
Model-based Reinforcement Learning with Parametrized Physical
Models and Optimism-Driven Exploration

Chris Xie Sachin Patil Teodor Moldovan Sergey Levine Pieter Abbeel

Abstract— In this paper, we present a robotic model-based
reinforcement learning method that combines ideas from model
identification and model predictive control. We use a feature-
based representation of the dynamics that allows the dynamics
model to be fitted with a simple least squares procedure,
and the features are identified from a high-level specification
of the robot’s morphology, consisting of the number and
connectivity structure of its links. Model predictive control is
then used to choose the actions under an optimistic model of
the dynamics, which produces an efficient and goal-directed
exploration strategy. We present real time experimental results
on standard benchmark problems involving the pendulum,
cartpole, and double pendulum systems. Experiments indicate
that our method is able to learn a range of benchmark
tasks substantially faster than the previous best methods. To
evaluate our approach on a realistic robotic control task, we
also demonstrate real time control of a simulated 7 degree of
freedom arm.

I. INTRODUCTION

Model-based control of robotic systems requires model
identification to be performed before the system can be
effectively controlled, particularly for dynamic, high-speed
motions. One way to tackle this challenge is to first per-
form model identification, and then use the identified model
to control the system [16], [20]. However, this approach
requires a dedicated model identification step, which can
become inefficient if the dynamics change frequently or
suddenly, or if the robot interacts with unfamiliar physical
objects that must each be identified.

Reinforcement learning (RL) offers a framework for auto-
matically trading off exploration and exploitation to complete
the task as quickly as possible. Model-based RL reduces the
required system interaction time by learning a model of the
dynamics, while still trading off exploration and exploitation
to learn a model that is just detailed enough to succeed at
the task. General-purpose statistical models are often used
to represent the dynamics, but such models can require
a substantial number of samples to acquire a sufficiently
accurate dynamics estimate [13], [21].

In this paper, we combine concepts from model identifi-
cation and model-based reinforcement learning to complete
the task as quickly as possible while identifying the sys-
tem online to acquire a model that is sufficient for task
completion. In contrast to prior methods that use generic
statistical models of the dynamics, we use a feature-based
least-squares formulation of the model identification prob-
lem, which allows the model to be identified extremely

Department of Electrical Engineering and Computer Science, University
of California, Berkeley, CA.

Fig. 1. 7 DoF arm learning to reach a target pose using our method. Later
time steps shown with higher opacity, with the target pose fully opaque.

quickly by bringing in our prior knowledge about the robot’s
morphology and physics. Exploration is performed using an
optimistic model-predictive control (MPC) framework [21],
which determines the optimal trajectory under an optimistic
formulation of the system dynamics. As more interaction
samples are gathered, the amount of optimism is reduced,
until the method converges to the true dynamics.

Our main contribution is a method for combining
optimism-driven exploration with simple least-squares model
fitting based on physical features of the dynamics that can be
extracted automatically from a high-level specification of the
system morphology (e.g., the number and connectivity of the
links, which is readily available for most robotic systems).
These features can be obtained manually for simple systems,
or can be computed automatically using existing packages
such as SymPyBotics [26]. We first present experimental
results on the pendulum, double pendulum, and cartpole
benchmarks. Compared to prior methods, our approach is
able to solve these tasks using the lowest amount of system
interaction time. In comparison to a prior method based on
optimism-driven exploration [21], our approach also requires
much less computation time, making it suitable for real-
time online learning. To evaluate our method on a realistic
robotic control task, we also demonstrate real time control
of a simulated 7 degree of freedom arm, shown in Figure 1.

II. RELATED WORK

System and model identification has been explored exten-
sively in the context of robotics [16], [20]. Several methods
have been proposed in the literature for finding good ex-
citation trajectories for model identification [5], [14], [25],
[28], [31], [32]. The physical feasibility of parameters during
the identification process has also been considered [15],

ar
X

iv
:1

50
9.

06
82

4v
2

 [
cs

.L
G

]
 1

5
M

ar
 2

01
6

[26]. However, model identification is typically performed
as a separate process from control. In contrast, our work
addresses the problem of controlling a robotic system to
complete a task as quickly as possible, while learning a
model sufficient for task completion.

One alternative to offline model identification is provided
by adaptive control [6]. Adaptive control offers compelling
convergence and stability guarantees, but is typically con-
cerned with stabilizing around a target trajectory under
a linear model. This makes it difficult to apply to more
complex, nonlinear robotic systems with high-level goals
defined by arbitrary cost functions.

Reinforcement learning (RL) [18], [27] tackles control
problems with nonlinear dynamics in a more general frame-
work, which can be either model-based or model-free.
Model-based RL reduces the required interaction time by
learning a model of the system during execution, and opti-
mizing the control policy under this model, either offline
in an episodic setting, or online. In the context of RL,
exploration refers to intentionally taking suboptimal actions
to improve future performance. Although many methods
have been proposed for model-based RL with efficient explo-
ration in discrete MDPs, data-efficient model-based RL for
continuous systems remains a challenging problem despite
substantial recent advances [1], [13], [19], [21].

