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Abstract— Whole body tactile perception via tactile skins
offers large benefits for robots in unstructured environments.
To fully realize this benefit, tactile systems must support real-
time data acquisition over a massive number of tactile sensor
elements. We present a novel approach for scalable tactile data
acquisition using compressed sensing. We first demonstrate that
the tactile data is amenable to compressed sensing techniques.
We then develop a solution for fast data sampling, compression,
and reconstruction that is suited for tactile system hardware
and has potential for reducing the wiring complexity. Finally,
we evaluate the performance of our technique on simulated
tactile sensor networks. Our evaluations show that compressed
sensing, with a compression ratio of 3 to 1, can achieve higher
signal acquisition accuracy than full data acquisition of noisy
sensor data.

I. INTRODUCTION

With the advances in robot technology, there is an in-
creased desire to move robots from controlled environments
to unstructured human environments. The National Robotics
Initiative states that part of its goal is “to accelerate the
development and use of robots in the United States that work
beside or cooperatively with people” [1]. To achieve this
goal, robots require improved perception to safely handle
the uncertain and dynamic structure of these environments.
Improved perception becomes even more important as robots
need to effectively manipulate items in the environment.
Tactile sensors, sensors that gather data through contact (e.g.,
force and temperature), are an active research area with high
potential to help address this issue.

An important area of research in tactile sensing is tactile
systems that cover large portions of robot bodies. These
systems, often called tactile skins, potentially provide im-
provements in a robot’s awareness and manipulation abilities.
For example, Ohmura et al. [2] demonstrate a robot lifting a
heavy box with use of a tactile skin, a task beyond the robot’s
capability with traditional methods. A number of other tasks,
especially for complex robots like humanoids, would benefit
from tactile sensors on the surfaces of various links.

One of the challenges with developing tactile skins is
the data acquisition process. It has been suggested that to
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achieve human-like perception, tactile systems should have
spatial resolution up to 1 mm [3]. This translates to on the
order of tens of thousands to millions of individual sensing
elements, known as taxels, for human adult-sized robots
(currently the largest system contains approximately 4200
taxels [4]). Full utilization of the data involves integrating it
into control loops. This requires real-time acquisition and
processing rates on the order of 1 kHz (e.g., for high-
fidelity force control). In addition, due to the distributed
nature of the system, a physical network is required for data
transfer but is limited by physical requirements (e.g., weight,
space, etc.) [3]. Finally, sensors are typically noisy, which
can further affect the acquisition process. These combined
requirements and constraints pose a challenge to acquiring
the data from tactile skins.

There have been multiple proposed and implemented
tactile skins from the research community. Most use a
data acquisition process, which we refer to as full data
acquisition, of polling all the sensors directly [5], [6], [7],
relying on fast hardware for high sampling rates. These
systems typically have a subset of local sensors that are
read serially via a micro-controller which then passes the
data on a high capacity network it shares with other micro-
controllers. The number of sensors that can be associated
with a micro-controller is limited. The number of micro-
controllers connected to the network is also limited to main-
tain the desirable high sampling rate. To scale this approach
to full body tactile skins will require multiple of these high
capacity networks, which is considered undesirable [3] due
to physical constraints. This method has been implemented
with a sampling rate of up to 100 hz (though the number of
sensors is unclear as this value is given for the local level
sampling) [6].

An alternate approach to full data acquisition is to use
local processing of sensor data within small clusters of
sensors [8], [6]. This approach speeds up the entire tactile
data processing rates through parallel local processing and
only transferring aggregate information. Local processing
like this suffers from a loss in data quality or a reduction in
the versatility of the system as features must be determined
a priori. Full data acquisition, on the other hand, has the
freedom to extract the various relevant features for many dif-
ferent applications. Local processing has been implemented
with sampling rates up to 500 hz [6].

We propose to address the tactile data acquisition problem
using compressed sensing [9]. Compressed sensing is a
popular technique for signal processing in which the signal
is simultaneously sampled and compressed. Provided the
original signal is sparse in some basis, it can be efficiently
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reconstructed from this compressed version with little to
no loss. In this work, we demonstrate the feasibility of a
compressed sensing-based tactile data acquisition approach
using existing compressed sensing tools. We first show that
tactile sensor data is amenable to compressed sensing by
identifying a basis under which the data is sparse. We
then identify sampling and compression operators that are
suited for the tactile system hardware. Finally, we explore
different methods for real-time signal reconstruction from
the compressed data.

