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Abstract— In this paper we present an algorithm to compute
risk averse policies in Markov Decision Processes (MDP) when
the total cost criterion is used together with the average
value at risk (AVaR) metric. Risk averse policies are needed
when large deviations from the expected behavior may have
detrimental effects, and conventional MDP algorithms usually
ignore this aspect. We provide conditions for the structure of
the underlying MDP ensuring that approximations for the exact
problem can be derived and solved efficiently. Our findings are
novel inasmuch as average value at risk has not previously
been considered in association with the total cost criterion.
Our method is demonstrated in a rapid deployment scenario,
whereby a robot is tasked with the objective of reaching a
target location within a temporal deadline where increased
speed is associated with increased probability of failure. We
demonstrate that the proposed algorithm not only produces
a risk averse policy reducing the probability of exceeding the
expected temporal deadline, but also provides the statistical
distribution of costs, thus offering a valuable analysis tool.

I. INTRODUCTION

Markov Decision Processes (MDPs) are extensively used
to solve sequential stochastic decision making problems in
robotics [26] and other disciplines [9]. A solution to an
MDP problem instance provides a policy mapping states into
actions with the property of optimizing (e.g., minimizing) in
expectation a given objective function. In many practical sit-
uations a formulation based on expectation only is, however,
not sufficient. This is the case, in particular, when variability
in the system’s behavior can cause a highly undesirable
outcome. For example, in an autonomous navigation system,
a robot attempting to minimize the expected length of the
traveled path will likely travel close to obstacles, and a large
deviation from the planned path may result in a collision
causing a huge loss (e.g., damage to an expensive robot or
failure of the whole mission altogether). Metrics that study
deviations from the expected value are often referred to as
risk metrics.

Typical solution algorithms for MDP problems, like value
iteration or policy iteration, aim exclusively at optimizing the
expected cost. The computed policies are therefore labeled
as risk neutral. The problem of quantifying risk associated
with random variables has a rich history and is often related
to the problem of managing financial assets [2]. In fact, many
risk-related studies motivated by financial problems have
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recently found applications in domains such as robotics [19].
The term risk aversion refers to a preference for stochastic
realizations with limited deviation from the expected value.
In risk averse optimal control one may prefer a policy with
higher cost in expectation but lower deviations to one with
lower cost but possibly larger deviations. Particularly in
the context of robotic planning, introducing risk aversion
in MDPs is crucial to guarantee mission safety. However
introducing risk aversion in MDPs creates a number of ad-
ditional theoretical and computational hurdles. For example,
in risk averse MDPs, optimal policies are not guaranteed to
be Markov stationary but are instead history dependent.

Average Value at Risk (AVaR – also known as Conditional
Value at Risk or CVaR) is a risk metric that has gained
notable popularity in the area of risk averse control [2], [17].
For a given random value and a predetermined confidence
level, the AVaR is the tail average of the distribution ex-
ceeding a given confidence level (see Section III for a formal
definition). Risk averse policies considering the AVaR metric
have been studied for the case of MDPs with finite horizon
and discounted infinite horizon cost criteria. In this paper we
instead consider how the AVaR metric can be applied when
an undiscounted, total cost criterion is considered. In fact,
such cost criterion appears particularly useful and natural
for robotic applications, whereby one is usually interested
in optimizing the undiscounted, total cost accrued during
a mission until a random, mission-dependent stopping time.
(As an aside, the total cost criterion is the typical cost model
for stochastic shortest path problems, see, e.g., [20], [21].)
The contribution of this paper is three-fold:

• We identify conditions for the underlying MDP ensuring
that the AVaR MDP problem is well defined when the
total cost criterion is used.

• We define a surrogate MDP problem that can be ef-
ficiently solved and whose solution approximates the
optimal policy for the original problem with arbitrary
precision.

• We validate our findings on a rapid robotic deployment
task where the objective is to maximize the mission
success rate under a given temporal deadline [6], [8].

The rest of the paper is organized as follows. We discuss
related work in Section II and provide some background
about risk metrics and MDPs in Section III. In Section IV
we formulate the risk-averse, total cost MDP problem we
wish to solve. In Section V we propose and analyze an
approximation strategy for the problem, and in Section VI
we provide an algorithmic solution. Simulation results for
a rapid deployment problem are given in Section VII, and
conclusions and future work are discussed in Section VIII.
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II. RELATED WORK

