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Abstract— Online detection of anomalous execution can be
valuable for robot manipulation, enabling robots to operate
more safely, determine when a behavior is inappropriate,
and otherwise exhibit more common sense. By using multiple
complementary sensory modalities, robots could potentially
detect a wider variety of anomalies, such as anomalous contact
or a loud utterance by a human. However, task variability
and the potential for false positives make online anomaly
detection challenging, especially for long-duration manipulation
behaviors. In this paper, we provide evidence for the value of
multimodal execution monitoring and the use of a detection
threshold that varies based on the progress of execution. Using
a data-driven approach, we train an execution monitor that
runs in parallel to a manipulation behavior. Like previous
methods for anomaly detection, our method trains a hidden
Markov model (HMM) using multimodal observations from
non-anomalous executions. In contrast to prior work, our
system also uses a detection threshold that changes based on
the execution progress. We evaluated our approach with haptic,
visual, auditory, and kinematic sensing during a variety of ma-
nipulation tasks performed by a PR2 robot. The tasks included
pushing doors closed, operating switches, and assisting able-
bodied participants with eating yogurt. In our evaluations, our
anomaly detection method performed substantially better with
multimodal monitoring than single modality monitoring. It also
resulted in more desirable ROC curves when compared with
other detection threshold methods from the literature, obtaining
higher true positive rates for comparable false positive rates.

I. INTRODUCTION

A common approach to robot manipulation is for the robot

to execute sequences of stereotyped task-specific robot be-

haviors (see Fig. 1) [1], [2]. A robot can monitor this process

using a separate system that runs in parallel, which is a

form of execution monitoring system (an execution monitor)

[3]. By monitoring multimodal sensory signals relevant to

manipulation, an execution monitor could perform a variety

of roles, including detecting success or deciding to switch

behaviors. In this paper, we focus on the problem of using

an execution monitor to detect when the sensory signals

associated with the execution of a manipulation behavior are

anomalous. More specifically, the execution monitor should

detect when the current sensory signals differ significantly

from past sensory signals associated with task success. This

is analogous to the conventional problem of finding unex-

pected patterns in data, called anomaly detection. Anomaly

detection has been successfully applied to a variety of real-

world problems, including credit-card fraud detection, cyber-

intrusion detection, and error detection [4].
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Fig. 1: Our system enables a PR2 to detect anomalies based

on multimodal sensing while performing these and other

tasks. Left: Pushing a cabinet door closed. Right: Assistive

yogurt feeding with an able-bodied participant.

While suitable for a narrower set of situations, stereotyped

task-specific behaviors tend to have lower variability in

their operation than more general methods. This can reduce

the variation in the associated multimodal signals, thereby

lowering data requirements for data-driven methods and

simplifying anomaly detection [1], [5]. However, due to

competing performance criteria and the complexities of real-

world manipulation, anomaly detection remains challenging.

Ideally, an execution monitor would detect anomalies online,

alert the robot shortly after the onset of an anomaly, work

for long-duration behaviors, detect subtle anomalies, ignore

irrelevant task variation, handle multimodal sensory signals,

and detect crossmodal anomalies that would not be evident

when monitoring modalities independently. In this paper, we

present our method for anomaly detection in an effort to

address these considerations.
Our method consists of training hidden Markov models

(HMMs) using multimodal sensory signals recorded during

non-anomalous executions [6], [7]. For a particular HMM,

all signals come from executions of a specific robot behavior

(e.g., pushing or feeding) applied to a specific task (e.g., clos-

ing a door or feeding yogurt) performed with specific objects

(e.g., a particular microwave oven or a particular person).1

At run time, an HMM provides likelihood estimates, which

our system compares to a detection threshold that is based

on a probabilistic representation of execution progress. If at

any time the log-likelihood is below the current detection

threshold, our system detects an anomaly.
We evaluated our method’s ability to detect real anomalies

1Our approach could potentially generalize to categories of objects, but
for this paper we only consider specific objects with which the robot has
already had experience.