Our approach shares the benefits of both the approaches
previously discussed and overcomes the short comings. Simi-
lar to the local processing approach, our approach reduces the
amount of data to be transferred, allowing for faster sampling
rates, but it also allows the system to have the full data set
and the resulting flexibility for multiple applications, like the
full data acquisition approach. Our work also has potential to
reduce wiring complexity as the sampling and compression is
amiable to hardware implementations that share wires across
multiple taxels.

The rest of the paper is organized as follows. Section II
describes the particular problem we address and the data
set we used. We then describe compressed sensing and
compress sensing requirements related to tactile skins in
Section III. Our proposed solution is discussed in Section IV
and is evaluated in Section V. The paper then finishes with
concluding remarks and future work in Section VI.

II. PROBLEM SETTING

A. Problem Description

We address the problem of real-time data acquisition
from a large-scale array of taxels. The array consists of N
individual taxels arranged in a

√
N ×

√
N flat grid. In this

paper, we consider tactile skins whose elements each output
the magnitude of the contact force normal to the plane of
the array at its location. However, we believe our approach
can be extended to other tactile sensors that measure one-
dimensional data, such as temperature.

We represent the sensor data as a vector x(t) ∈ RN ,
where each element, xi(t), corresponds to the force applied
to ith taxel at time-step t. The sensors do not measure the
applied force exactly, but rather, they measure x(t) + ε(t),
where ε(t) ∈ RN is the sensor noise. The tactile data
acquisition problem is to efficiently transfer x(t) (or a
close approximation of it) from the sensors to the central
processing unit. We note that “efficiently” is a subjective
term that depends on the system and application. Ideally, we
aim for solutions that require on the order of milliseconds
so that the sensed data can be used in real-time feedback
control. Additionally, we desire solutions that reduce the
network hardware complexities.

As discussed in the introduction, approaches that directly
collect sensed data suffer from scalability limitations. We
consider an alternate approach based on the new and pop-
ular technique of compressed sensing [9]. In compressed
sensing, the data is compressed in hardware during the
acquisition process. This compressed data can be more

efficiently transmitted to the central processing unit, since the
reduced data requires fewer high capacity networks. At the
central processing unit, the original signal can be efficiently
recovered. This unique approach will enable scaling tactile
skins to large numbers of sensors due to the data reduction
and the hardware compression techniques that allow simpler
wiring.

B. Data Set Description

For our study, we used the Gazebo 3.0 [10] simulator with
the SkinSim 0.1.0 simulation environment [11] to generate
data sets. SkinSim 0.1.0 models a tactile skin as a layer of
spheres individually attached to a surface by a spring and
damper. SkinSim is currently limited to planar grid arrays.
We set up our system with each sphere-spring-damper system
representing a single taxel with a sphere radius of 2.5 mm.
We had no space between taxels. We generated sensor data
using two different sensor array sizes, 40× 40 and 64× 64,
which matches the number of taxels in the current largest
system. Each sensor measured contact normal force values
between 0 and 2.5 Newtons.

We use four different scenarios to demonstrate that our
approach works with contact at different scales (i.e., number
of active sensors), shape complexities, and locations on the
grid. In the first scenario, LIFT BOX, we used the 10 cm
wooden cube from Gazebo’s default models. We dropped
the object onto the sensor pad, with the face parallel to
the pad. After the object settled, it was lifted from the
pad with constant velocity of 0.1 m

s . The second scenario,
LIFT WRENCH, followed the same procedure, but used
Gazebo’s default model for a monkey wrench. In the third
scenario, PATH, a metal peg, which was forced to remain
vertical throughout the scenario, was dropped in a random
position on the sensor pad and then moved along a random
path parallel to the plane of the tactile array. The final
scenario, DRAG WRENCH, again used the monkey wrench.
After dropping onto the sensor pad, the wrench was moved
with constant velocity of 0.05 m

s also parallel to the sensor
plane. The sensors’ heights caused them to rest above the
ground plane, so, as the wrench moved off the sensor pad,
it was partially supported by the lower ground plane. All
of the scenarios except PATH were run until the object
stopped making contact with the sensor array. PATH had
no guarantees of leaving the sensor pad, so it was run for an
extended period of time.

For the experiments on the 40 × 40 and 64 × 64 arrays,
the simulation time-steps were chosen to be 1 and 0.1
milliseconds respectively. Table I shows the number of time-
steps in which we collected data for each scenario. We set
high sampling rates as dynamics simulators perform better
with small time-steps. We used all the sampling data since
we are more interested in a sequence of tactile data than
the specific scenario. So, while the simulator was set up
with the object falling under gravity, due to realistic tactile
sampling rates, we treat the scenario more as the object being
manipulated against the sensors with a slower velocity. Even
with the small time-steps, the data generated by the SkinSim



simulator exhibited high-frequency oscillations in the contact
force signals. We believe this is due to integration error of
the physics engine or to low damping. We compensated for
this physically unrealistic behavior by applying a moving
average filter with a width of 10 time-steps.