For a general introduction to MDPs the reader is referred
to textbooks such as [4] or more recent collections such
as [9]. As pointed out in the introduction, risk aversion
in MDPs has been studied for over four decades, with
earlier efforts focusing on exponential utility [12], mean-
variance [24], and percentile risk criteria [10]. With regard
to mean-variance optimization in MDPs, it was recently
shown that computing an optimal policy under a variance
constraint is NP-hard [15]. Recently, average value at risk
was introduced in [17] in order to model the tail risk of
a random outcome and to address some key limitations
of the prevailing value-at-risk metric. Efficient methods to
compute AVaR are discussed in [18]. Leveraging the recent
strides in AVaR risk modeling, there have been a number
of efforts aimed at embedding the AVaR risk metric into
risk-sensitive MDPs. In [3] the authors address the problem
of minimizing the AVaR of the discounted cost over a finite
and an infinite horizon, and propose a dynamic programming
approach based on state augmentation. Similar techniques
can be found in [5], where the authors propose a dynamic
programming algorithm for finite-horizon, AVaR-constrained
MDPs. The algorithm is proven to asymptotically converge
to an optimal risk-constrained policy. However, the algo-
rithm involves computing integrals over continuous variables
(Algorithm 1 in [5]) and, in general, its implementation
appears quite challenging. A different approach is taken by
[7], [16], [25] where the authors consider a finite dimensional
parameterization of the control policies, and show that an
AVaR MDP can be optimized to a local optimum using
stochastic gradient descent (policy gradient). However this
approach imposes additional restrictions to the policy space
and in general policy gradient algorithms only converge
to a local optimum. Haskell and Jain recently considered
the problem of risk aversion in MDPs using a framework
based on occupancy measures [13] (closely connected to
our recent works where constrained MDPs are used to solve
the multirobot rapid deployment problem [6], [8]). While
their findings are only valid for the case where an infinite
horizon discounted cost criterion is considered, the solution
we propose uses some of the ideas introduced in [13].

III. PRELIMINARIES

In this section we summarize some known concepts about
risk metrics and MDPs. The reader is referred to the afore-
mentioned references for more details.

A. Risk

Consider a probability space S = (Ω,F ,P), and let L∞
be the space of all essentially bounded random variables on
S. A risk function (or risk metric) Γ : L∞ → R is a function
that maps an uncertain outcome Y ∈ L∞ onto the real line R.
A risk function that is particularly popular in many financial
applications is the value at risk. For τ ∈ (0, 1) the value at
risk of Y ∈ L∞ at level τ is defined as

VaRτ (Y ) := inf{η ∈ R : Pr(Y ≤ η) ≥ τ}.
Here VaRτ (Y ) represents the percentile value of outcome
Y at confidence level τ . Despite its popularity, VaRτ has a
number of limitations. In particular, VaR is not a coherent

risk measure [2] and thus suffers from being unstable (high
fluctuations under perturbations) when Y is not normally
distributed. More importantly it does not quantify the losses
that might be incurred beyond its value in the τ -tail of
the distribution [17]. An alternative measure that overcomes
most shortcomings of VaR is the average value at risk,
defined as

AVaRτ (Y ) :=
1

1− τ

∫ 1

τ

VaRt(Y )dt,

where τ ∈ (0, 1) is the confidence level as before. Intuitively,
AVaRτ is the expectation of Y in the conditional distribution
of its upper τ -tail. For this reason, it can be interpreted as
a metric of “how bad is bad.” AVaRτ can be equivalently
written as [18]

AVaRτ (Y ) = min
s∈R

{
s+

1

1− τ E[(Y − s)+]

}
, (1)

where x+ := max(x, 0). This paper relies extensively on Eq.
(1) and aims at devising efficient methods to approximate
the expectation in Eq. (1) when the random variable Y is
the total cost of an MDP.

Furthermore, it has been recently shown in [23] that opti-
mizing the CVaR of total reward is equivalent to optimizing
the worst-case (robust) expected total reward of a system
whose model uncertainty is subjected to a trajectory budget.
This finding corroborates the fact that a CVaR risk metric
models both the variability of random costs, as well as the
robustness to system transition errors.

B. Total Cost, Transient Markov Decision Processes
For a finite set S, let P(S) indicate the set of mass dis-

tributions with support on S. A finite, discrete-time Markov
Decision Process (MDP) is a tupleM = (X,U,Pr, c) where
• X , the state space, is a finite set comprising n elements.
• U , the control space, is a collection of n finite sets
{U(xi)}ni=1. Set U(xi), i = 1, . . . , n, represents the
actions that can be applied when in state xi ∈ X . The
set of allowable state/action pairs is defined as

K := {(x, u) ∈ X × U | u ∈ U(x)}.
• Pr(y|x, u) : K → R is the transition probability from

state x to state y when action u ∈ U(x) is applied.
According to our definitions, Pr(·|x, u) ∈ P(X).

• c : K → R≥0 is a non-negative cost function. Specifi-
cally, c(x, u) is the cost incurred when executing action
u ∈ U(x) at state x.

Let K := max(x,u)∈K c(x, u) and note that the maximum
is attained as K is a finite set. Define the set Ht of
admissible histories up to time t by Ht := K × Ht−1, for
t ≥ 1, and H0 := X . An element of Ht has the form
x0, u0, x1, . . . , xt−1, ut−1, xt, and records all states traversed
and actions taken up to time t. In the most general case a
policy is a function π : Ht → P(U(xt)), i.e., it decides
which action to take in state xt considering the entire state-
action history. Note that according to this definition a policy
is in general randomized. Let Π be the set of all policies,
i.e., including history-dependent, randomized policies. It is
well known that in the standard MDP setting where an
expected cost is minimized there is no loss of optimality



in restricting the optimization over deterministic, stationary
Markovian policies, i.e., policies of the type π : X → U .
However, in the risk-averse setting one needs to consider the
more general class of history-dependent policies [1]. This
is achieved through a state augmentation process described
later.

