaf nodes)
in the direction −b1 = −d1, will lead to all its descendants
that are neighbor with nk,p, and in Gi, since they will be leaf
nodes. The neighbors are drawn in blue in Figure 3.

E. Computing All Neighbors in Gi
When looking for all neighbors, nodes can be treated

in any order, in particular, from smallest to largest. For
the smallest nodes, all neighbors are larger. If all smaller
nodes have been treated before, for a given node nk,p, the
smaller neighbors will already have been found and the only
information missing is the larger nodes. All neighbor pairs
can then be found by looking for larger neighbors for each
node ordered from the smallest to the largest. Finding larger
and same size neighbors is done in O(log |V |) for each of
the |V | nodes, so finding all neighboring pairs in Gi is then
be done in O(|V | log |V |).

F. Computing All Neighbors of a Given Node nk,p
Finding all neighbors of a given node nk,p can be done

using the pseudo-code in Function 2. For each direction
bi, we compute the candidate neighbor position pnhb,i and
search in Ti for the corresponding node. If the node is a leaf,
it means that a larger or same size neighbor has been found;
otherwise, the leaf descendants, in the direction −bi, of the
node found are smaller size neighbors.

Function 2: findNeighbors()
Data: Node nk,p

1 neighbors=∅;
2 foreach i in [1, 2d] do
3 nm,q=find(Ti,pnhb,i);
4 if isLeaf(nm,q) then
5 neighbors=neighbors ∪ nm,q;
6 else
7 addLeafInDir(nm,q , -bi, neighbors);

8 return neighbors;

Function 3: addLeafInDir()
Data: Node nk,p, Direction b, List neighbors

1 foreach i in [1, 2d] do
2 if bT ei > 0 then
3 n=child(nk,p,i);
4 if isLeaf(n) then
5 neighbors=neighbors ∪ n;
6 else
7 addLeafInDir(n, b, neighbors);



IV. MULTI-SCALE PATH PLANNING WITHOUT FULL
INFORMATION MAP - MSPP-S

Although in 2D or 3D geometric workspaces, the multi-
scale map is often the result of perception algorithms,
this is not always the case. When the search space is the
configuration space and it is different from the geometric
workspace, computing the multi-scale map might be very
expensive, as it requires to analyze every single cell of
the map. Furthermore, in some cases, we may only have
access to a predicate of whether a point of the search
space is an obstacle or not. A robotic arm, for example, is
usually parameterized by the position of each joint; given
a configuration, the spatial position of each link can be
computed, and self-collision or collision with obstacles is
checked in the geometric workspace. It is assumed in this
section that we have such a predicate, say isObstacle(s),
that informs us if a point s of the search space is an obstacle.

In the proposed approach, sampling is used to estimate the
obstacle probabilities of the nodes in Gi. Since we are using
an estimate instead of the exact node probability values,
completeness of the algorithm is not ensured. Note, however,
that if a large enough number of samples is drawn, the
estimated probabilities will be close to their actual values,
and loss of completeness is very unlikely.

Similarly to the original MSPP algorithm, the proposed
algorithm, MSPP-S (as MSPP with sampling), decomposes
the space using a grid, which has fine resolution near the
current position, and the resolution becomes increasingly
coarser farther away. An empty tree data structure Ti is
created to represent that grid. It is empty in the sense that
it does not have any information about the obstacles, it is a
pure geometric partition of the search space. For each node
nk,p of the partition, the predicate can be used for a given
number Nsamples of random points drawn in the search space
corresponding to the node. An estimate of the probability of
obstacles can then be calculated from those results and used
to fill up the tree Ti. The value of the node is approximated
by

V̂ (nk,p) =
Number of obstacles sampled

Nsamples
.

Similarly to the data structure used for neighbor checking,
it is less costly to modify the data structure from the
previous iteration than to recreate a new data-structure at
each iteration. Moreover, in that case, some information will
already exist in the data structure, and sampling only needs
to be done for the newly added nodes.

Note that the data structure created is similar to the one
created for neighbor checking, hence the same notation Ti.
Since only the structure matters for neighbor checking, and
not the actual values, this data structure can also be used for
the neighbor checking step.

The pseudo-code for the vertex selection is given in
Function 4 and the edges can be computed as described in
Section III-E.