using haptic and auditory signals while a PR2 robot per-

formed pushing tasks, such as closing a microwave oven,

operating a light switch, and depressing a toaster handle. We

also evaluated our method with a PR2 robot that assisted

able-bodied participants with eating yogurt. While provid-

ing assistance, the robot recorded haptic signals, auditory

signals, and visually-obtained kinematic estimates. Robotic

assistance for people with disabilities during tasks such as

feeding and other activities of daily living (ADLs) serves

as a motivation for our work [8]. Multimodal anomaly

detection could potentially enable an assistive robot to detect

a variety of issues, such as undesirable collisions, hardware

failures, and emphatic utterances by the user. More generally,

anomaly detection might enable assistive robots to operate

more conservatively when in close proximity to a person

with impairments. In our evaluations, our anomaly detec-

tion method performed substantially better with multimodal

monitoring than with single modality (unimodal) monitoring.

It also resulted in more desirable receiver operating charac-

teristic (ROC) curves when compared with other detection

threshold methods from the literature.

II. RELATED WORK

Researchers have found that distinct human sensory

modalities can be closely coupled [9]. Inspired by this

research, Fitzpatrick et al. introduced a crossmodal method

that enabled a robot to learn relationships between visual and

auditory signals while manipulating objects [10]. Wu and

Siegel investigated the use of combining acceleration and

sound measurements to detect structural defects in airplane

components [11].
A number of researchers have used unimodal sensing

to detect anomalies, including [12], [13], [14], and [15].

Researchers have also investigated multimodal anomaly de-

tection during robotic manipulation by directly representing

sensor signals with respect to time without modeling state-

based dynamics [16]. For example, Pastor et al. used multi-

modal sensing to predict failure while a robot attempted to

flip a box using chopsticks. Their method predicted a failure

when for 3 consecutive time steps, 5 or more signals failed

independent z-tests with respect to signal recordings from

successful trials indexed by time [17].
Jain and Kemp used object-centric task-specific state-

based representations of applied forces during manipulation

for anomaly detection. They investigated a task for which

a quasistatic model was appropriate and did not consider

signals beyond forces and kinematics [5]. To represent more

complex dynamics, our method uses a multivariate HMM.

HMMs have been used in a variety of approaches for novelty

detection and anomaly detection [18], [4]. Most researchers

have used the likelihood of current observations for detection,

often with respect to a fixed threshold [19], [20], [21], [22].
Outside of robotics, researchers have used alternative

thresholds on likelihood estimates from HMMs for anomaly

detection. Ocak et al.’s system reported anomalies when

either the likelihood exceeded a fixed threshold or the change

in the likelihood between time steps exceeded another fixed
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(a) Force and sound sequences (b) Locking mechanism

Fig. 2: (a) The graphs show the force magnitude and sound

energy while pushing a microwave door closed. (b) The

microwave’s latch mechanism results in related forces and

sounds.

threshold [23]. Yeung and Ding used a likelihood threshold

that varied based on the current observations [24]. Outside of

robotics, researchers have also used the discrete probability

distribution over hidden states, which we use to represent

execution progress [25], [26].
Kappler et al.’s recently published method uses multimodal

sensing, including sensed forces, audio, and kinematics, to

detect failures during robot manipulation [2]. Unlike an

HMM, which models state transitions probabilistically, their

method assumes that the current state of execution can be

determined based on the current multimodal sensor readings

alone. Each state then classifies failures based on supervised

discriminative learning from positive and negative examples.

They did not provide an evaluation of their method with

respect to true positive and false positive rates.

III. HMM FOR MULTIMODAL EXECUTION MONITORING

In this paper, we consider haptic, auditory, visual, and

kinematic sensory signals for execution monitoring. Fig. 2

illustrates how force and sound can be closely related signals

during common manipulation tasks. When the PR2 robot

pushes the microwave door closed, the door’s latch goes

through various states with associated forces and sounds.

After the latch makes contact, the magnitude of the force

begins to go up. When the latch moves far enough, it springs

down resulting in a loud sound, reduced force, and the

door being secured. For a fixed duration of time, the robot

continues to push and then pulls back, resulting in increasing

then decreasing force, but no loud sounds. At any point in

this process, an anomaly can result in detectable changes in

the force, the sound, or both.
To model sensory signals such as this, we use a multi-

variate left-to-right HMM. Let a random variable xi be a

four-dimensional observation vector at time step i. A random

variable z
j
i is the jth hidden state out of n different hidden

states at time step i. Fig. 3 depicts the architecture of the left-

to-right HMM, which requires that the state index for any

path remain constant or increase over time. The figure also

shows two possible hidden state paths (blue and red) asso-

ciated with a time series of multidimensional observations.