Following [13], we define the countable space (Ω,B) :=
(K∞,B(K∞)), where K∞ = K × K × K × · · · , is the
sample space and B(K∞) is the Borel field on K∞. Specific
trajectories in the MDP are written as ω ∈ Ω, and we denote
by xt(ω) and ut(ω) the state and actions at time t along
trajectory ω. In general the exact initial state x0 is unknown.
Rather it is described by an initial mass distribution β over
X , i.e., β ∈ P(X). A policy π and initial distribution β
induce a probability distribution over (Ω,B), that we will
indicate as Prπβ .

In this paper we focus on transient total cost MDPs,
defined as follows. Consider a partition of X into sets XT

and M , i.e., X = XT ∪M and XT ∩M = ∅. A transient
MDP is an MDP where each policy π satisfies the following
two properties:
•
∑∞
t=0 Prπβ [xt = x] < ∞ for each x ∈ XT , i.e., the

state will eventually enter set M , and
• P (y|x, u) = 0 for each x ∈ M , y ∈ XT , u ∈ U(x),

i.e., once the state enters M it cannot leave it.
A transient, total cost MDP is a transient MDP where
• c(x, u) = 0 for each x ∈ M , i.e., once the state enters
M no additional cost is incurred,

• the cost associated with each trajectory ω is given by

c(ω) :=

∞∑
t=0

c(xt(ω), ut(ω)).

Note that the cost c(ω) is a random variable depending on
both the policy π and the initial distribution β. The name
total cost stems from the fact that an (undiscounted) cost is
incurred throughout the “lifetime” of the system (i.e., until
the state hits the absorbing set).

Transient, total cost MDPs (closely related to stochastic
shortest path problems, e.g., [20], [21]) represent an al-
ternative to the more commonly used discounted, infinite-
horizon MDPs or finite horizon MDPs. As outlined in the
introduction, for many robotic applications the total cost,
i.e., c(ω), is the most appropriate cost function. We justify
this statement by noting that most robotic tasks have finite
duration but such duration is usually not known in advance.
In these circumstances the finite horizon cost is inappropriate
because one cannot define the length of the finite horizon up
front. Similarly, the discounted infinite horizon cost is also
ill suited because the task does not continue forever and the
cost will not be exponentially discounted over time.

Without loss of generality, we assume that set M consists
of a single absorbing state xM equipped with a single
action uxM

, i.e., M = {xM} and U(xM ) = uxM
with

Pr(xM |xM , uxM
) = 1. In the following, with a slight abuse

of notation, we denote by K the set {(x, u) ∈ XT ×
U | u ∈ U(x)}, i.e., we exclude the absorbing state from the
definition of K. Moreover, we assume that for a transient,
total cost MDP β(xM ) = 0, i.e., the probability of starting
at the absorbing state is zero. In fact, whenever x0 = xM

the resulting state trajectory will deterministically remain in
xM , and the corresponding cost is zero.

IV. PROBLEM FORMULATION

Our problem formulation relies on the following two
technical assumptions necessary to establish an a-priori upper
bound on the total cost incurred by any trajectory obtained
under any policy, and to define an approximate problem that
can be efficiently solved.

The first assumption simply requires that all costs in the
transient states are positive (recall that we excluded xM when
re-defining K.) As it will be shown later, this assumption
ensures a non-zero discretization step when approximating
the cumulative cost accrued by a system throughout the
trajectory ω until it is absorbed in xM .

Assumption 1 (Positivity of costs): All costs in M ex-
cept for state xM are positive and bounded, i.e., K :=
min(x,u)∈K c(x, u) > 0.

When considering cost criteria like finite horizon or dis-
counted infinite horizon with a finite state space, an a-
priori upper bound on the accrued cost can be immediately
established assuming that all costs are finite (a fact crucially
exploited in [13]). However, the situation is more complex
when considering the total cost case, because without in-
troducing further hypotheses on the structure of the MDP
a malicious adversary could establish an history-dependent
policy capable of invalidating any a-priori established bound
on the cost1. The second assumption then adds a “global
reachability structure” to the MDP problem. To this end, in
the following, it will be useful to consider the Markov Chain
generated by the MDP when an input is selected for each
state. For an MDP M, select u1 ∈ U(x1), . . . , un ∈ U(xn).
The selected inputs and the transition probabilities in M
define a finite Markov Chain that we indicate asMCu1,...,un .
The state space of MCu1,...,un is equal to X and for two
states xi, xj ∈ X the transition probability Pri,j is defined as
Pri,j = Pr(xj |xi, ui) where ui ∈ U(xi) is the input selected
in the definition of MCu1,...,un

and Pr is the transition
probability of the associated MDP.

Assumption 2 (Reachability of MDP): Let MCu1,...,un

be the Markov chain induced by the n inputs ui ∈ U(xi).
Then the absorbing state xM , under Markov chain
MCu1,...,un

, is reachable from any state x ∈ XT , for all
u1 ∈ U(x1), . . . , un ∈ U(xn).
We recall that a state j in a Markov chain is said reachable
from another state i if there exists an integer k ≥ 1 such
that the probability that the chain will be in state j after
k transitions is positive [11]. Note that when Assumption
2 holds, under every policy there is a path of non-zero
probability connecting every state to xM . Therefore, it is
impossible to devise a policy that prevents sure absorption
for an arbitrary number of steps. This holds for all policies,
including history dependent policies (see Figure 1).