V. MINIMAL REDUCED GRAPH CONSTRUCTION

Constructing Gi can be costly and only part of the in-
formation might be used at each iteration to solve for the

Function 4: GetRGVerticesWithSampling()
Data: Node tk,p (in Ti), Current node nki,pi

1 if (‖p− pi‖2 −
√
d
2 2ki ≥ α2k AND

doesNotContainPath(tk,p) then
2 Remove all descendants of tk,p;
3 if nk,p has not been sampled yet then
4 Sample Nsamples in H(nk,p);
5 Estimate V̂ (nk,p);

6 else
7 foreach (m, q) index of children of (k, p) do
8 if tm,q does not exist then
9 Create tm,q child of tk,p;

10 GetRGVerticesWithSampling(tm,q ,nki,pi );

shortest path. In this work, it is assumed that the planning
problem on Gi is solved using the A∗ algorithm although
this is not restrictive. In the A∗ algorithm, nodes are kept in
a priority queue, called OPEN , ordered by f -values, where
f = g+h with g the cost-to-go and h an admissible heuristic
to the goal. While OPEN has elements, the first element
is removed and for each of the neighbors, if they have not
been closed yet, the g-value is updated, and it is added to the
OPEN priority queue. The algorithm stops when the first
element of the OPEN priority queue is the goal.

In the A∗ algorithm, knowing the neighbors of a node
is only useful when that node is taken out of the OPEN
queue. Similarly, the obstacle probability is only needed to
calculate the g-value of a node.

By delaying those calculations until the necessary informa-
tion is required, improvement in execution speed is expected.
The following changes allow to save computations in the new
algorithm:
• the ReducedGraph function only computes the nodes

of the reduced graph
• during the A∗ algorithm, neighbors of a node are

computed when the node is selected from the OPEN
priority queue to be explored. If sampling is being used,
sampling is only made the first time the g-value is
calculated.

At the end, the algorithm will only have calculated the
neighbors for the nodes in the CLOSE list, and estimated
the obstacle probability for nodes in OPEN ∪CLOSE. In
the worst case, the A∗ algorithm will explore every vertex
and every edge, so all neighbors will be calculated and all
nodes will be sampled similarly to the naı̈ve case. But, in
general, the number of neighbors calculated and the number
of node sampled will be largely reduced compared to the
naı̈ve case. This is confirmed by the numerical examples in
the next section.

VI. PROBABILISTIC BOUNDS OF MSPP-S
As the estimate V̂ (nk,p) is used instead of the actual

obstacle probability V (nk,p), a bad estimate could lead to
missing solutions and losing completeness of the algorithm.
In particular, if V̂ (nk,p) overestimates V (nk,p), the node



nk,p might wrongly be evaluated as a ε-obstacle which would
prevent the algorithm from finding any path passing through
nk,p, and potentially the only solution, thus breaking the
completeness of the algorithm.

In this section, we derive an analytic worst case bound for
the probability of failure of the MSPP-S algorithm.

We assume that there is an underlying grid and that each
unit cell is either free space or obstacle.

A. Definitions

To deal with the probability of misevaluating the obstacle
probability of a cell, we redefine the notion of obstacles with
a threshold γ and the event of wrongly evaluating a node as
an obstacle.

Definition 1. Let ε, γ > 0. A node nk,p is a ε, γ-obstacle if

V̂ (nk,p) ≥ 1− 2−dkε+ γ. (5)

Definition 2. Let ε, γ > 0. M(nk,p) is the event that the
node nk,p is a ε, γ-obstacle and is not a ε-obstacle.

B. Bounds on P
(
M(nk,p)

)
Proposition 1. Let ε, γ > 0 and n the number of sampled
points in a node nk,p. Then

P
(
M(nk,p)

)
≤ exp

(
−2γ2n

)
. (6)

Proof. Suppose M(nk,p) is true. Then (4) and (5) are
verified, then from (5)-(4), we get

V̂ (nk,p)− V (nk,p) ≥ γ. (7)

Suppose that nk,p is composed of N unit cells, including
No obstacles. Let µ = No/N , then V (nk,p) = No/N = µ.
Uniformly sampling a random point in nk,p is similar to
uniformly picking one of the N unit cells, that is, an obstacle
is picked with probability No

N = µ. Let xi be the random
variable associated with the ith obstacle test. xi takes value
1 for obstacles and 0 for free space, that is xi is a Bernouilli
trial. Let no =

∑n
i=1 xi. no is the number of successes in n

Bernoulli trials, so no follows a binomial distribution. Using
(7), changing variables and using Hoeffding’s inequality
((11) to (12)), we get that

P
(
M(nk,p)

)
(8)

≤ P
(
V̂ (nk,p)− V (nk,p) ≥ γ

)
(9)

= P
(no
n
− µ ≥ γ

)
(10)

= P
(
no ≥ n(γ + µ)

)
(11)

≤ exp
(
−2γ2n

)
. (12)

Proposition 2. Let a node nk,p. If k ≥ kmax = d 1d log2
ε
γ e,

then nk,p cannot be a ε, γ-obstacle and M(nk,p) never
happens.