TABLE I: Number of simulation time-steps of data for each
scenario

Scenario Array number of time-steps
LIFT BOX 40× 40 700

LIFT WRENCH 40× 40 3000
DRAG WRENCH 40× 40 5000

PATH 40× 40 12200
LIFT BOX 64× 64 7600

DRAG WRENCH 64× 64 12600

III. BACKGROUND ON COMPRESSED SENSING

A. Compressed Sensing Theory

Let x ∈ RN be the signal of interest, for example, the
force readings of the tactile sensors at a given time. In
compressed sensing, the signal is compressed by taking M
linear measurements, each of the form,

yi =

N∑
j=1

Φijxj .

The measurement vector y ∈ RM , with components yi, is
given by

y = Φx, (1)

where Φ = [Φij ] is the M ×N measurement matrix.
If M < N , the linear system (1) is under-determined,

and thus, in general, it is not possible to recover x from
fewer than N measurements. The theory of compressed
sensing shows that, if x is sparse, meaning it has only a
few non-zero components, and Φ satisfies a property known
as the restricted isometry property [9], the vector x can be
recovered from M << N measurements, on the order of
O(logN) under ideal conditions. Typically, the signal x is
not itself sparse, but may be sparse in some representation
basis. Specifically, a signal x is sparse in a basis Ψ ∈ RN×N
if there is a sparse vector θ such that x = Ψθ. In this case,
the measurement vector can be written as

y = ΦΨθ.

The objective is then to recover θ from the measurements.
The compressed sensing recovery problem can be formalized
as

minimize
θ∈RN

‖θ‖0 subject to ΦΨθ = y (2)

Here ‖ · ‖0 denotes the `0 pseudonorm, i.e., the number of
non-zero components. Once the solution to this problem θ̂
has been obtained, one can recover the original non-sparse
signal x as x = Ψθ̂.

In this work, we consider a variation on the compressed
sensing problem where measurements may not be exact. The
measurement vector is given by

y = ΦΨθ + ε,

where ε ∈ RM is the measurement noise. This noise can
model both errors in the individual sensor readings as well
as in the measurement acquisition. The sparse vector θ can be
found as the solution of the following optimization problem

minimize
θ∈RN

1
2‖ΦΨθ − y ‖22 + λ‖θ‖0, (3)

where λ is a scalar-valued parameter used to tune the level
of sparsity of the solution. It is intractable to solve problem
(3) directly, however, efficient alternate approaches to find θ̂
have been derived [9].

The approach we use in this work is Basis Pursuit De-
noising (BPDN). In BPDN, one solves a convex relaxation
of (3),

minimize
θ∈RN

1
2‖ΦΨθ − y ‖22 + λ‖θ‖1. (4)

Since this problem is convex, it can be solved efficiently us-
ing one of many algorithms for convex optimization, as well
as variants developed specifically for compressed sensing. It
has been shown that BPDN produces optimal or near-optimal
sparse solutions in a wide variety of settings [12].

B. Compressed Sensing for Tactile Skins

To apply compressed sensing to tactile skins, we want
to take linear combinations of subsets of taxels’ values to
generate measurements. From those measurements, we want
to reconstruct the individual taxels’ values. This is done once
per time-step and allows us to recover the full data while
reducing the number of measurements.

To successfully apply compressed sensing to the tactile
sensing problem, we must address the following three com-
ponents:
• Identification of a representation basis. We must

identify a basis under which the signals (sensor data)
from our data sets are sufficiently sparse. A greater level
of sparsity means that the signals can be accurately
reconstructed from fewer measurements. Further, the
representation basis should be universal, meaning that
it can be used to “sparsify” signals in all scenarios.

• Identification of a sparse measurement matrix that
is compatible with the basis and hardware. As
mentioned above, it is necessary that ΦΨ satisfy the re-
stricted isometry property. In the tactile sensing applica-
tion, we have a further restriction that the measurement
matrix be sparse. This sparsity is critical as it allows the
measurement matrix to be implemented in hardware and
reduce the wiring complexity. This is shown in Figure 1,
where in Figure 1a shows each signal with a dedicated
connection and Figure 1b shows wiring designed from
a compressed sensing measurement matrix where sets
of taxels are daisy-chained. Sparsity is necessary since
the non-zero elements in each row indicate the linear



Fig. 1: Example wiring schematics for a) individual sensor
measurements and b) compressed sensing aggregated mea-
surements on a 3× 3 tactile grid.

combinations (i.e., the taxels with corresponding non-
zero values in that row need to be part of the same
daisy-chain, such as taxels 1, 2, and 5 in Figure 1b)
and the more taxels per linear combination typically
corresponds to longer and more complex daisy-chains.
So we seek to minimize this interaction to reduce the
amount of wiring.