Building upon the previous material, we can now define
the problem we aim to solve in this paper:

1First note that we are seeking a uniform upper bound for all possible
policies, including history dependent policies. Hence, given a tentative
bound B, in the general case one could devise a history dependent policy
ensuring that every trajectory generated by the policy is not absorbed in
xM in less than B/K steps, thus invalidating the bound.



xM

x1

x2

xi

xj

P (x2|x2, u2)
P (x1|x2, u2)

Fig. 1: Meaning of Assumption 2: after one input has
been chosen for every state, an associated Markov Chain
MCu1,...,un is defined. In this Markov Chain, the absorbing
state xM is reachable from every state, i.e., at every state
there is a path of non-zero probability to xM . The probability
of a path is given by the product of the probabilities of
its edges, i.e., the probability of the path xi → xj → xM
is Pr(xj |xi, ui) Pr(xM |xj , uj). This requirement is imposed
for every possible choice of the inputs and every policy.

Risk-Averse, total cost MDP – Given a transient
total cost MDP satisfying Assumptions 1-2, and
an initial distribution β, determine a policy π that
minimizes AVaRτ (c(ω)), i.e., find

π∗ ∈ arg min
π∈Π

AVaRτ (c(ω)). (2)

Note that, under the assumption of transient total cost
MDP, one can easily verify that E[c(ω)] < ∞. Since,
by equation (1), AVaRτ (c(ω)) ≤ 1/(1 − τ)E[c(ω)], one
obtains AVaRτ (c(ω)) < ∞ for all ω, as well. However, to
derive an optimization algorithm for the computation of π∗
it is necessary to formulate an a-priori upper bound for the
optimal cost in (2). Assumptions 1 and 2 are introduced to
ensure that such bound exists and can be computed.

V. APPROXIMATION STRATEGY

In this section we study an approximation strategy for the
risk averse total cost MDP in equation (2). Similar to the
method presented in [13], we aim at solving the problem
by using the concept of occupation measures. However,
unlike for the cases studied in [13], in total cost MDPs an
explicit upper bound for the accrued cost is not available,
which makes the solution strategy in [13] not applicable. Our
strategy is to find a surrogate to problem (2). By imposing
an effective horizon, we construct a total cost MDP with
time-out and recast this problem into a bilinear programming
problem. Furthermore we characterize the sub-optimality gap
for such surrogate approximation. We start with a technical
result characterizing the convergence rate to the absorbing
state.

A. Convergence rate to the absorbing state
Consider a selection of inputs u1 ∈ U(x1), . . . , un ∈

U(xn) and the corresponding Markov chainMCu1,...,un
. For

each state x ∈ XT , let MinimumPathx→xM
(MCu1,...,un

)
denote the simple (i.e., without cycles) path from x
to xM of lowest, strictly positive probability. Note that
MinimumPathx→xM

(MCu1,...,un
) exists due to Assump-

tion 2. Let Pr(MinimumPathx→xM
(MCu1,...,un

)) be the
probability of the path, i.e., the product of the prob-
abilities of all the transitions along the path. Since
there are n nodes and by definition the path is simple,

MinimumPathx→xM
(MCu1,...,un

) includes at most n − 1
transitions between n nodes. Let

γ := min
uk∈U(xk),
k=1...,n

min
x∈xT

Pr(MinimumPathx→xM
(MCu1,...,un)).

Note that the minimum is achieved as the minimization
is over a finite set, and that γ is strictly positive due to
Assumption 2. The constant γ lower bounds the probability
that, under any policy π ∈ Π, the absorbing state is reached
in no more than n steps, from any state x ∈ XT . We are
now in a position to characterize the convergence rate to the
absorbing state.

Lemma 1 (Number of stages to reach the absorbing set):
For any policy π ∈ Π and initial distribution β,

Prπβ [xkn 6= xM ] ≤ (1− γ)k, ∀k ∈ N.
Proof: The claim is proven by induction on k. Base

case: we prove that

Prπβ [xn 6= xM ] ≤ 1− γ.
Indeed, Prπβ [xn 6= xM ] =

∑
x∈XT

Prπβ [xn 6= xM |x0 =
x] Prπβ [x0 = x]. Because of Assumption 1, for any policy
π, Prπβ [xn = xM ] ≥ γ, and the base case follows.

For the inductive step, assume that Prπβ [xkn 6= xM ] <
(1 − γ)k, for some k > 1. Then, Prπβ [x(k+1)n 6= xM ] =
Prπβ [x(k+1)n 6= xM |xkn 6= xM ] Prπβ [xkn 6= xM ]. By
definition of γ,

Prπβ [x(k+1)n 6= xM |xkn 6= xM ] ≤ (1− γ)k+1,

and the claim follows.