Although several very successful model-based RL meth-
ods have been proposed recently [8], [13], [21], such meth-
ods typically use general-purpose statistical models of the
dynamics. Such models are very flexible, but require a
substantial number of samples to learn models that are
accurate enough to succeed at the task. Several prior methods
have suggested incorporating knowledge about the dynamics
as a prior on the dynamics model [11], [12], [23]. However,
these methods typically assume that prior knowledge comes
in the form of predictions about the next state, which is a
very specific and quantitative type of prior. Our approach
incorporates prior knowledge about the dynamics of rigid-
body systems, but does not assume knowledge of system
parameters, such as masses and link lengths. Without these
parameters, this prior model cannot give reasonable predic-
tions. However, it tells us a great deal about the structure of
the dynamics. The equations of motion can be written such
that the parameters and model features decompose linearly,
providing for a very efficient learning algorithm.

In order for the algorithm to learn the model at the
same time as it performs the task, we use an optimism-
driven exploration strategy combined with model-predictive
control to continuously replan the next action. Prior work
has proposed to use optimism-driven exploration mainly for
discrete systems [4], [19]. A recent extension to continuous
nonlinear systems provides for sample-efficient learning [21],
but does not run in real time, making it impractical for real
applications. We use an efficient MPC method based on
differential dynamic programming (DDP) [17], which allows
us to achieve real-time performance even while continuously
refitting the model parameters with each new sample.

Algorithm 1 Model-based RL with MPC and optimistic
exploration
Require: Start state xstart = [q̇,q]start, cost function l(x,τ),

sampling frequency νs, control frequency νc
1: τ ← Random controls
2: o← Empty list of observations
3: repeat
4: Execute τ for 1/νc seconds
5: Append current [q, q̇, q̈,τ] to o every 1/νs seconds
6: Estimate dynamics f̂ (q, q̇,τ) using samples in o
7: Construct optimistic dynamics f̃ (q, q̇,τ,ξ) = q̈
8: Optimize a trajectory from [q̇,q] using f̃ (q, q̇,τ,ξ)

with virtual control penalty 1
m‖ξ‖

2
2

9: Update τ to be the first action along this trajectory
10: until task completion

III. OPTIMISTIC EXPLORATION WITH CONTINUOUS
MODEL IDENTIFICATION

Our method combines feature-based model identification
with optimistic exploration in an online model-based rein-
forcement learning algorithm. An outline of the method is
presented in Algorithm 1. Here, q denotes the configuration
of the robot, x = [q̇,q] is the state of the system, and τ is the
commanded action (e.g. the joint torques and forces). The
task is specified by a cost function l(x,τ), which typically
depends on the distance between the current state x and some
target state xgoal. We begin with a random initial action and
empty list of observations o. We then repeatedly execute
the current action τ for 1/νc seconds, while collecting new
observations [q, q̇, q̈,τ] at a frequency of νs. These observa-
tions are appended to o. This list of observations is used to
estimate the system dynamics f̂ (q, q̇,τ) = q̈, as described in
Section III-A. These estimated dynamics are then converted
into optimistic dynamics f̃ (q, q̇,τ,ξ) = q̈ by including a set
of virtual controls ξ to allow the MPC algorithm to take
optimistic action, as described in Section III-B. Using these
estimated dynamics, the method then plans a fixed-horizon
trajectory that minimizes the cost l(x,τ) from the current
state x by using differential dynamic programming (DDP),
as described in Section III-C. The next action τ is then
set to the first action along this trajectory, following the
model predictive control (MPC) paradigm [10]. This process
is repeated until a specified goal condition is reached.

A. Model Identification via Least Squares

In this section, we describe how the approximate dynamics
f̂ (q, q̇,τ) are fitted to samples o= {[q, q̇, q̈,τ]i}. This method
assumes that we know the morphology of the robot (the
number and connectivity of its links), and therefore can write
down its equations of motion. However, we do not necessar-
ily know the physical parameters, such as the masses and
lengths of the links. This assumption is reasonable for many
physical systems, since the morphology and connectivity of
the links can easily be ascertained from observation, but the
physical parameters require a complex system identification

procedure. For a robot consisting of a system of articulated
rigid bodies, the equations of motion can be decomposed
such that model identification can be formulated as linear
regression, making the dynamics fitting simple and efficient.
While this technique is known in the model identification
literature [16], we present it here for completeness.

Using M(q) to denote the mass matrix, C(q, q̇) to represent
the Coriolis and centripetal forces, g(q) to represent gravity,
and τ the forces and torques, the equations of motion are
given by

M(q)q̈+C(q, q̇)+g(q) = τ . (1)

These dynamics equations can be written as:

H(q, q̇, q̈) ·∆ = τ ,

where the vector ∆ depends only on system parameters and
the matrix H(q, q̇, q̈), also referred to as the regressor matrix,
does not depend on the system parameters. Model identifi-
cation can then performed by estimating ∆. For instance, the
vector ∆ =

[
δᵀ1 . . . δᵀK

]ᵀ for K-link manipulators consists
of the inertial parameters δk for each link. For under-actuated
systems, the dynamics can be expressed in the same form.
A key difference is that we have zeroes in the τ vector
corresponding to the unactuated degrees of freedom. We
describe how this decomposition is performed for specific
robotic systems in Section IV.

We assume that we have noisy observations of the features
[q, q̇, q̈]. Given an observation vector z of the features [q, q̇, q̈]
and generalized joint forces/torques τ for N samples, the
vector ∆ may be inferred by least squares regression as:

∆̂ = argmin
∆

‖A∆−b‖2

where

A =

 H(q1, q̇1, q̈1)
...