• Selection/implementation of a fast signal reconstruc-
tion algorithm. The reconstruction algorithm needs to
be able to reconstruct the signal in real time so the
signal can be used in control loops. As reconstruction
is a tradeoff between time and accuracy, it also ought to
reconstruct the signal at least as a good approximation
of the noisy signal, but ideally as a good approximation
of the actual signal.

In the following section, we describe our approach to each
of these three components.

IV. SOLUTION

A. Representation Basis

Historically, tactile processing often used computer vision
techniques since the common array pattern of tactile sensor
systems corresponds well with image pixel arrays [13].
Following this trend, we looked at compressed sensing of
images to identify a basis Ψ that will render the tactile data
signal sufficiently sparse. As candidate bases, we considered
the Daubechies wavelet transforms, which are similar to the
wavelet transforms in JPEG2000. Daubechies wavelet trans-
forms are a set of transforms where each individual transform
is referenced by an even number (e.g., D4) such that larger
numbers correspond to more complex transformations [14].

We choose to use the D2 wavelet basis as, for all scenarios,
the D2 wavelet (also known as the Haar wavelet) basis
outperformed the D4 wavelet basis, yielding signals that were
indeed sparse. This can be seen in Table II, which shows the
number of non-zero components in the vector Ψx(t), both
when Ψ is the D2 wavelet and when Ψ is the D4 wavelet.
The table shows the mean and maximum number of non-zero
components over all time-steps for each scenario.

One point to note is that, while we represent the signal
as a one-dimensional vector, the sensor array is a two-

TABLE II: The number of non-zero elements over time for
different bases.

Scenario N D2 D4
mean max mean max

LIFT BOX 1600 108.3 266 750.1 1575
LIFT WRENCH 1600 92.2 388 282.2 1575

DRAG WRENCH 1600 84.9 449 254.3 1575
PATH 1600 30.3 266 139.8 1575

LIFT BOX 4096 189.8 263 929.1 961
DRAG WRENCH 4096 240.3 670 602.7 1208

dimensional structure. Thus we use the two-dimensional
Haar wavelet for our basis in the same manner that it is
used for two-dimensional images.

B. Sensing Matrix

As stated in Section III-A, it is necessary that the sensing
matrix Φ be chosen so that ΦΨ satisfies the restricted
isometry property. Unfortunately, it is NP-Hard to verify
whether a given matrix ΦΨ satisfies this property. It has
been shown that if Φ is a random matrix with entries
drawn from a Gaussian distribution, the restricted isometry
property is satisfied with high probability [15]. While this
choice of Φ is feasible from an algorithmic perspective,
such a matrix is dense. Thus, it is problematic to implement
this measurement approach in hardware due to the issues
discussed in Section III-B.

We instead select a sparse measurement matrix that will
support data collection and compression with less wiring.
We use the Scrambled Block Hadamard Ensemble (SBHE)
developed by Gan et al. [16]. It has been shown that for this
choice of Φ, the product ΦΨ behaves like a random Gaussian
matrix for a wide variety of bases. SBHE is a partial block
Hadamard transform with randomly permuted columns. It
can be represented as

ΦH = QMWPN , (5)

where W is a N ×N block diagonal matrix with each block
a B × B Hadamard matrix, PN is the permutation matrix,
which randomly reorders the N columns of W , and QM
uniformly at random selects M rows of WPN . As the non-
zero elements come from the B × B Hadamard blocks in
W , B determines the number of sensors connected together
for each measurement element. From a wiring standpoint,
we want to minimize B and, similar to Gan et al., we found
B = 32 worked well for our evaluations.

SBHE also has two additional benefits. First, all non-zero
elements are either +1 or −1. This simplifies the hardware
as taxels only need the additional hardware to negate their
values instead of various hardware for different gains for
each measurement, as would be the case for the random
Gaussian matrix. Second, the taxels are divided into disjoint
measurement subsets that each give multiple measurements.
This means for any two measurements, either the whole
subset of taxels or none of the taxels are used in both
measurements. This is a benefit as no wires are needed
between the subsets, allowing for very distinct daisy-chains.



Fig. 2: Sensor values from DRAG WRENCH (64× 64) scenario for the ground truth signal (left), noisy signal (middle) and
the reconstructed signal (right). The reconstruction was from 1365 measurements using 20 iterations of the FISTA algorithm
and has a PSNR of 31.2.