B. Surrogate problem and approximation bounds
Our solution strategy is to solve a surrogate problem,

whereby after a deterministic number d ∈ N of steps, the
state moves to the absorbing state xM surely. In other words,
d acts as a “timeout” for the MDP problem. The surrogate
problem is simpler to solve, and we will show in the
following that its solution can approximate the solution of the
original problem with arbitrary precision2. Denote by c[d](ω)
the total cost for such surrogate problem. Additionally, for
the original problem, let t∗(ω) denote the absorbing time,
i.e., the time at which the state reaches xM . If t∗(ω) ≤ d,
then the two processes coincide and then c[d](ω) = c(ω).
Otherwise, for each trajectory ω such that t∗(ω) > d, the
random process is stopped after d steps, and the state goes,
deterministically, to xM at stage d + 1. In such a case one
has c[d](ω) ≤ c(ω).

We want to characterize the relation between
AVaRτ (c[d](ω)) (i.e., the risk for the surrogate problem) and
AVaRτ (c(ω)) (i.e., the risk for the original problem). To
this end, let cd(ω) be the total cost for the original problem
up to time d, i.e.,

cd(ω) :=

d∑
t=0

c(xt(ω), ut(ω)).

2An alternative strategy would be to investigate reductions of problem (2)
to an equivalent risk-averse, discounted, infinite-horizon problem by using,
e.g., the results recently presented in [22], and then apply the approach in
[13] to the reformulated problem. This is an interesting direction left for
future research.



The following lemma shows the equivalence between c[d](ω)
and cd(ω).

Lemma 2 (Correspondence of costs): For any policy π ∈
Π and any trajectory ω, c[d](ω) = cd(ω).

Proof: Given a policy π, for any trajectory ω, the cost
cumulated up to time d is the same for both the original and
the surrogate problem. After time d, both cd(ω) and c[d](ω)
do not cumulate any additional cost, then the claim follows.

The following theorem represents the main result of this
section

Theorem 3 (Suboptimality bound): The surrogate prob-
lem approximates the original problem according to

min
π

AVaRτ (c[d](ω)) ≤ min
π

AVaRτ (c(ω))

≤ min
π

AVaRτ (c[d](ω)) +
nK

1− τ
(1− γ)b(d+1)/nc

γ
.

Proof: The left inequality is proven by notic-
ing that minπ AVaRτ (c(ω)) ≥ minπ AVaRτ (cd(ω)) =
minπ AVaRτ (c[d](ω)), where the equality follows from
Lemma 2.

We now prove the right inequality. For any s ∈ R and
policy π, one has

E[(c(ω)− s)+] = E[(c(ω)− s)+ | t∗(ω) ≤ d]P(t∗(ω) ≤ d)

+ E[(c(ω)− s)+ | t∗(ω) > d]P(t∗(ω) > d). (3)

Let cl(ω) :=
∑∞
t=d+1 c(xt(ω), ut(ω)) be the tail cumu-

lated cost, and, as before, cd(ω) :=
∑d
t=0 c(xt(ω), ut(ω)).

Since the function x→ x+ is sub-additive, i.e., (x+ y)+ ≤
x++y+ and the expectation operator preserves monotonicity,
one obtains the inequality

E[(c(ω)− s)+ | t∗(ω) > d]

= E[(cd(ω) + cl(ω)− s)+ | t∗(ω) > d]

≤ E[(cd(ω)− s)+ | t∗(ω) > d] + E[cl(ω) | t∗(ω) > d].

Furthermore, for each trajectory in the event set {ω : t∗(ω) ≤
d}, one has

E[(c(ω)−s)+ | t∗(ω) ≤ d] = E
[
(cd(ω)− s)+ | t∗(ω) ≤ d

]
.

Collecting the results so far, one has the following inequal-
ities:

E[(c(ω)− s)+]

≤ E[(cd(ω)− s)+ | t∗(ω) ≤ d]P(t∗(ω) ≤ d)

+ E[(cd(ω)− s)+ | t∗(ω) > d]P(t∗(ω) > d)+

+ E [cl(ω) | t∗(ω) > d]P(t∗(ω) > d)

= E[(cd(ω)− s)+] + E [cl(ω) | t∗(ω) > d]P(t∗(ω) > d)

≤ E[(cd(ω)− s)+] + E [cl(ω)] .
(4)

Equation (4) implies

min
π

AVaRτ (c(ω))

= min
π

min
s∈R

{
s+

1

1− τ E[(c(ω)− s)+]

}
≤ min

π
min
s∈R

{
s+

1

1− τ
(
E[(cd(ω)− s)+] + E [cl(ω)]

)}
≤ min

π
min
s∈R

{
s+

1

1− τ
(
E[(cd(ω)− s)+]

)}
+ max

π

1

1− τ E [cl(ω)]

= min
π

min
s∈R

{
s+

1

1− τ
(
E[(c[d](ω)− s)+]

)}
+ max

π

1

1− τ E [cl(ω)]

= min
π

AVaRτ (c[d](ω)) + max
π

1

1− τ E [cl(ω)] ,

where the second to last equality follows from Lemma 2. We
are left with the task of upper bounding E [cl(ω)]. To this
purpose, one can write

E [cl(ω)] ≤ K
∞∑

t=d+1

Prπβ(xt 6= xM ).