Proof.

k ≥ kmax =

⌈
1

d
log2

ε

γ

⌉
≥ 1

d
log2

ε

γ
(13)

⇒ 2dk ≥ ε

γ
(14)

⇒ γ ≥ ε2−dk (15)
⇒ 1− 2−dkε+ γ ≥ 1. (16)

Proposition 3. Let a node nk,p. If k ≤ kmin = b 1d log2 nc,
then computing V (nk,p) is less expensive than computing
V̂ (nk,p). So ε-obstacles can be used and M(nk,p) never
happens.

Proof. The cost of computing V (nk,p) is 2dk. The cost of
computing V̂ (nk,p) is n.

k ≤ kmin =

⌊
1

d
log2 n

⌋
≤ 1

d
log2 n (17)

⇒ 2dk ≤ n. (18)

C. Probability of failure of MSPP-S

We assume here the MSPP-S algorithm uses ε, γ-obstacles
when k > kmin and ε-obstacles otherwise. We also assume
that the algorithm evaluates V̂ (nk,p) at most once for each
node, it is evaluated when the value is needed and then the
value is kept in memory.

Proposition 4. Given ε, γ, n > 0, an upperbound on the
probability of failure of MSPP-S is given by

P (failure) ≤ 1−
(
1− exp(−2γ2n)

)nbocc
, (19)

where

nbocc =
2d(`−kmin) − 2d(`−kmax+1)

2d − 1
. (20)

Proof. M(nk,p) can happen for every node such that kmin <
k < kmax, that is, the maximum number of occurences nbocc
of M(nk,p) is the number of nodes verifying kmin < k <
kmax,

nbocc =
∑

kmin<k<kmax

2d(`−k) (21)

=
2d(`−kmin) − 2d(`−kmax+1)

2d − 1
. (22)

If M(nk,p) never happens, the algorithm will never discard
potential paths, and stay complete, that is,

P (success) ≥ P
(
M(nk,p) never happens

)
(23)

= P
(
¬M(nk,p)

)nbocc
. (24)

Hence,

P (failure) ≤ 1−
(
1− exp(−2γ2n)

)nbocc
. (25)
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Fig. 4: Bound on the probability of failure with the param-
eters ` = 5, d = 1, ε = 90%, γ = 0.35% and Z = 2.

D. Upperbound when multiple independent solutions exist

Suppose there exists Z independant solutions to the plan-
ning problem, that is, the search space can de partitionned in
Z regions in which there exists at least one solution. Suppose
for simplificity that all regions have the same size, 1/Zth of
the original space.
The probability of failing in one region is then bounded by

P (failure in one region) ≤ 1−
(
1− exp(−2γ2n)

)nbocc/Z
.

(26)
The probability of the algorithm failing is smaller that the
algorithm failing in each regions simultaneously since there
might exist solutions crossing regions, so

P (failure) ≤
(
1−

(
1− exp(−2γ2n)

)nbocc/Z)Z
. (27)

Fig 4 shows the upperbound on the probability of failure as
a function of the number of sampled points n for a given set
of parameters of the algorithm. For small n, the probability
is very close to 1 since we have a very poor precision
in the estimate of the obstacle probabilities. As n grows,
the probabilty for every single cell gets better hence the
probability of failure decreases. The grow of n also increases
the value of kmin, thus creating drops in the maximum
number of occurences of M (nk,p) and in the probability
of failure. As kmin reaches kmax− 1 the maximum number
of occurences of M (nk,p) goes to 0 and the probability of
failure of the algorithm then becomes 0.

The upperbounds derived are very conservative in the
sense that:
• in most cases, only part of the nodes nk,p with kmin <
k < kmax are evaluated;

• if M(nk,p) happens for a node that is not part of
the solution, the solution will still be found by the
algorithm;

• if multiple solutions exist but are not independent, the
probability is still largely reduced, but not exponen-
tially;

• in typical environement, large areas of free space exists,
thus multiplying the number of possible solutions and
largely reducing the probability of failure.