TABLE III: Quality of Signal Reconstruction with Various Number of Measurements using 30 Iterations

Scenario No. of Reconstructed Signal Noisy Signal
(No. of Elements) Measurements Mean PSNR PSNR Range Mean PSNR PSNR Range

LIFT BOX
(1600)

400 52.8 39.5 - 63.2
533 52.5 40.9 - 60.8 46.5 39.1 - 48.7
800 52.1 41.4 - 57.6

LIFT WRENCH
(1600)

400 52.1 26.5 - 62.3
533 52.7 31.1 - 60.4 47.2 38.4 - 48.8
800 52.6 36.9 - 58.0

DRAG WRENCH
(1600)

400 44.7 25.3 - 61.9
533 47.7 28.5 - 59.8 46.4 37.4 - 48.7
800 48.9 34.5 - 58.0

PATH
(1600)

400 56.3 45.4 - 63.1
533 55.9 49.2 - 60.7 48.0 44.8 - 49.1
800 55.0 50.3 - 58.4

LIFT BOX
(4096)

1024 49.8 38.6 - 54.9
1365 49.9 39.0 - 54.1 46.8 36.6 - 48.5
2048 50.2 38.3 - 53.6

DRAG WRENCH
(4096)

1024 45.4 23.3 - 54.8
1365 46.4 29.8 - 53.9 46.4 36.2 - 48.3
2048 48.3 37.0 - 53.2

This property also has the potential for the measurements to
share wires.

C. Reconstruction Algorithm

To solve problem (4), we use an iterative, gradient-like
method called Fast Iterative Shrinkage-Thresholding Algo-
rithm (FISTA) [17]. We selected this algorithm because of
its fast convergence; FISTA converges at a rate of O(1/k2),
where k is the iteration number, whereas standard gradient
methods converge at a rate of O(1/k). Every time-step we
use FISTA to reconstruct the signal from the measurements
taken in that time-step. As the signal typically does not
change much between time-steps, we use the previous time-
step’s reconstructed signal as the initial estimate for the
current signal and use FISTA to refine the estimate into a
solution. This warm-start led to faster convergence to the
solution. FISTA is also amenable to hardware-based imple-

mentations, which can further accelerate its performance. We
exploit this feature in our implementation.

V. SIMULATION RESULTS

A. Algorithm Implementation

We implemented FISTA in Matlab 2015a, utilizing Mat-
lab’s GPU capabilities to speed up the algorithm’s execution.
The resulting code required approximately 1ms per itera-
tion (see Table IV). We ran the algorithm for a constant
number of iterations for each compressed sensing problem
as it standardized the reconstruction time, and checking for
other possible exit criteria greatly reduced performance. We
performed simulations for several values of λ (see (4)) and
determined that λ = 0.1 worked well for all scenarios. We
used this parameter value in all simulations.

We noted that the reconstructed signal returned from
FISTA sometimes contained negative values, but as we know



this is not a feasible signal, we set those elements to 0.
Our experiments were run on a machine using Linux

Ubuntu 14.04. The machine contained an Intel Core i7 CPU
(8 cores at 3.07 GHz) and a single GeForce GTX 480 GPU.

B. Noise Model

We added noise to the tactile data before performing the
measurements. Our noise model was a normal distribution
with zero mean. The model had a standard deviation of
0.0628 Newtons (5 percent) at the sensor range midpoint
and tapered towards the ends of the sensor range. All values
beyond the sensor range were modified to the corresponding
boundary value.

C. Results

To test our method, we applied our measurement matrix
ΦH to our scenarios and then reconstructed the signal with
FISTA. An illustrative example of the sensor data and recon-
struction is shown in Figure 2. The figure shows the three
signals for a single time-step: the ground truth signal (i.e.,
the SkinSim filtered signal) of the object contact, the noisy
signal (i.e., the ground truth signal plus our noise model) that
we compress for our measurements, and the reconstructed
signal (i.e., the restored signal from FISTA). From the figure
it is evident that the reconstructed signal closely matches the
shape and magnitude of the original signal, demonstrating
our method gives reasonable results.

To evaluate the quality of our reconstruction, for each
time-step we measured the peak signal-to-noise ratio (PSNR)
of the reconstructed signal and compared it to the PSNR of
the noisy signal (larger PSNRs are better).