H(qN , q̇N , q̈N)

 , b =

τ1
...
τN

 .
Since H(q, q̇, q̈) is typically not full rank, A is not full rank
and the solution is an affine subspace. Thus, we use the
Moore-Penrose pseudo-inverse to get our solution ∆̂ = A†b.
This gives us the least norm solution in the affine subspace.
Once we estimate ∆̂, we can recover the forward dynamics
equation f̂ (q, q̇,τ) = q̈ by solving the equations of motion
in (1) with respect to q̈. This forward dynamics estimate can
then be used with any model predictive control method to
choose locally optimal actions. However, acting greedily with
respect to this dynamics estimate is not always desirable.
When the dynamics are incorrect, it may be preferable to
instead take actions that are suboptimal under the estimated
model, but that are more effective at exploring the state
space of the system, in order to acquire a better estimate
of the dynamics that can allow the method to more quickly
reach the goal. In the next section, we describe one particular
exploration method that involves constructing an optimistic
estimate of the dynamics.

B. Optimistic Exploration

Our method uses model predictive control (MPC) to
choose the actions. In order to perform the task quickly
while identifying the model to a sufficient degree for task
completion, we augment MPC with optimistic exploration.
This combination of MPC with exploration allows for the
exploration strategy to change online as the model is updated.
The intuition behind this exploration strategy is that, when
the dynamics are uncertain, the algorithm is allowed to
choose which of the dynamics models it prefers, among those
models that are highly probable given the data. If the algo-
rithm chooses an accurate dynamics model, it will complete
the task. If it chooses an inaccurate model, it will receive
observations that show that this model is inaccurate, and the
dynamics estimate will be improved. In prior work, this type
of exploration strategy was shown to substantially improve
the sample-efficiency of model-based RL [21]. However, this
prior method suffered from very long computation times,
which made it impractical for real-time online control. In
this section, we present a simplified variant of the optimistic
exploration framework suitable for real-time applications. In
the next section, we show how it can be incorporated into
a simple and efficient DDP algorithm to allow for efficient,
real-time control.

In order to allow MPC to choose among the likely
dynamics models, we introduce slack variables ξt into the
dynamics, such that q̈t = f̂ (qt , q̇t ,τt) + ξt = f̃(qt, q̇t,τt,ξt),
where f̃ is the new optimistic dynamics model. When these
slack variables are treated as virtual controls by MPC, they
enable optimistic exploration. Intuitively, they account for
uncertainty about the dynamics due to imprecise estimates of
the vector ∆. To keep MPC from choosing highly improbable
dynamics, the slacks are penalized quadratically during MPC
with a penalty of the form 1

m‖ξt‖2. The magnitude of
exploration is controlled by m, which should be proportional
to the amount of uncertainty about the current dynamics.1

Previous work used Bayesian models to accurately estimate
this uncertainty [21]. In this work, we simply decrease m
as the number of samples N increases. While this approach
is somewhat simplistic, we found that it works well in
practice. Establishing a formal bound on m in terms of the
number of samples N is difficult due to the complexity of
the physical model. However, we can roughly estimate this
bound by considering a simplified linear-Gaussian model of
the dynamics. Given a multivariate Gaussian with mean µ0
and covariance Σ0, the variance of the posterior estimate of
the mean after the update is given by (Σ−1

0 +NΣ−1)−1, where
Σ is the sample variance [22]. This suggests that, for large N,
the variance of the mean decreases roughly as 1/N with the
number of samples N. For simplicity, we use only a single
exploration hyper-parameter c, using m = c

N as an estimate
of the uncertainty about the model. This makes it easier
to adjust the amount of exploration by tweaking a single

1Note that the uncertainty about the model is not the same as dynamics
noise. In this work, we assume deterministic dynamics, though stochastic
dynamics could also be handled in this framework.

parameter.
This optimistic exploration scheme has the effect that the

system is steered into taking actions that either move it
toward the goal, or else update the model if the previously
chosen path to the goal is incorrect, so that another route is
attempted on the next replanning step. In the case of linear
dynamics or discrete systems, this optimistic exploration
scheme has a number of desirable theoretical properties that
make it a good choice [1], [3], [4], [7]. Although such results
do not exist for the general continuous nonlinear case, we
observed that the optimistic exploration strategy empirically
achieves effective exploration in practice.

C. Model Predictive Control

To achieve real-time control for online reinforcement
learning, we use a simple and efficient differential dynamic
programming (DDP) algorithm to choose locally optimal ac-
tions u = [τ,ξ], which include both real and virtual controls,
with respect to the optimistic dynamics f̃ (qt , q̇t ,τt,ξt) = q̈.
The actions are optimized with respect to an augmented
cost function of the form l̄(x,u) = l(x,τ)+ 1

m‖ξt‖2, which
includes both the actual cost of the task and the penalty on
the virtual controls. We first convert the optimistic forward
dynamics into a discrete dynamics equation of the form
xt+1 = f̄ (xt ,ut) by using a fourth order Runga-Kutta inte-
grator, and then supply these dynamics and cost function to
a DDP algorithm, which we summarize in this section for
completeness. Once this algorithm determines a sequence of
locally optimal actions, we extract τ from the first action and
apply this control to the system.