The transition probability P (zi+1|zi) is the probability of
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Fig. 3: Architecture of a left-to-right hidden Markov model

with multivariate Gaussian emissions.

transitioning from one hidden state zi to another zi+1. The

emission probability P (xi|zi) is the probability of output

xi given a hidden state zi. To represent correlations among

modalities, we use a multivariate Gaussian distribution with

a full covariance matrix for the emission probability.

For each behavior, we used the left-to-right HMM ar-

chitecture with a single Gaussian distribution model im-

plemented in the General Hidden Markov Model library

(GHMM) (http://www.ghmm.org/). To train the model using

the Baum-Welch algorithm, we initialized the initial state

distribution, π; the transition probability matrix, A; the

emission matrix, B; and the number of hidden states, n.

We set A to be an upper triangular matrix with linearly

decreasing transition probabilities from 0.4 to 0.0. We set

the first element of the n-dimensional vector π to 1.0 and

all other elements to zero in order to start the HMM in a

particular state.

IV. ANOMALY DETECTION

Our execution monitoring system uses an HMM to model

non-anomalous execution of a manipulation behavior per-

forming a task with particular objects. We use λ to represent

the parameters of the trained HMM. Our execution monitor

performs anomaly detection by comparing the log-likelihood,

logP (X|λ), of the observations, X , with a threshold, τ(γ),
that depends on the estimated execution progress, γ. At any

time during the execution, if logP (X|λ) < τ(γ), then the

execution monitor detects an anomaly, otherwise it considers

the execution to be non-anomalous. Our system represents

execution progress, γ, using the probability mass function

over hidden states given the current observations, γ =
P (zt|X,λ). Our system trains a mapping from the execution

progress, γ, to the threshold, τ(γ). For our implementation,

τ(γ) = µ− cσ, where µ and σ are the estimated mean and

standard deviation of the log-likelihood given non-anomalous

execution with progress γ. c is a constant used to adjust the

sensitivity of the detector. Increasing c will tend to result in

a lower false-positive rate and a lower true-positive rate.

A. Representing Execution Progress, γ

Even during non-anomalous executions, likelihood tends

to vary significantly with the number of observations, which

reduces the effectiveness of a constant detection threshold.

In practice, during non-anomalous executions, the likelihood

tends to vary in consistent ways. In order to model this vari-

ation in the likelihood, we use a representation of execution

progress, γ. As addressed in the literature, the likelihood for

an HMM can be expressed as a sum of joint distributions

[27],

P (X|λ) =
∑

Z

P (X,Z|λ), (1)

where λ represents the parameters for the trained model and

Z is a state path over hidden state space, Z = {z1, ..., zt}.

Our system uses a left-to-right model with time-series data,

so the hidden states must be in non-decreasing order, such

as Z = {z11, z
1
2, z

2
3, z

3
4, z

4
5, ..., z

n
t }. Also, the HMM always

starts in the first hidden state, z1. As such, if the true states

were known, their indices could represent the progress of

the behavior. Compared to directly using time, this would

have the advantage of handling variability in the timing of a

behavior’s execution.
However, since the true state path is hidden from the

observer, our method uses a probabilistic representation.

One approach would be to use the maximum likelihood

state at any given moment, but this would neglect uncer-

tainty. Instead, we represent execution progress using the

probability distribution over hidden states (the hidden-state

distribution) at time t, γ(t) = P (zt|X, λ). We compute the

n -dimensional vector γ(t) with the forward and backward

procedures of the EM algorithm [6],

γ(t) =
α(t) · β(t)

P (X|λ)
, (2)

where α(t) = P (X(1 : t), zt|λ), β(t) = P (X(t + 1 :
T )|zt, λ), and T is the last time sample of X.