We first evaluated the impact of the number of measure-
ments on the reconstruction quality. We varied the number
of measurements to N

4 ,
N
3 and N

2 , where N is the number of
taxels. For these experiments, the number of FISTA iterations
was set to 30. We selected 30 iterations after tracking the
number of iterations FISTA ran when using various stopping
criteria based on convergence (e.g., the change in the solution
between iterations was below a threshold, solution was
within a threshold of the ground truth, etc.) and found 30
iterations was typically more than enough. The mean and
range of the PSNR over time are shown in Table III for each
scenario, along with the PSNR of the noisy signal. The table
shows that for the vast majority of the reconstructions, the
mean PSNR exceeded that of the noisy signal. This means
that the reconstructed signal more accurately estimated the
ground truth than the noisy signal. In addition, for most
scenarios, the reconstructed mean PSNR was similar for
all three measurement sizes, though the PSNR range was
typically larger for fewer measurements. This means that
while more measurements made the reconstruction quality
more consistent, on average the PSNR were independent
of the number of measurements. The scenarios that have
mean PSNR less than the noisy signal both used only N

4
measurements. This indicates that N

4 measurements can be
comparable with the noisy signal accuracy only for some
scenarios.

Time Step
10 20 30 40 50 60

P
S

N
R

36

38

40

42

44

46

48

50

52

54

56

noisy signal
M = 1024
M = 1365
M = 2048

(a) Representative Case Time Sequence - LIFT BOX 64× 64

Time Step
1950 1960 1970 1980 1990 2000

P
S

N
R

42

43

44

45

46

47

48

49

50

noisy signal
M = 1024
M = 1365
M = 2048

(b) Worst Case Time Sequence - DRAG WRENCH 64× 64

Fig. 3: Representative time sequences of PSNR of the recon-
structed signal for the different numbers of measurements
(N4 ,

N
3 ,

N
2 ) as well as the PSNR of the noisy signal. (a) is

representative of most scenarios as the reconstructed signal
outperforms the noisy signal while (b) is the worst-case
scenario where the reconstruction signal only out performs
the noisy signal for large numbers of measurements.

The lower end of the PSNR range values occurred during
the first few time-steps of contact between the object and
sensor pad. This visually results in a dip in the PSNR plot
as seen in Figure 3a. The reason for this dip is our noise
model produces more noise at the middle of the sensor range
than at the ends, and prior to contact the sensor values are at
the low end of the range and during first contact, the sensor
values are closer to the middle of the sensor range.

Figure 3 shows representative time sequences of how the
number of measurements affects the reconstruction using the
LIFT BOX and DRAG WRENCH scenarios, both using the
64 × 64 array. The results for the LIFT BOX scenario in



Figure 3a are fairly representative of most of the scenarios.
The reconstructed PSNR does not vary much for different
numbers of measurements and is larger than the noisy PSNR.
Figure 3b shows a representative snapshot of the worst
performing scenarios, the DRAG WRENCH scenarios. The
PSNR for N

4 measurements was consistently below that of
the noisy signal, the PSNR for N

3 measurements was similar
to that of the noisy signal, and for N

2 measurements, the
PSNR was better than that of the noisy signal. This figure
shows that, in the worst case, using N

3 measurements gives
accuracy on par with the noisy signal. These results show
that our measurement approach compresses the signal up to
a third of its original size, with the ability to recover the
original signal typically with higher quality than the noisy
signal.

We next looked at the impact of the number of iterations
on the reconstruction accuracy, which is an indication of
the reconstruction speed. We ran FISTA for 10, 20, and
30 iterations and evaluated the quality of the reconstructed
signals. We used N

3 measurements in all cases. The results
are presented in Table IV. The average PSNR for each
scenario was unaffected by the number of iterations, but the
minimum PSNR varied for most scenarios, especially for 10
iterations. This is especially of interest as the few time-steps
that produced the lower end of the PSNRs’ range were the
only time steps it was challenging for the reconstructed signal
to be comparable to the noisy signal.

To further illustrate how the number of iterations affects
the PSNR, Figure 4 shows representative time sequences for
the parts of the reconstructed signal using scenario LIFT
BOX 64 × 64. Both Figures 4a and 4b show the PSNR for
reconstructed signal after 10, 20, and 30 FISTA iterations,
along with the PSNR for the noisy signal for comparison.
Figure 4a is a snapshot of the majority of the time sequences
where the ground truth signal changes slowly, while Figure
4b covers the time sequence of the first contact. Where the
ground truth signal changes slowly, which is the majority of
the time for all scenarios, the reconstructed signals’ PSNR
plots are nearly indistinguishable for the different iterations,
which is shown in Figure 4a. Figure 4b similarly shows the
PSNR plots are nearly identical, except that for a few time-
steps the PSNR for 10 iterations was significantly lower than
for 20 and 30 iterations. These time-steps occurred when the
object initially made contact with the sensors, or in other
words, the deviation between the PSNR of 10 iterations
and the other values occurred at sudden, significant signal
changes. The drastic signal change requires more iterations
to converge as the warm-start is no longer a good initial
estimate, and Figure 4b, along with Table IV, shows 10
iterations is not enough. The PSNR stabilizes again due to
the aggregation of FISTA iterations, which occurs due to the
warm-starts. While for some applications, the loss in quality
that 10 iterations experienced might be acceptable, this is
not always the case. Significant signal changes often indicate
significant changes in the robot state and thus, an accurate
reconstruction may be important for generating the correct
response. In this case, using 20 iterations is preferable.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