Note that the result in Lemma 1 implies

∞∑
t=d+1

Prπβ [xt 6= xM ] ≤
∞∑

k=b(d+1)/nc

(k+1)n−1∑
t=kn

Prπβ [xt 6= xM ]

≤
∞∑

k=b(d+1)/nc

n(1− γ)k = n
(1− γ)b(d+1)/nc

γ
.

The claim then follows immediately, as the above upper
bound is policy-independent.

Note that according to Theorem 3, as d→∞, the optimal
cost of the surrogate problem recovers the optimal cost of
the original problem, i.e., the surrogate problem provides a
consistent approximation to the original problem, with a sub
optimality factor that is computable from problem data.

Lemma 2 and Theorem 3 ensure that c[d](ω) can approx-
imate c(ω) with arbitrary precision for a sufficiently large
value of d. In the next section we then show how to solve
the minimization problem:

min
π

AVaRτ (c[d](ω)). (5)

VI. SOLUTION ALGORITHM

Leveraging the surrogate problem from the previous sec-
tion, we can now adapt the results proposed in [13] to solve
problem (2). An essential step to solve this optimization
problem is to compute E[(c[d](ω) − s)+], which entails
deriving the probability distribution for the possible costs
generated by the random variable c[d](ω). This problem can
be solved by suitably augmenting the state space as described
in the following, and then using occupancy measures. In
the space of occupancy measures, an optimal policy is
determined through the solution of a bilinear program, as



explained below. For a given policy π and initial distribution
β, we define the occupancy measure for (x, u) ∈ K as

ρ(x, u) =

∞∑
t=0

Pr πβ [xt(ω) = x, ut(ω) = u)].

Note that ρ(x, u) is non negative but is in general not a
probability itself. In the following we will use occupancy
measures to determine the probability distribution of the total
costs c[d](ω) and then to compute the needed expectation.
According to the definition, occupancy measures depend on
the policy π and the initial distribution β. Given an absorbing
MDP M = (X,U,Pr, c), we define a new state-augmented
absorbing MDP with additional state components that track
the cumulated total cost and current stage. Although the
original MDP M is finite and absorbing, the set of costs
c[d](ω) generated by all possible policies can be very large,
and this can subsequently lead to a linear program with
an unmanageable number of decision variables. To counter
this problem, we introduce a discretized approximation for
c[d](π, β) whose error can be arbitrarily bounded. To this
end, we set ζ = min

{
K, dK̄N ′

}
, where N ′ ∈ N is a parameter

describing the desired number of discretized values for the
cumulated cost. Due to Assumption 1, ζ is strictly positive.
The effective number of different values is N =

⌈
dK̄
ζ

⌉
.

This value may be higher than N ′ due to our definition
of ζ. We then define a new MDP M′N = (X ′, U ′,Pr′, c′)
as follows. Its state space is X ′ = X × NN × Nd, where
NN = {0, 1, . . . , N} and Nd = {0, 1, . . . , d}. Elements
in the augmented states will be indicated as (x, y, z). As
clarified in the following, the two additional components
store the cumulated running cost (y) and current stage (z).
Recall that in the surrogate problem, after d steps, the state
is guaranteed to have entered the absorbing set, i.e., it is
guaranteed that xd(ω) = xM . Thus the value of the z
component is in Nd = {0, 1, . . . , d}. On the other hand the
input sets are defined as U ′(x, y, z) = U(x). X ′ and U ′

induce a new set K′ = {(x, y, z, u) | (x, u) ∈ K ∧ y ∈
NN ∧ z ∈ Nd}. The new cost function c′ : K′ → R≥0 is
c′(x, y, z, u) = c(x, u). The transition probability function is
modified as follows:

Pr′((x′, y′, z′)|(x, y, z), u) =
Pr(x′|x, u) if y′ = y +

⌊
c(x,u)
ζ

⌋
∧ z′ = z + 1 ∧ z′ < d

1 if (x′, y′, z′) = (xM , y, d) ∧ z = d

0 otherwise

As evident from the definition of the new transition function,
the new variables included in the state stores the discretized3

running cost and the stage. Consistently with our definition
of the surrogate problem, the revised transition function
includes a timeout that imposes a transition to the absorbing
state xM after d steps, and from that point onwards the
accrued cost does not change. Note also that the additional
state components y and z are deterministic functions of the
previous state and control input u. Extending the formerly
introduced notation, for a given trajectory ω of M′N , we
write yt(ω) for the second component of the state at time

3To be precise, the discretized running cost is scaled by ζ.

t and zt(ω) for the third component. Finally, for a given
initial distribution β on X , we define the following new
initial distribution β′ on X ′,

β′(x, y, z) =

{
β(x) if y = 0 ∧ z = 0

0 otherwise
.