The optimal control problem we aim to solve can be
formulated as

min
x1:T ,u0:T−1

T−1∑
t=0

l̄(xt ,ut) (2a)

subject to: xt = f̄ (xt−1,ut−1), ∀t ∈ 1, . . . ,T (2b)

The goal is to find the set of controls u0:T−1 that minimizes
the cost function starting from the current state x0. We
use a variant of DDP called iterative LQR (iLQR), which
requires only a first order expansion of the dynamics [29].
This method is particularly fast, making it well suited for
MPC. The rest of this section summarizes this method.
The algorithm iteratively computes first order expansions
of the dynamics and second order expansions of the cost
around the current trajectory, and then analytically com-
putes the sequence of optimal controls with respect to this
approximation. This sequence of controls is then executed
to obtain a new trajectory, and the process repeats until
convergence or for a fixed number of iterations. The controls
are computed by a dynamic programming procedure that
consists of recursively updating the value function and Q-
function, defined as

Vt(xt) = min
ut:T−1

T−1∑
i=t

l̄(xi,ui)

Q(xt ,ut) = l̄(xt ,ut)+Vt+1(f̄ (xt ,ut)).

Under the LQR assumptions, both of these functions are
quadratic, and can be expressed up to a constant as

Vt(xt) =
1
2

xᵀt Vxx,txt +xᵀt Vx,t

Q(xt ,ut) =
1
2

[
xt
ut

]ᵀ [Qx,t Qxu,t
Qux,t Quu,t

][
xt
ut

]
+

[
xt
ut

]ᵀ [Qx,t
Qu,t

]
.

Let l̄x,t , l̄u,t , l̄xx,t , l̄ux,t , l̄uu,t denote the first and second deriva-
tives of the cost function l̄(xt ,ut), and f̄x,t , f̄u,t denote the
derivatives of the discretized dynamics. The coefficients can
be written as a recurrence described by

Qx,t = l̄x,t + f̄ ᵀx,tVx,t+1

Qu,t = l̄u,t + f̄ ᵀu,tVx,t+1

Qxx,t = l̄xx,t + f̄ ᵀx,tVxx,t+1 f̄x,t

Quu,t = l̄uu,t + f̄ ᵀu,tVxx,t+1 f̄u,t

Qux,t = l̄ux,t + f̄ ᵀu,tVxx,t+1 f̄x,t

Vx,t = Qx,t −Qᵀ
ux,tQ

−1
uu,tQu,t

Vxx,t = Qxx,t −Qᵀ
ux,tQ

−1
uu,tQux,t .

With this recurrence, we can obtain the optimal policy
g(xt) = ût + kt +Kt(x̂t − xt), where kt = −Q−1

uu,tQu,t is the
open loop term and Kt =−Q−1

uu,tQux,t is the closed loop feed-
back gain term. Because we are using an MPC framework,
we only execute a small portion of the converged optimal
control policy. This makes it very convenient to use the
previous found solution as a warm-start, which allows for
fast convergence.

One final detail in this framework is that, in the early
stages of learning, the estimate of the model parameters ∆̂

may be too inaccurate to perform stable forward and back-
ward passes with MPC. If we detect that the forward pass
diverges, we revert to a simple double-integrator dynamics
model. Typically, this stage of learning lasts less than one
second.

IV. EXPERIMENTS

We evaluated our method on a number of standard robotic
control benchmarks: the pendulum, cartpole, and double
pendulum, as shown in Figure 3, as well as on a 7 degree
of freedom arm, shown in Figure 5. For each system, our
method obtains a noisy observation of the features [q, q̇, q̈]ᵀ,
where the noise is additive and drawn from a zero-mean
Gaussian, and is tasked with reaching a target state as quickly
as possible. Our implementation was in Python and C++ and
ran with on a single 3.2 Ghz Intel processor.

A. Benchmark Tasks

The pendulum, cartpole, and double pendulum bench-
marks require controlling an underpowered system to swing
up and place the endpoint of the last link at the target
position. Control limits prevent each system from swinging
up by continuous application of the same torque, requiring
long-horizon planning. The cost function for our method
consists of the distance between the endpoint of the last link
and the target, as well as terms to penalize large velocities

pendulum cartpole double pendulum
DDP with known dynamics 3.04 ± 0.89s 7.44 ± 3.26s 3.7 ± 0.89s

our method 3.28 ± 1.17s 8.31 ± 3.15s 4.98 ± 1.83s
optimism-driven exploration [21] 3.9 ± 1s 10 ± 3s 17 ± 7s

Boedecker et al. [9] — 12-18s —
PILCO [13] 12s 17.5s 50s

Fig. 2. Interaction time required to successfully learn each benchmark task for our method, DDP with known dynamics, and the best prior methods.

Fig. 3. Benchmark tasks: Pendulum (left), cartpole (center), double
pendulum (right)

and controls. To impose control limits, we pass the controls
from DDP through a squashing function of the form s(u) =
2c(σ(u)−0.5), where σ(.) is the logistic function and c is
the control limit. The cost function therefore has the form

l(xt ,ut) =

T∑
t=0

√
(p(xt)−p∗)ᵀQp(p(xt)−p∗)+α

+
1
2
[
xᵀt Qvxt + s(ut)

ᵀRs(ut)+uᵀ
t Put

]
,

where the first term is a Huber-like loss on the distance
to the target endpoint position p∗, Qp is a diagonal weight
matrix, and α is a smoothing constant. The velocity cost is
weighted by a diagonal weight matrix Qv, and the controls
are penalized both after squashing under R and before the
squashing, under P, as recommended in prior work [30].
Success at each task required reducing the distance between
p(xt) and p∗ to less than 0.05 units. We ran 50 trials for
each benchmark system.