B. Mapping Execution Progress, γ, to Log-Likelihood Pre-

dictions, µ̂ and σ̂

Our system maps execution progress, γ, to a prediction of

the log-likelihood, L, associated with successful execution.

To create this mapping, we first generate data consisting of

pairs of γ and L by applying the trained HMM to sensor

signals from successful executions. Given this data, a number

of algorithms could potentially provide useful mappings. In

this paper, we use K clusters of execution progress vectors.

Each cluster is a time-based soft cluster that represents

execution progress vectors that occurred at similar times

during execution (see Fig. 4). When monitoring execution,

the system finds the cluster that best matches the current

execution progress vector, γ(t). It then uses that cluster’s

associated log-likelihood model to decide if the current log-

likelihood, L(t) = logP (x1, ...,xt|λ) = logP (Xt|λ), is

anomalous. Each cluster’s log-likelihood model consists of

an estimated mean and standard deviation, µ̂ and σ̂.



Fig. 4: Illustration of the K clusters of execution progress

vectors (i.e., hidden-state distributions). Each cluster, k, has

an associated RBF used to weight execution progress vectors,

γ(t), and their associated log-likelihoods, L(t), based on

when they occurred in time. These weights are used to

compute γ̂k, µ̂(Lk), and σ̂(Lk) for cluster k.

Each cluster has an associated Gaussian radial basis func-

tion (RBF) in time that weights the membership of execution

progress vectors (see Fig. 4). The number of non-anomalous

time series and the length of each time series in Xtrain are

N and M , respectively. We use k ∈ {1, ...,K} to denote the

kth cluster and its associated RBF. The kth RBF is defined

by the following function over time:

φ(t, wk) = e−ǫ(t−wk)
2

,

where wk is the center of the kth RBF and ǫ is a con-

stant. Similar to receptive fields, φ(t, wk) describes a weight

where the kth RBF is active. In this work, we omit its

normalization denominator since we use φ() as a weighting

function. We also use evenly distributed RBFs such that

wk = (M/K) · (k − 1) assuming stereotyped manipulation

behaviors progress consistently. For each cluster, we compute

a weighted average of execution progress vectors, γ̂k, using

the following equation:

γ̂k =
1

N

N
∑

i=1

[ 1

ηk

M
∑

t=1

γ(i)(t)φ(t, wk)
]

, (3)

where ηk is a normalization factor, ηk =
∑M

t=1 φ(t, wk),
and γ(i)(t) denotes the execution progress vector at time t
for time series i.

For each cluster, we then compute the weighted mean and

variance of the associated log-likelihood using the following

equations:

µ̂(Lk) =
1

N

N
∑

i=1

[ 1

ηk

M
∑

t=1

L(i)(t)φ(t, wk)
]

,

µ̂(L2
k) =

1

N

N
∑

i=1

[ 1

ηk

M
∑

t=1

L(i)(t)2φ(t, wk)
]

,

σ̂(Lk) =
√

µ̂(L2
k)− (µ̂(Lk))2. (4)

Using Equation (4) and (3), we can then represent the K
clusters and their associated log-likelihood models as

{(γ̂1, µ̂(L1), σ̂(L1)), ..., (γ̂K , µ̂(LK), σ̂(LK))}. (5)

C. Mapping Execution Progress, γ, to a Threshold, τ

Our method preprocesses the incoming data in the

same manner as the training process and then computes

both γ(t) and the corresponding log-likelihood, L(t) =
logP (Xtest|λ), using Equation (2) and (1) respectively. The

system detects an anomaly when the log-likelihood is lower

than the execution progress dependent threshold, τ(γ(t)) =
µ̂(Lk∗)−cσ̂(Lk∗), where c is a real-valued gain and k∗ is the

index of the best matching RBF. To find the best matching

RBF, our system compares the cross-entropy between γ and

each of the K RBFs using Kullback-Leibler divergence,

k∗ = arg min
1,...,K

DKL(γ(t)||γk), (6)

where DKL(P ||Q) is a measure of the information lost when

Q is used to approximate P . This approach also extends to

online detection. Given an HMM and sensory signals, the

detector can recursively compute γ(t) and logP (Xt|λ) at

each time step t, and then perform the following comparison:

IF logP (Xt|λ) < µ̂(Lk∗)− cσ̂(Lk∗), then anomaly

else no anomaly. (7)

V. EVALUATION WITH TWO MANIPULATION BEHAVIORS

We evaluated our approach with a pushing behavior and an

assistive feeding behavior. The pushing behavior performed

tasks such as closing doors and flipping light switches. The

assistive feeding behavior brought spoonfuls of yogurt to

the mouths of able-bodied participants (see Fig. 5). Prior to

recruiting participants for our feeding behavior evaluation,

we obtained approval for our study from the Georgia Tech

Institutional Review Board (IRB).
We performed multiple cross-validation steps that divided

all data into training and testing data sets. Training consisted

of first fitting an HMM to the specific behavior and the

particular object or human user. Using this HMM and non-

anomalous training data, we then computed a mapping from

execution progress to estimates for the mean and standard

deviation of the log-likelihood.
We compared the performance of our system when using

all available modalities versus using only a single modality.

We also compared the performance of our time-varying like-

lihood threshold to two baseline methods from the literature:

likelihood change detection [23] and fixed-threshold likeli-

hood detection [19]. We report all of our results as receiver

operating characteristic (ROC) curves in order to assess the

tradeoff between false positive and true positive rates. To

produce each ROC curve we varied a single parameter, the

constant c, from our threshold function τ(γ).

A. Instrumentation for Multimodal Sensing

For all experiments, we used a PR2 robot from Willow

Garage (see Fig. 1) which moved only a single arm during

each trial. The PR2 is a 32-DOF mobile manipulator with



Fig. 5: Yogurt scooping followed by assistive feeding with an able-bodied participant. The PR2 uses an instrumented tool

with a force-torque sensor and microphone. It estimates the pose of the bowl and the person’s head using ARTags and a

Microsoft Kinect v2.

Silicone Spoon

Force/Torque 
Sensor

Handle

Fig. 6: Each instrumented tool has a force-torque sensor and

microphone mounted on a 3D-printed handle. The handle is

designed to be held by the PR2 gripper. Left: A tool for

pushing that has a rubber-padded plastic circle. Right: A

tool for feeding that has a flexible silicone spoon.

two 7-DOF back-drivable arms and powered grippers that

are controlled by a 1 kHz low-level PID controller. Its

maximum payload and grip force are listed as 1.8kg and

80N , respectively.
For each behavior, the robot held a specialized instru-

mented tool with a 3D-printed handle designed for the PR2’s

grippers (see Fig. 6). The tools incorporate a force/torque

sensor (ATI Nano25) and a unidirectional microphone in or-

der to monitor haptic and auditory modalities during manip-

ulation (see Fig. 6 Left). As the robot performed behaviors,

our system recorded the 6-axis force/torque measurements at

a 1 kHz sampling rate, and simultaneously recorded audio

from the microphone at a 44.1 kHz sampling rate.
For the assistive feeding task, we also affixed an ARTag

[28] to the person’s head, so that the robot could use a

Microsoft Kinect v2 to estimate and record the pose of the

person’s head. In addition, the robot recorded the pose of the

spoon tool using forward kinematics.

B. Sensory Preprocessing

The force sequence is a time-series vector for which each

element, denoted as f , represents the magnitude of a three-

dimensional force vector. The sound sequence is a time-series

vector for which each element, denoted as E , represents the

energy of an audio frame s. We use the “Yaafe audio features

extraction toolbox” [29] to convert s into a numeric value

for energy using the root mean square (RMS),

E =

√

∑Nframe

i=1 (s(i)/Imax)2

Nframe

, (8)

where Nframe is audio frame size 1,024 and Imax is

32,768—the maximum value of a 16-bit signed integer

Microwave

Door

Microwave

Door
Cabinet Door Light Switch

(30, 6) (30, 5) (30, 10) (30, 10)

Device Switch Outlet Switch
Toaster

Switch
Diaper Case

(31, 10) (30, 10) (33, 12) (30, 10)

Wipe Case

(31, 11)

Glasses Case

(32, 9)

TABLE I: This table shows the objects the robot pushed in

our experiments. The PR2 pushed each object while record-

ing haptic and auditory data. The numbers in parentheses

represent the number of non-anomalous and anomalous trials

we conducted with each object.