Note that the properties of M carry over to M′N . In
particular, if Assumptions 1-2 hold forM then they hold for
M′N too, and, ifM is absorbing, thenM′N is also absorbing.
Thus we indicate with X ′T its transient set of states. For a
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given realization ω, consider now c
[d]
t (ω) =

∑t
i=0 c(xi, ui),

i.e., the true cumulative cost of the surrogate MDP problem
without discretization. The following theorem establishes
that even though the approximation error introduced by
discretizing the running cost grows linearly with t, it is
possible to bound it with arbitrary precision.

Theorem 4: For each ε > 0 and each t ∈ {0, . . . , d}, there
exists a discretization step ζ such that |ζyt(ω)−c[d]

t (ω)| < ε.
Proof. Pick ζ = ε/d. Let e(t) = c

[d]
t (ω) − ζyt(ω) be

the approximation error at time t. Note that by definition
e(t) ≥ 0 and e(0) = c

[d]
0 (ω) − ζy0(ω) = 0. From

the definition of the transition probability function, P ′,
it follows that e(t + 1) ≤ e(t) + ζ, which implies
e(d) ≤ dζ = ε. Since for t > d we have e(t) = e(d), the
claim follows. �

A key step towards the solution of problem in (5) is there-
fore to derive the statistical description of the discretized total
cost yd(ω) that is used to approximate c[d](ω). This objective
can be achieved by exploiting the occupancy measures for
the state-augmented MDP M′. For (x, y, z, u) ∈ K′, the
occupancy measure on M′ induced by a policy π and an
initial distribution β is given as:

ρ(x, y, z, u) = (6)
∞∑
t=0

Pr πβ [xt(ω) = x, yt(ω) = y, zt(ω) = z, ut(ω) = u].

The occupancy measure, ρ, is a vector in R|K
′|

≥0 , i.e., it is
a vector with |K ′| non negative components. The set of
legitimate occupancy vectors is constrained by the initial
distribution β and defined by the policy π. It is well known
[1] that these constraints can be expressed as follows:

∑
(x′,y′,z′)∈X′T

∑
u∈A(x′,y′,z′)

ρ(x′, y′, z′, u)[δ(x,y,z)(x
′, y′, z′)−

P ′((x′, y′, z′)|(x, y, z), u)] = β(x, y, z) ∀(x, y, z) ∈ X ′T

where δx(y) = 1 if and only if y = x. For 0 ≤ k ≤ N
we introduce random variables θ(k) with the property that
θ(k) = Pr[yd(ω) = k]. This is easily achieved using
occupancy measures, i.e., θ(k) =

∑
(x,y,z,u)∈K′ I(y = k ∧

z = d)ρ(x, y, z, u), where I(·) is the indicator function
equal to 1 when its argument is true, and 0 otherwise. Note
that by definition θ(k) is equal to Pr[yd(ω) = k], and
by Theorem 4 yd(ω) approximates c[d](ω) with arbitrary
precision. Combining the above definitions we then get to the



following problem whose solution approximates the solution
to (5):

min
ρ,θ

min
s∈[0,K̄d]

s+
1

1− τ
∑
y∈NN

(y − s)+θ(y) (7)

s.t. ∑
(x′,y′,z′)∈X′T

∑
u∈A(x′,y′,z′)

ρ(x′, y′, z′, u)[δ(x,y,z)(x
′, y′, z′)−

P ′((x′, y′, z′)|(x, y, z), u)] = β(x, y, z) ∀(x, y, z) ∈ X ′T

θ(k) =
∑

(x,y,z,u)∈K′

I(y = k ∧ z = d)ρ(x, y, z, u), 0 ≤ k ≤ N.

When comparing this last optimization problem with (5),
the reader will note that the variable s is constrained in the
interval [0, K̄d]. Indeed, the objective function is continuous
with respect to s, and it is straightforward to verify that
the partial derivative of the objective function with respect
to s is negative for s < 0 and positive for s > K̄d. The
objective function given in Eq. (7) is concave with respect
to θ(y) and is defined over a convex feasibility set [13]. To
the best of our knowledge, there exist no efficient methods
to determine the global minimum for this class of problems.
Hence, the problem is approximately solved fixing different
values of s within the range [0, K̄d], and then solving the
corresponding linear problem over the optimization variables
ρ and θ. Comparing the problem in Eq. (7) with the one in
Eq. (2) one might initially think that the objective function
in Eq. (2) does not depend on the policy π. However, the
dependency on π is carried over by the occupancy measure ρ,
as evident from Eq. (6). Moreover, it is well known from the
theory of constrained MDPs [1] that there is a one to one
correspondence between policies and occupancy measures,
i.e., every policy defines a unique occupancy measure and
every occupancy measure induces a policy.

VII. NUMERICAL EXPERIMENTS

To illustrate the performance of the proposed algorithm,
we adopt the rapid deployment scenario considered in [6],
[8]. A graph is used to abstract and model the connectivity
of a given map of an environment (see, e.g., [14]). One
robot is positioned at a start vertex and is tasked to reach
the goal vertex within a given temporal deadline while pro-
viding some guarantee about its probability of successfully
completing the task. When moving from vertex to vertex, the
robot can choose from a set of actions, each trading off speed
with probability of success. In particular, actions with rapid
transitions between two vertices have higher probability of
failure; and conversely when the robot moves slowly between
two vertices it has a higher probability of success. In this
scenario, failure means that the robot does not move (e.g.,
fails to pass through an opening), so elapsed time increases
without making progress towards the goal. With a given
temporal deadline T and success probability P , the robot is
tasked to reach the target vertex “safely” (such that the true
mission success probability is at least P ), while satisfying
the temporal constraint. From a design perspective it is of
interest to know if there exists a policy π achieving this
objective, and to compute it. If the policy does not exist, it
is of interest to know how to modify the parameters in order
to make the task feasible.