The regressor matrix for the cartpole and the double
pendulum systems was obtained by manually factoring the
equations of motion into H(q, q̇, q̈)∆= τ , while the regressor
matrix for the pendulum was obtained automatically using
SymPyBotics [26]. Further details about each system are
presented in Appendix A.

B. Benchmark Comparisons

The results for the pendulum, cartpole, and double pen-
dulum tasks are shown in Figure 2. The most sample-
efficient previous results on these tasks were obtained using
optimism-driven exploration with a Dirichlet process mixture
model [21]. However, the computational requirements of
this approach prevented it from running in real time, with
most tasks running at less than one hundredth of real time.
Our proposed method is able to complete each task in
real time, by using DDP-based model predictive control
and a dynamics model that can be refitted efficiently using

least squares. Other state-of-the-art prior methods shown in
our results table include PILCO, which uses an episodic
formulation instead of learning online and therefore runs
comfortably in real time [13], as well as Boedecker et al. [9],
which uses Gaussian processes with MPC. We also include
the time to completion for DDP using the true dynamics for
each task, to provide a lower bound on the possible time to
completion.

Our method achieves the best sample efficiency on each
of the benchmark tasks. In fact, the time to completion on
each task is very close to the time attained by DDP with
known dynamics, indicating that our approach is able to
identify a sufficiently accurate model of the system extremely
rapidly. The advantage of our approach increases with system
complexity, with the more complex double pendulum task
attaining a time to completion that more than three times
faster than the previous best approach [21], and ten times
faster than the previous best approach that can run in real
time [13]. Furthermore, unlike the previous optimism-driven
method [21], the computational cost of our approach is
well within the bounds required for real-time operation. The
average wallclock computation time for each benchmark is
shown below:

pendulum cartpole double pendulum
2.67 ± 1.06s 6.70 ± 4.49s 3.98 ± 1.66s

C. 7 Degree of Freedom Arm

Since the dynamics features for our method can be con-
structed automatically, we can extend it to more complex
tasks that are representative of real-world robotic control
problems. To evaluate this capability, we tested our method
on a simulated Barrett WAM 7 degree of freedom arm. We
obtained the dynamics features by using the SymPyBotics
package [26]. The goal of the task was to reach a target
pose with zero velocity, starting with no prior knowledge
about the physical parameters of the system, other than the
dynamics features. Ten target poses were selected at random
from a spherical Gaussian distribution with a covariance of
1, centered in the middle of the joint limits. A trial was
considered complete when the L∞ distance to the target pose
was less than 0.05, and the velocity L∞ norm was less than
0.1. The cost function for this task had the form

l(xt ,ut) =
1
2
[
(xt −x∗t)

ᵀQ(xt −x∗t)+ s(ut)
ᵀRs(ut)+uᵀ

t Put
]
,

where Q was set to be 20I for the velocities
and 50000I for the joint angles. We chose
R = diag(0.08,0.00004,0.12,0.04,0.04,0.04,0.04), to
account for the fact that the bigger shoulder pan

target pose: 1 2 3 4 5
DDP with known dynamics 1.43 ± 0.03s 1.64 ± 0.02s 1.34 ± 0.02s 2.68 ± 0.84s 1.57 ± 0.03s

our method 5.84 ± 2.76s 9.11 ± 3.4s 10.9 ± 4.62s 9.14 ± 6.22s 3.61 ± 1.12s
target pose: 6 7 8 9 10

DDP with known dynamics 2.05 ± 0.0s 0.35 ± 0.09s 1.9 ± 0.0s 2.65 ± 0.0s 4.98 ± 3.32s
our method 6.15 ± 2.64s 4.6 ± 2.35s 3.71 ± 1.34s 7.77 ± 2.36s 9.99 ± 4.49s

Fig. 4. Results for ten randomly chosen target poses for 7 DoF arm for DDP with the true dynamics and our method, which learned the dynamics online
from system interaction.

Fig. 5. Sample trajectories for the 7 DoF Barrett arm. The target pose is opaque, and the preceding poses become progressively more translucent. Each
image shows an entire trajectory executed by our method, with poses sampled at 0.25 second intervals.

joint needed to apply larger torques to raise the
arm, and set P = R/100. We used torque limits of
[±77.3,±160.6,±95.6,±29.4,±11.6,±11.6,±2.7], and
vc = 20 Hz, vs = 100 Hz. The observation noise was set to
have a standard deviation of 0.014 by analyzing the encoder
accuracy of the Barrett WAM.2

The results of these experiments are shown in in Figure 4.
For each target pose, we ran 10 trials. The results indicate
that our method was successfully able to move the arm into
the desired pose in each experiment. Although some of the
target poses required more time to acquire a sufficiently
accurate dynamics model, some of the targets were reached
in time that was only 2-3 times slower than DDP with known
dynamics. In all cases, the computation time required to find
a solution was comparable to the interaction time, indicating
that our method could run in real time.

Note that the dynamics model of this three-dimensional 7
degree of freedom arm is much more complex than any of
the benchmarks in the previous section, and the weights ∆

had a dimensionality of 70, compared to less than 10 for the
benchmark tasks. Several sample trajectories obtained using
our method are shown in Figure 5.