We have proposed an approach to tactile data acquisition
using compressed sensing. In our approach, tactile data is
compressed in hardware before transmission to the central
processing unit. Then, the fully sensed data signal is recon-
structed from the compressed data.

In this work, we have used standard (i.e., pre-existing and
non-optimized) tools of compressed sensing, and we still
achieved full signal reconstruction of 4096 taxels at a rate
of 50 hz, which is on the same order of magnitude as the
sensors presented by Schmitz et al. [6], the sensors used for
the system with the most taxels. Further, our system was
able to compress the signal to a third of its original size and
produce a higher quality signal than the noisy signal a vast
majority of the time. Additionally, we have discussed how
compressed sensing may provide guidance for new wiring
techniques with potential to reduce the wiring complexity.
Using daisy-chain techniques, wiring could be reduced on
the same order as the data compression. We were able to
reduce the number of measurements by a factor of three,
but the theoretical limit for compressed sensing is to have
O(logN) measurements. From this initial investigation, we
conclude that compressed sensing is a feasible approach for
tactile data acquisition and worth further exploration. We
believe this paradigm can open the door to larger-scale tactile
systems as well as faster data acquisition.

B. Future Work

We plan to continue to develop our system so as to meet
the suggested requirements mentioned in the introduction
by exploring additional bases and measurement matrices.
Not only will we look for representation bases that give
even more sparsity in the tactile data, which is a key
component for achieving O(logN) measurements, but we
also will explore bases that work with different tactile sensor
arrangements (e.g., non-planar). Part of our future work
in exploring measurement matrices will be to consider the
constraint that sensors that interact during measurement be
in close proximity. This will further simplify the wiring
arrangement. Finally, we will investigate alternatives and
enhancements to our reconstruction algorithm to improve
reconstruction speed.

REFERENCES

[1] “National robotics initiative, program solicitation,” http://www.nsf.
gov/pubs/2015/nsf15505/nsf15505.htm, [accessed 2015-09-01].

[2] Y. Ohmura and Y. Kuniyoshi, “Humanoid robot which can lift a 30kg
box by whole body contact and tactile feedback,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., 2007, pp. 1136–1141.

[3] R. Dahiya, G. Metta, M. Valle, and G. Sandini, “Tactile sensing: From
humans to humanoids,” Robotics, IEEE Transactions on, vol. 26, no. 1,
pp. 1–20, Feb 2010.

[4] A. Parmiggiani, M. Maggiali, L. Natale, F. Nori, A. Schmitz,
N. Tsagarakis, J. S. Victor, F. Becchi, G. Sandini, and G. Metta, “The
design of the icub humanoid robot,” Int. Jour. of Humanoid Robots,
2011.

[5] Y. Ohmura, Y. Kuniyoshi, and A. Nagakubo, “Conformable and
scalable tactile sensor skin for curved surfaces,” in Proc. IEEE Int.
Conf. Robotics and Automation (ICRA), May 2006, pp. 1348–1353.

http://www.nsf.gov/pubs/2015/nsf15505/nsf15505.htm
http://www.nsf.gov/pubs/2015/nsf15505/nsf15505.htm


TABLE IV: Quality and Time of Signal Reconstruction with Various Number of Iterations using N
3 Measurements

Scenario No. of No. of Mean Reconstructed Signal Noisy Signal
(No. of Elements) Measurements Iterations Time Mean PSNR PSNR Range Mean PSNR PSNR Range

LIFT BOX
(1600)

10 10.8 52.5 37.0 - 60.8
533 20 20.7 52.5 40.9 - 60.8 46.5 39.1 - 48.7

30 30.9 52.5 40.9 - 60.8

LIFT WRENCH
(1600)

10 10.6 52.7 26.7 - 60.4
533 20 20.6 52.7 30.7 - 60.4 47.2 38.4 - 48.8

30 30.1 52.7 31.1 - 60.4

DRAG WRENCH
(1600)