In our previous work we solved this problem by modeling
it using Constrained Markov Decision Processes (CMDP).
In the CMDP approach, one maximizes the probability
of success while imposing a constraint on the temporal
deadline. However, this method only returns risk-neutral
policies, i.e., the resultant policies only guarantee that the
temporal deadline is met in expectation, and there is no
explicit control on the tail probability of the constraint. As
a radical departure from the original problem formulation,
the AVaR minimization method proposed in Eq. (2) searches
for a policy that is feasible with respect to the temporal
deadline constraint4 and systematically controls the worst-
case variability of total travel time. Note that a policy with
low success probability will have large tail probability in total
travel time even if the expected temporal deadline is met.
Therefore the optimal policies from AVaR minimization will
have high success probability. This motivates the application
of AVaR minimization to rapid robotic deployment. First,
note that, in the devised setting, the robot will eventually
reach the final goal with positive probability. However, due
to possible failures one cannot put an a-priori bound on the
random total travel time. Therefore, the total cost criterion is
indeed a natural choice for this task. Moreover, Assumptions
1 and 2 are easily justified because the immediate cost
function (i.e., time to move) is always positive and the global
reachability property follows from the graph structure.

To illustrate the performance of risk-averse deployment,
two different policies are compared. Here both policies are
computed using unconstrained stochastic control methodolo-
gies for which the immediate cost is the travel time between
two vertices, and the actions correspond to all possible node
transitions on the graph. The first is the classic risk-neutral
policy obtained with value iteration. The second is a risk
averse policy obtained with the algorithm presented in this
paper using τ = 0.95. For each policy, 1000 executions
are run, and the distribution of total travel time is reported.
Figures 2 and 3 show the distributions for the two cases.
The risk-neutral policy obtains a lower expected cost, but
has a longer tail, as evidenced by the 61 instances with a
cost larger than or equal to 15 (notice that T = 15 is the
desired time of completion in this example). Moreover, as
evidenced by the shape of the histogram, costs are more
spread out. The risk averse policy, on the other hand, results
in less variability as desired. Less than 30 instances have a
cost larger or equal than 15, a reduction of the weight of the
tail by more than one half. Importantly, when computing a
risk-neutral policy using classic methods like policy iteration
or value iteration, one is merely provided with a policy that
minimizes the expected cost (in our case time to completion),
and no additional information is readily available. With our
approach instead, one not only obtains a policy minimizing
the AVaR criterion, but a statistical description of the costs
is also obtained as a byproduct. That is to say, for each
discretized completion time k, the probability Pr[c[d] = k]
is computed as well, thus unveiling the relationship between
the time to complete the deployment task and its probability.
This is shown in Figure 4 for different values of τ . Hence, if

4For any random variable Z with finite expectation, AVaRτ (Z) ≥ E[Z]
for τ ∈ [0, 1]. Therefore, if the solution to the AVaR minimization
problem is bounded above by the temporal deadline, then the corresponding
minimizer is also a feasible policy to the original problem.
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Fig. 2: Cost distribution for a risk-neutral policy
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Fig. 3: Cost distribution for a risk averse policy with τ =
0.95.

the computed policy does not meet the desired performance,
the designer has information on how to tune T and P .

VIII. CONCLUSIONS

In this paper we have considered how risk aversion in
MDPs can be introduced jointly with the AVaR risk metric
under the total cost criterion. Our results advance the state
of the art because AVaR has only been previously considered
in MDPs with finite horizon or discounted infinite horizon
cost criteria. Such extension is important as the total cost
criterion appears as a natural model for robotic applications,
and is non-straightforward as current algorithms, e.g., from
[13] and [3], only work with bounded cumulated costs
(which is not the case for total cost formulations). Under
two mild assumptions, an approximation algorithm with
provable sub-optimality gap was provided. Furthermore, a
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rapid deployment scenario was used to demonstrate that risk-
aversion gives more informative policies when compared
to traditional risk-neutral formulations. While our findings
focus on risk averse MDPs with an AVaR risk metric, our
approach can be easily extended along multiple dimensions.
In particular, by exploiting the results presented in [13], it
is possible to use our approximation for a broader range of
risk metrics, i.e., metrics that are uniformly continuous and
law invariant. Moreover, since the algorithm we considered
is based on occupancy measures, it can be easily extended
to the CMDP case. This will be the focus of future work.

REFERENCES

[1] E. Altman. Constrained Markov Decision Processes. Stochastic
modeling. Chapman & Hall/CRC, 1999.

[2] P. Artzner, F. Delbaen, J. Eber, and D. Heath. Coherent Measures of
Risk. Mathematical Finance, 9(3):203–228, 1999.
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