V. DISCUSSION AND FUTURE WORK

We presented a model-based reinforcement learning
method that combines ideas from model identification, opti-
mistic exploration, and model predictive control to quickly
and efficiently learn to perform robotic control tasks under
unknown dynamics. The key idea in our work is to combine
efficient linear models of the dynamics, which are informed
by domain knowledge of articulated physical systems, with
optimism-driven exploration. The features for these linear
models can be obtained automatically from the morphology

2As with most encoders, position readings are substantially more accurate
than velocity readings. For simplicity, we set the observation noise to
correspond to the less accurate velocity readings for all entries of the state.

of the robot, and the optimism-driven exploration can be
performed using model predictive control.

Our method achieves state-of-the-art sample efficiency
on standard benchmark problems, including the pendulum,
the double pendulum, and the cartpole tasks. Furthermore,
unlike our previous MPC-based exploration method, which
used a statistical model of the dynamics [21], our method
achieves real-time performance, making it feasible for online
reinforcement learning on real robotic platforms. Unlike the
prior methods in our comparison, our approach leverages
additional domain knowledge to greatly simplify the model
learning problem. This prior knowledge is encapsulated in
the dynamics features, which can be linearly combined to
obtain the true dynamics. While this makes the comparison
somewhat unequal, it serves to illustrate an important point
in model-based reinforcement learning for robotic control:
using freely available prior knowledge about the physical
system can dramatically simplify the model learning and
control problem. The prior knowledge we use is trivial to
obtain for most robotic systems, since it consists of the
number and connectivity of the robot’s links, information
that can be easily gathered from a cursory examination.

A number of future directions should be explored to make
such applications effective and practical. First, although we
demonstrate state-of-the-art results in simulation and evaluate
some simulated unmodeled effects, we did not evaluate the
robustness of our approach to unmodeled effects on a real
system. The least-squares model identification procedure we
use has been applied to real robotic systems in the past [16],
so there is reason to believe that robustness to unmodeled
effects may already be adequate. However, an interesting
avenue for future work would be to combine our linear
models with more expressive statistical models that can
account for unmodeled effects, similar to prior work on
autonomous vehicle control [2], [24].

We demonstrated our method on a variety of articulated

systems, but the approach is general enough to apply to other
kinds of robotic systems also, including autonomous vehicles
and aircraft. In fact, our prior work already demonstrated that
optimism-driven exploration can achieve impressive results
on simulated helicopter control, recovering from an engine
failure with auto-rotation [21]. Extension of our proposed
method to such applications requires only a method for
constructing the corresponding dynamics features, which can
be obtained from analyzing the equations of motion of the
system. Another promising application of our approach is
in robotic manipulation of diverse sets of large, complex
objects, where performing dedicated model identification as
a discrete step is impractical. For example, if we imagine a
construction robot that must handle a variety of previously
unseen objects in the course of a typical manipulation
scenario, the ability to very quickly acquire an accurate
model for model-based planning can substantially improve
the speed, efficiency, and robustness of the robot’s behavior.

ACKNOWLEDGEMENTS

This research was funded in part by the NSF NRI program
under award #1227536, and by the Army Research Office
through the MAST program.

REFERENCES

[1] Y. Abbasi-Yadkori, C. Szepesvári, S. Kakade, and U. V. Luxburg,
“Regret bounds for the adaptive control of linear quadratic systems,”
in Proc. of the 24th Annual Conference on Learning Theory, 2011.

[2] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An application of
reinforcement learning to aerobatic helicopter flight,” in Advances in
Neural Information Processing Systems, 2006.

[3] P. L. B. Ambuj Tewari, “Optimistic linear programming gives loga-
rithmic regret for irreducible MDPs,” in Proc. of Neural Information
Processing Systems Conference (NIPS), 2007.

[4] M. Araya, O. Buffet, and V. Thomas, “Near-optimal BRL using
optimistic local transitions,” in Proc. Int. Conf. on Machine Learning
(ICML), ser. ICML ’12, 2012, pp. 97–104.

[5] B. Armstrong, “On finding exciting trajectories for identification
experiments involving systems with nonlinear dynamics,” Int. Journal
of Robotics Research, vol. 8, no. 6, pp. 28–48, 1989.

[6] K. J. Astrom and B. Wittenmark, Adaptive Control, 2nd ed. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1994.

[7] J.-Y. Audibert, R. Munos, and C. Szepesvári, “Exploration-exploitation
tradeoff using variance estimates in multi-armed bandits,” Theoretical
Computer Science, vol. 410, no. 19, pp. 1876–1902, 2009.

[8] J. Boedecker, J. Springenberg, J. Wulfing, and M. Riedmiller, “Approx-
imate real-time optimal control based on sparse gaussian process mod-
els,” in Adaptive Dynamic Programming and Reinforcement Learning
(ADPRL), 2014.

[9] J. Boedecker, J. T. Springenberg, J. Wulfing, and M. Riedmiller,
“Approximate real-time optimal control based on sparse gaussian pro-
cess models,” in Adaptive Dynamic Programming and Reinforcement
Learning (ADPRL), 2014 IEEE Symposium on. IEEE, 2014, pp. 1–8.