format. The lengths of these two sequences are different

due to the differing sampling rates. Thus, while collecting

training data, the force sequence was interpolated to match

the length of the sound sequence. This process resulted in

a sequence of tuples, {(f1, E1), (f2, E2), ...}, where fi is the

magnitude of the observed force and Ei is the energy of the

observed sound at time i.
For the feeding task, we added two more object-centric

kinematic modalities: distance and angle. For distance, the

robot computed the Euclidean distance between the estimated

position of the person’s mouth and the silicone spoon. For

angle, it found the angular difference between a unit vector

pointed away from the robot’s gripper along the length

of the spoon and a unit vector pointed into the person’s

mouth. During training we downsampled or interpolated each

modality to have 100 samples in time over the duration of

the task.

C. Pushing Tasks

We collected pushing task data from ten everyday objects,

including a microwave and toaster (see Table I). The PR2
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(c) Toaster

Fig. 7: Visualization of the force and sound sequences recorded in three representative manipulation tasks: closing a

microwave door, turning off a light switch, and turning on a toaster.
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Fig. 8: Visualization of the execution progress vectors (i.e.,

hidden-state distributions) over time. This shows the average

of all the vectors from the non-anomalous trials during which

the robot pushed the white microwave closed. Each left-to-

right HMM had 20 hidden states.

pushed each object with the instrumented tool and a pre-

defined linear end effector trajectory for an object-specific

amount of time and then pulled its end effector back for

an object-specific amount of time. To produce anomalous

events, we

• placed the tool at an incorrect location from which it could

not properly contact the target mechanism,

• fixed the mechanism to prevent movement, or

• blocked the mechanism using an obstacle such as a metal-

lic plate, a wooden stick, a rubber pad, a bundle of paper,

a cable, a towel, a stapler, a roll of duct tape, a finger, or

a screw.

Fig. 7 provides a visualization of the force and sound

data recorded for all non-anomalous executions with three

different objects. The sensing modalities show consistent

patterns over time for each of the three objects. As we

previously described, the microwave’s latching mechanism

makes a sharp sound in conjunction with changes in the

force. The sound associated with operating the light switch

shows temporal variability, in part because of the shorter

overall duration of the task (0.6 seconds) and preprocessing

that included aligning the sensory data in time based on the

recorded forces.
Fig. 8 provides a visualization of execution progress over

time averaged across all non-anomalous trials for the white

microwave closing task. Execution progress changes in an

intuitive way with respect to time with the index of the most

likely state progressively increasing.
Similar to k-fold cross-validation, we randomly split non-

anomalous and anomalous data into k folds. A fold from

both the non-anomalous and anomalous data were paired to

form the test data, with the remaining k − 1 folds of non-

anomalous data used for training. We repeated this process

k2 times, so that each possible pair was used exactly once

as test data. Note that we used k = 3 in this pushing task.

Depending on the length of the training sequences we used

either 10 or 20 hidden states and the same number of RBFs.
Fig. 9 illustrates our system’s operation during a non-

anomalous and an anomalous trial of the white microwave

closing task while using a constant detection threshold, c.
For the non-anomalous execution, the mean log-likelihood

based on execution progress (solid red curve) moves in con-

junction with the log-likelihood resulting from the ongoing

trial (solid blue curve). The standard deviation based on

execution progress (related to the dashed red curve) tends

to increase over time. For the anomalous execution, the

behavior failed to generate a sharp sound at the appropriate

time and instead generated a lower magnitude sharp sound

early in the behavior’s execution in conjunction with lower

forces than anticipated. The log-likelihood went below the

threshold early on in the execution, triggering the detection

of an anomaly.
Results: Throughout our evaluation, the robot only used

training data and testing data from the same object. We

first compared the performance of our method using mul-

timodality sensing versus unimodal sensing with force or

audio alone. Fig. 10(a) Left shows ROC curves used to

evaluate the relationship between the false positive rate (FPR)