In practise, failure of the MSPP-S algorithm has not been
observed.

VII. RESULTS

A. Comparison in Random Environemnts

In this section, we compare the original MSPP algorithm
against the proposed extensions and also against the A∗ run
on a uniform grid. MSPP-FN refers to the variant with the
new neighbor test and MSPP-S refer to the variant using
sampling (it also uses fast neighbors). Obstacle maps were
randomly generated and then used to solve path-planning
problems via these four algorithms. The problem was solved
for dimensions ranging from 2 to 5 with a tree depth of
5, that is, for search spaces ranging from 22×5 = 1024 to
25×5 ' 3× 107.
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Fig. 5: Comparison of the execution time of the A∗, MSPP
and MSPP-FN algorithms. The results are shown in logarith-
mic scale.

Figure 5 shows the average execution time (in log scale)
of the MSPP, the MSPP-FN and the A∗ algorithms on the
randomly generated maps. In this figure, the time to create
the map is not taken into account in order to compare the
pure performance of the planning algorithms, that is, it is
just the time to find a path on an already existing map.

For the smaller search spaces, we see very few differences
between all the algorithms, as expected. As the dimension
and the size of the search space grow however, the MSPP
algorithm becomes much faster than the A∗, by more than
two orders of magnitude in dimension 5. By the same token,
the MSPP-FN algorithm is even faster (by 50%) over the
baseline MSPP algorithm in dimension 5.

In Figure 6, the cost of creating the map is taken into
account. This is done in order to compare the results of
using the MSPP-S algorithm. Three algorithms are compared
here, the A∗ algorithm with the construction of the graph, the
MSPP algorithm with the construction of the multi-scale map
and the MSPP-S algorithm. Similarly to the previous case,
on a small search space, there is little or no improvement. As
the problem dimension increases, however, the improvement
gets much better. The MSPP-S algorithm is three orders



2 3 4 5
100

101

102

103

104

105

106

107

Dimension of the search space

E
xe

cu
tio

n
Ti

m
e

(i
n

m
s)

Map + A∗

Map + MSPP-FN
MSPP-S

Fig. 6: Comparison of the time to construct the map and
run the A∗ or MSPP-FN algorithm versus the time to run
the MSPP-S algorithm for which a map does not need to be
computed. The results are shown in logarithmic scale.

of magnitude faster than creating a map and using the A∗

algorithm, and more than ten times faster than constructing
a multi-scale map and using the original MSPP algorithm.

B. Application to a Robot Arm

Fig. 7: Initial and final pose of the planning problem for the
PR2 arm.

The planning algorithm was used to plan a trajectory for an
arm of the PR2 robot. Planning was done in the configuration
space using 4 joints of the arm. Figure 7 shows the initial
configuration and the desired final configuration; the robot
needs to move a book from the top shelf to the second shelf.
The depth of the tree was set to 5, creating a search space
of size 24×5 ' 3× 107.

The path-planning problem was solved three times to
compare the variants of the algorithm: First, the multi-
scale map was built by exploring the entire search-space
and the MSPP algorithm was used to find the solution. All
algorithms were performed on the same desktop computer
running Ubuntu Linux. Building the map was the most time-
consuming process. It takes on average 4 minutes and 52

seconds and solving the path-planning problem takes on
average 47 seconds. Using the MSPP-FN algorithm on the
same map, the problem was solved in 4 seconds on average.

VIII. CONCLUSIONS

In this paper, we have introduced several modifications and
extensions to the original MSPP algorithm, first presented in
[5], to increase its computational efficiency. The resulting
multi-scale path-planning algorithms, called MSPP-FN and
MSPP-S offer several non-trivial improvements over the
previous MSPP algorithm. First, the complexity of each
iteration of the algorithm is reduced by changing the manner
by which the adjacency relationships in the reduced graph are
computed at each iteration. Second, the range of applications
of the algorithm has been widened, by allowing the use of
an obstacle predicate rather than accurate prior knowledge of
a full information multi-scale map. This extension results in
much fewer requirements in terms of memory allocation and
theoretical bounds on the probability of failure were derived.
Third, reordering the operations performed by the algorithm
allows one to minimize computations by avoiding informa-
tion that is not needed during execution. We have compared
the original MSPP algorithm to the proposed MSPP-FN and
MSPP-S algorithms and found runtime improvements by
over 50%. Both algorithms outperform A∗ by more than two
orders of magnitude.
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