[10] E. F. Camacho and C. B. Alba, Model predictive control, 2013.
[11] M. Cutler, T. Walsh, and J. How, “Reinforcement learning with

multi-fidelity simulators,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA), 2014, pp. 3888–3895.

[12] M. Cutler and J. P. How, “Efficient reinforcement learning for robots
using informative simulated priors,” in IEEE International Conference
on Robotics and Automation (ICRA), 2015.

[13] M. P. Deisenroth and C. E. Rasmussen, “PILCO: A model-based
and data-efficient approach to policy search,” in Proceedings of the
28th International Conference on Machine Learning, L. Getoor and
T. Scheffer, Eds. Bellevue, Washington, USA: Omnipress, 2011, pp.
465–472.

[14] M. Gautier and W. Khalil, “Exciting trajectories for the identifica-
tion of base inertial parameters of robots,” Int. Journal of Robotics
Research, vol. 11, no. 4, pp. 362–375, 1992.

[15] M. Gautier, S. Briot, and G. Venture, “Identification of consistent
standard dynamic parameters of industrial robots,” in IEEE/ASME Int.
Conf. on Advanced Intelligent Mechatronics (AIM), 2013, pp. 1429–
1435.

[16] J. Hollerbach, W. Khalil, and M. Gautier, “Model identification,” in
Springer Handbook of Robotics. Springer, 2008, pp. 321–344.

[17] D. H. Jacobson and D. Q. Mayne, Differential dynamic programming,
ser. Modern analytic and computational methods in science and
mathematics. American Elsevier Pub. Co., 1970. [Online]. Available:
http://books.google.com/books?id=tA-oAAAAIAAJ

[18] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” International Journal of Robotic Research, vol. 32,
no. 11, pp. 1238–1274, 2013.

[19] S. Kuindersma, R. Grupen, and A. Barto, “Variational bayesian
optimization for runtime risk-sensitive control,” in Robotics: Science
and Systems (RSS), 2013.

[20] L. Ljung, System identification. Springer, 1998.
[21] T. Moldovan, S. Levine, M. Jordan, and P. Abbeel, “Optimism-driven

exploration for nonlinear systems,” in International Conference on
Robotics and Automation (ICRA), 2015.

[22] K. P. Murphy, “Conjugate bayesian analysis of the gaussian distribu-
tion,” def, vol. 1, p. 16, 2007.

[23] D. Nguyen-Tuong and J. Peters, “Using model knowledge for learn-
ing inverse dynamics,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA), 2010, pp. 2677–2682.

[24] C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot, “Learning-based
nonlinear model predictive control to improve vision-based mobile
robot path-tracking in challenging outdoor environments.” in Proc.
IEEE Int. Conf. Robotics and Automation (ICRA), 2014.

[25] W. Rackl, R. Lampariello, and G. Hirzinger, “Robot excitation trajec-
tories for dynamic parameter estimation using optimized b-splines,”
in Proc. IEEE Int. Conf. Robotics and Automation (ICRA), 2012, pp.
2042–2047.

[26] C. D. Sousa and R. Cortesao, “Physical feasibility of robot base inertial
parameter identification: A linear matrix inequality approach,” Int.
Journal of Robotics Research, vol. 33, no. 6, pp. 931–944, 2014.

[27] R. S. Sutton, A. G. Barto, and R. J. Williams, “Reinforcement learning
is direct adaptive optimal control,” IEEE Control Systems, vol. 12,
no. 2, pp. 19–22, 1992.

[28] J. Swevers, C. Ganseman, D. B. Tukel, J. De Schutter, and
H. Van Brussel, “Optimal robot excitation and identification,” IEEE
Trans. on Robotics and Automation (TRA), vol. 13, no. 5, pp. 730–740,
1997.

[29] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of com-
plex behaviors through online trajectory optimization,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2012.

[30] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential
dynamic programming,” in International Conference on Robotics and
Automation (ICRA), 2014.

[31] C. Wang, Y. Zhao, C.-Y. Lin, and M. Tomizuka, “Fast planning of well
conditioned trajectories for model learning,” in IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS), 2014, pp. 1460–1465.

[32] J. Wu, J. Wang, and Z. You, “An overview of dynamic parameter iden-
tification of robots,” Robotics and computer-integrated manufacturing,
vol. 26, no. 5, pp. 414–419, 2010.

APPENDIX

A. Benchmark Details

In this appendix, we present details for each benchmark
system in our evaluation.

1) Pendulum: The pendulum system is a simple single
link system with these nonlinear dynamics [13]:

q = θ ,

q̈ =
u−bθ̇ − 1

2 mlgsinθ

1
4 ml2 + I

,

where θ is the joint angle of the link, u is the torque applied
at this joint, m and l are the mass and length of the link,
respectively, g is the gravity constant 9.81(m/s2), b is the
friction coefficient, and I is the moment of inertia around the

http://books.google.com/books?id=tA-oAAAAIAAJ

pendulum midpoint, which is equal to 1
12 ml2. The parameters

are m = 1 kg, l = 1 m, and constrained u∈ [−3,3] N·m. The
goal state is

[
0 π

]ᵀ, which has the pendulum standing up
with no velocity.