10 10.7 47.7 26.3 - 59.8
533 20 20.7 47.7 28.4 - 59.8 46.4 37.4 - 48.7

30 28.1 47.7 28.5 - 59.8

PATH
(1600)

10 10.3 55.9 49.2 - 60.7
533 20 18.1 55.9 49.1 - 60.7 48.0 44.8 - 49.1

30 28.8 55.9 49.2 - 60.7

LIFT BOX
(4096)

10 8.1 49.9 32.1 - 54.1
1365 20 21.6 49.9 38.9 - 54.1 46.8 36.6 - 48.5

30 25.1 49.9 39.0 - 54.1

DRAG WRENCH
(4096)

10 8.0 46.4 23.1 - 53.9
1365 20 17.0 46.4 29.3 - 53.9 46.4 36.2 - 48.3

30 31.7 46.4 29.8 - 53.9

Time Step
200 210 220 230 240 250

P
S

N
R

44.5

45

45.5

46

46.5

47

47.5

48

48.5

noisy signal
10  iterations
20  iterations
30  iterations

(a) Representative Case Time Sequence - LIFT BOX 64× 64

Time Step
10 20 30 40 50 60

P
S

N
R

30

35

40

45

50

55

noisy signal
10  iterations
20  iterations
30  iterations

(b) Worst Case Time Sequence - LIFT BOX 64× 64

Fig. 4: Both plots are representative time sequences of PSNR for LIFT BOX 64×64 scenario with 10, 20, and 30 iterations
and the PSNR of the noisy signal. (a) is a representative time sequence for the majority of time-steps across the scenarios,
while (b) is the worst-case time-steps.

[6] A. Schmitz, P. Maiolino, M. Maggiali, L. Natale, G. Cannata, and
G. Metta, “Methods and technologies for the implementation of large-
scale robot tactile sensors,” Robotics, IEEE Transactions on, vol. 27,
no. 3, pp. 389–400, June 2011.

[7] P. Mittendorfer and G. Cheng, “Humanoid multimodal tactile-sensing
modules,” Robotics, IEEE Transactions on, vol. 27, no. 3, pp. 401–
410, June 2011.

[8] T. Mukai, M. Onishi, T. Odashina, S. Hirano, and Z. Luo, “Develop-
ment of the tactile sensor system of a human-interactive robot “RI-
MAN”,” IEEE Trans. Robot., vol. 24, no. 2, pp. 505–512, Apr 2008.

[9] M. Davenport, M. Duarte, Y. Eldar, and G. Kutynoik, Compressed
Sensing: Theory and Applications. Cambridge University Press, 2012.

[10] “Gazebo,” http://gazebosim.org, [accessed 2015-09-13].
[11] A. Habib, I. Ranatunga, K. Shook, and D. O. Popa, “Skinsim: A

simulation environment for multimodal robot skin,” in Proc. IEEE
Conf. Automation Science and Engineering (CASE), 2014, pp. 1226–
1231.

[12] J. Tropp and S. J. Wright, “Computational methods for sparse solution
of linear inverse problems,” Proc. IEEE, vol. 98, no. 6, pp. 948–958,
2010.

[13] R. Dahiya, P. Mittendorfer, M. Valle, G. Cheng, and V. Lumelsky,
“Directions toward effective utilization of tactile skin: A review,”
Sensors Journal, IEEE, vol. 13, no. 11, pp. 4121–4138, Nov 2013.

[14] I. Daubechies, “Orthonormal bases of compactly supported wavelets,”
Communications on Pure and Applied Mathematics, vol. 41, no. 7,
pp. 909–996, 1988.

[15] E. J. Candès et al., “Compressive sampling,” in Proc. International
congress of mathematicians, vol. 3, 2006, pp. 1433–1452.

[16] L. Gan, T. Do, and T. Tran, “Fast compressive imaging using scram-
bled block hadamard ensemble,” in Signal Processing Conference,
2008 16th European, Aug 2008, pp. 1–5.

[17] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM journal on imaging
sciences, vol. 2, no. 1, pp. 183–202, 2009.

http://gazebosim.org

	I INTRODUCTION
	II PROBLEM SETTING
	II-A Problem Description
	II-B Data Set Description

	III BACKGROUND on COMPRESSED SENSING
	III-A Compressed Sensing Theory
	III-B Compressed Sensing for Tactile Skins

	IV SOLUTION
	IV-A Representation Basis
	IV-B Sensing Matrix
	IV-C Reconstruction Algorithm

	V SIMULATION RESULTS
	V-A Algorithm Implementation
	V-B Noise Model
	V-C Results

	VI CONCLUSION AND FUTURE WORK
	VI-A Conclusion
	VI-B Future Work

	References