and true positive rate (TPR). For any given true-positive

rate, multimodal sensing resulted in a lower false-positive

rate when compared to unimodal sensing. Force sensing

alone was better than audio alone, but using both resulted in

better performance. Note that we used our method of time-

varying thresholds for this comparison and obtained the ROC

curves by varying the gain c in Equation (7). To evaluate the

effectiveness of our method, we also compared it against two
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Fig. 9: Comparison of non-anomalous and anomalous obser-

vations in the door-closing task for a microwave (white). The

upper two graphs for (a) and (b) show the force and sound

observations over time. Each white or green band denotes

a period of time over which the most likely hidden state

remained constant. The small black number in each band is

the index for the most likely hidden state over the band’s

duration. These indices need not increase monotonically,

since we computed them in an online fashion using only

prior observations. The bottom graphs in (a) and (b) illustrate

the mean log-likelihood based on execution progress (solid

red curve), the log-likelihood resulting from the ongoing

trial (solid blue curve), and the standard deviation based on

execution progress (related to the dashed red curve). For this

comparison, we set c = 2.0 and blocked the door using a

rubber pad for the anomalous operation.

baseline methods. The change detection method determines

anomalies when the decrease of the log-likelihood is larger

than a given threshold. The fixed-threshold detection method

detects an anomaly if the log-likelihood is lower than a

constant threshold. The ROC curves in Fig. 10(a) Right show

that for any given false-positive rate, our method had a higher

true-positive rate than the two baseline methods.

D. Feeding Task

For our feeding behavior evaluation, we recruited 6 able-

bodied participants, none of whom had prior experience with

robotic feeding. For safety, the robot used low-impedance

control. The robot also held a flexible silicone spoon de-

signed for assistive applications (see Fig. 6 Right). We

recorded 20 successful and 12 anomalous feeding attempts

for each of the 6 able-bodied participants. To produce

anomalous events, we

• added uniform-random noise to the detected mouth pose

(i.e. position noise from 3 cm to 8 cm and angular noise

from −15◦ to 15◦),

• asked each subject to push any part of the spoon or PR2’s

arm during the feeding process,

• asked each subject to yell “stop” at any moment, and

• asked each subject to perform a random movement that

prevents feeding, such as rotating their head or moving

backwards.

To build our evaluation data set, we recorded each of these

anomalous events 3 times for a total of 12 anomalous

attempts per participant. To account for a low number of

non-anomalous observations, we performed 6-fold cross-

validation 6 consecutive times to improve stability and

accuracy of results. Although we do not describe it in any

detail, we also used our execution monitoring system to

detect anomalies during the yogurt scooping behavior that

precedes the feeding behavior.
Results: Throughout our evaluation, the robot only used

training and testing data from the same user. We first

compared the performance of our method using multimodal

sensing versus unimodal sensing with force, distance, angle,

or audio data alone. The ROC curves in Fig. 10(b) Left show

that the use of multimodal sensing outperformed unimodal

sensing. Interestingly, the force sensing alone performed

relatively well in pushing tasks, but performed poorly on

its own during assistive feeding. This may be due in part to

the magnitude of the force fluctuating when the spoon is in a

person’s mouth. We compared our proposed method against

the two baseline methods as depicted in Fig. 10(b) Right.

The results were similar to the results from the pushing task

with our method outperforming the two baseline methods.

VI. CONCLUSION

We introduced a new method for multimodal anomaly

detection during robot manipulation. Our method uses a

multimodal HMM to model the sensory readings associated

with non-anomalous execution of a task-specific behavior.

Since the likelihood for non-anomalous executions varies

significantly over time, our method also learns a mapping

from execution progress to non-anomalous log-likelihood.

It uses this mapping to generate a time-varying likelihood

threshold with which it detects anomalies. We evaluated our

method with respect to object pushing and assistive yogurt

feeding manipulation tasks. Multimodal anomaly detection

outperformed unimodal anomaly detection. Our method also

outperformed two baselines methods by providing higher

true-positive rates at comparable false-positive rates.
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Fig. 10: Receiver operating characteristic (ROC) curves for the pushing task and assistive feeding task. The left figures for

(a) and (b) show ROC curves that compare the performance of multimodal and unimodal sensing for anomaly detection.

The right figures for (a) and (b) compare the performance of our anomaly detection method versus two baseline methods.
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