For the cost function, we used α = 0.01, Qp = 2I, Qv =
diag([0.005,0]), P = 0.01I, where I is the identity matrix.
Recall that R is a diagonal matrix that penalizes the squashed
control and the virtual control, as mentioned before. For
the squashed controls, the upper left block of R, which
is the matrix of the quadratic penalty, is 0.01I. We chose
T = 13,δ = 0.1s,vc = 10 Hz,vs = 100 Hz.

We can rewrite the dynamics in the form given in Eqn. 2:

H(q, q̇, q̈) =
[
θ̈ θ̇ sinθ

]
∆ =

 1
3 ml2

b
1
2 mgl

τ = u

2) Cartpole: The cart-pole system is a nonlinear system
described by the following dynamics [13]:

q = [θ x]ᵀ

q̈ =

−3mlθ̇ 2 sinθ cosθ−6(M+m)gsinθ−6(u−bẋ)cosθ

4l(M+m)−3ml cos2 θ

2mlθ̇ 2 sinθ+3m2gsinθ cosθ+4u−4bẋ
4(M+m)−3ml cos2 θ

 .
The state space is 4D and the control is 1D, which is the

external force applied to the cart. M denotes the mass of the
cart, m2 denotes the mass of the pole, l denotes the length
of the pole, θ denotes the angle of the pendulum, p denotes
the position of the cart, b denotes the friction between the
cart and the ground, and g = 9.8 (m/s2) is acceleration due
to gravity. We chose M = .5 kg, m2 = .5 kg, l = .5 m, b = .1
N/m/s, and constrainted u ∈ [−10,10] N ·m. The goal state
is
[
0 0 π 0

]ᵀ, which has the cartpole standing up at the
origin with no velocity.

For the cost function, we used α = 0.1, Qp =
diag([1,20]), Qv = diag([0.07, 0.03, 0, 3]), P = 0.01I. The
upper left block of R, for the squashed controls, is 0.01I. We
chose T = 8,δ = 0.1s,vc = 16.7 Hz,vs = 50 Hz.

Since the cartpole is underactuated, we moved a term to
the right hand side of the dynamics to replace the zero due
to the unactuacted degree of freedom. We can rewrite the
dynamics in the form given in Eqn. 2:

H(q, q̇, q̈) =
[

p̈ θ̈ cosθ θ̇ 2 sinθ ṗ 0 0
0 0 0 0 p̈cosθ θ̈

]
∆ = [M+m,

1
2

ml,−1
2

ml,b,3,2l]ᵀ

τ = [u,−3gsinθ]ᵀ

3) Double Pendulum: The double pendulum system is a
fully actuated two link system with applied torques at the

joints. The system dynamics are:

q = [θ1 θ2]
ᵀ[

l2
1(

1
4 m1 +m2)+ I1

1
2 m2l2l1 cos(θ1−θ2)

1
2 l1l2m2 cos(θ1−θ2)

1
4 m2l2

2 + I2

][
θ̈

θ̈

]
=[

−l1
(1

2 m2l2θ̇ 2
2 sin(θ1−θ2)−gsinθ1(

1
2 m1 +m2)

)
+u1

1
2 m2l2

(
l1θ̇ 2

1 sin(θ1−θ2)+gsinθ2
)
+u2

]
Here, θ1 and θ2 are the joint angles, m1 and m2 are the

masses of link 1 and link 2, respectively. l1, l2 are the
lengths of the links, g is the gravity constant, I1 and I2
are the moments of inertia of the links, and u1,u2 are the
torques applied at the joints. We chose m1 = m2 = 0.5 kg
and l1 = l2 = 0.5 m. u1,u2 were constrained to be in the
range [−2,2] N·m. To compute the forward dynamics, we
solve this linear equation for the second derivative of the
joint angles. The goal state is

[
0 0 0 0

]ᵀ, which has the
double pendulum standing up with no velocity.

For the cost function, we used α = 0.05, Qp = 5I, Qv =
diag([0.04, 0.04, 0, 0]), P = 0.01I, where I is the identity
matrix. The upper left block of R, for the squashed controls,
is 0.01I. In order to make the system stabilize near the goal,
we increased the control penalty to 0.1 when the system was
near the goal. We chose T = 8,δ = 0.08s,vc = 16.7 Hz,vs =
50 Hz.

We can rewrite the dynamics in the form given in Eqn. 2:

H(q, q̇, q̈) =
[

A 0
0 B

]
A =

[
θ̈1 θ̈2 cos(θ1−θ2) θ̇ 2

2 sin(θ1−θ2) sinθ1
]

B =
[
θ̈1 cos(θ1−θ2) θ̈2 θ̇ 2

1 sin(θ1−θ2) sinθ2
]

∆ =

l2
1(

1
4 m1 +m2)+ I1

1
2 m2l2l1
1
2 m2l2l1

−gl1(1
2 m1 +m2)

1
2 m2l2l1

1
4 m2l2

2 + I2
− 1

2 m2l2l1
− 1

2 m2l2g

τ = [u1,u2]

ᵀ.

	I Introduction
	II Related Work
	III Optimistic Exploration with Continuous Model Identification
	III-A Model Identification via Least Squares
	III-B Optimistic Exploration
	III-C Model Predictive Control

	IV Experiments
	IV-A Benchmark Tasks
	IV-B Benchmark Comparisons
	IV-C 7 Degree of Freedom Arm

	V Discussion and Future Work
	References
	Appendix
	A Benchmark Details
	A.1 Pendulum
	A.2 Cartpole
	A.3 Double Pendulum

