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MPC-Guided Policy Search
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Abstract—Model predictive control (MPC) is an effec-
tive method for controlling robotic systems, particularly au-
tonomous aerial vehicles such as quadcopters. However, ap-
plication of MPC can be computationally demanding, and
typically requires estimating the state of the system, which
can be challenging in complex, unstructured environments.
Reinforcement learning can in principle forego the need for
explicit state estimation and acquire a policy that directly
maps sensor readings to actions, but is difficult to apply to
unstable systems that are liable to fail catastrophically during
training before an effective policy has been found. We propose
to combine MPC with reinforcement learning in the framework
of guided policy search, where MPC is used to generate data
at training time, under full state observations provided by an
instrumented training environment. This data is used to train
a deep neural network policy, which is allowed to access only
the raw observations from the vehicle’s onboard sensors. After
training, the neural network policy can successfully control the
robot without knowledge of the full state, and at a fraction of
the computational cost of MPC. We evaluate our method by
learning obstacle avoidance policies for a simulated quadrotor,
using simulated onboard sensors and no explicit state estimation
at test time.

I. INTRODUCTION

Model predictive control (MPC) is an effective and re-
liable method for controlling robotic systems, particularly
autonomous aerial vehicles such as quadcopters, because of
its robustness to moderate model errors [26], ability to use
high-level objectives [41], and relative simplicity. However,
applications of MPC can be computationally demanding, and
typically require estimating the state of the system. The state
estimation problem can be quite challenging in complex,
unstructured environments. Reinforcement learning can in
principle forego the need for explicit state estimation and
acquire a policy that directly maps sensor readings to actions
[5]. The power of reinforcement learning is derived from
its ability to learn directly from the real-world behavior of
the system. Unfortunately, this strength is also its major
weakness when applied to unstable, fragile systems such
as aerial vehicles, which can be damaged beyond repair by
an unsuccessful, partially trained policy (e.g. by crashing
into an obstacle). While alternative learning methods, such
as learning from demonstration [36], [37], can address this
issue, they typically require costly additional information,
such as guidance from a human expert.

We propose to use an off-policy guided policy search
algorithm in combination with a model predictive control
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Fig. 1: Diagram of our method: the training phase alternates
between running MPC to attempt the task and collect data under
full state observation, and using this data to train a neural network
policy that chooses actions based only on the vehicle’s onboard
sensors. At test time, the neural network does not need the full
state, and can control the vehicle in unstructured environments.

(MPC) scheme to train policies for autonomous aerial ve-
hicles in a way that avoids catastrophic failure at training
time. Guided policy search transforms RL into supervised
learning, where an optimal control algorithm provides the
supervision and the final control policy is trained with
supervised learning. Typically, this optimal control algorithm
is an offline trajectory optimization procedure, which either
assumes a known model of the dynamics [21] or uses an
iteratively learned model [19]. Both approaches are prone
to failure during training because the known model may
be inaccurate while the learned model is always inaccurate
during the early stages of learning. By substituting MPC
for offline trajectory optimization, we can obtain a variant
of guided policy search that is robust to moderate model
errors, and thus avoid catastrophic failures during training.
Furthermore, since the final policy is trained with supervised
learning, we can train complex, high-dimensional, and highly
nonlinear policies, such as deep neural networks, which can
represent a wide range of complex behaviors.

One might wonder why the guided policy search method
is necessary if we already have access to an effective MPC
procedure. In the case of autonomous aerial vehicles, training
deep neural network policies with guided policy search
affords us two main advantages. First, the neural network
policy does not need to use the same inputs as MPC. In fact,



we can restrict its inputs to only those observations that are
directly available from the vehicle’s onboard sensors, such
as IMU readings and data from laser range finders, while the
MPC training phase uses the full state of the system. Since
the policy is represented by a deep neural network, it can
even process complex, raw sensor information. For example,
prior work has shown that guided policy search can learn
policies that directly use camera images [23]. Since MPC is
only used at training time, we can employ an instrumented
training setup, where the full state is known at training time
(e.g. using motion capture), but unavailable at test time.
This instrumented training setup is one of the key benefits
of our approach, since it allows for safe training with full
state information, but still produces a policy that uses raw
sensor readings and does not require explicit state estimation.
The second benefit of this approach is that the final neural
network policy is computationally much less expensive than
MPC, and can be easily parallelized on specialized hardware.
This advantage combines elegantly with the instrumented
training setup, since the MPC solution can be computed
offboard during training, while all policy computations may
be performed onboard at test time.

Our main contribution is an MPC-guided policy search
algorithm that can be used for learning control policies
for autonomous aerial vehicles. This algorithm, illustrated
in Figure [T} replaces the offline trajectory optimization
that is typically used in guided policy search with online
MPC, which continuously replans paths to the goal from
the vehicle’s current state using an approximate model of
the dynamics. Our modified MPC procedure also takes into
account the actions that would be taken at each state by
the current neural network in order to avoid actions that the
network is unlikely to take. This ensures that, at convergence,
the neural network achieves good long-horizon performance,
despite being trained only with supervised learning. Our
approach allows us to learn neural network policies that
directly process raw observations from the vehicle’s onboard
sensors, and are substantially faster to evaluate at test time
than full MPC solutions. We demonstrate our method on a
set of simulated quadrotor control tasks, including obstacle
avoidance using simulated laser range sensors. We show that
our approach can learn policies that are robust to a variety
of perturbations and generalize successfully to large obstacle
courses, without catastrophic failure during training.

II. RELATED WORK

Model predictive control (MPC) is an effective and pop-
ular technique for control of robotic systems, and is fre-
quently used to control autonomous aerial vehicles such
as quadrotors [38], [35], [34], [3], [2], [4], [29]. MPC is
straightforward to apply when the state of the system is
known (e.g. via a motion capture system), or when it can be
measured accurately through sensors with well-understood
observation models. However, vehicles navigating complex,
unstructured environments must use more complex sensors,
such as cameras and laser range finders. Incorporating such
sensors into optimal control directly is challenging, since the

sensor reading depends on a complex and often unknown
environment. This challenge is conventionally addressed by
using localization and mapping algorithms to map out the
environment [9] and then optimizing trajectories under the
resulting map [11]. However, this kind of model-based
approach is quite challenging when the vehicle is moving
at high speed, or when onboard computation is limited.

On the other end of the spectrum from such model-based
methods, reinforcement learning (RL) aims to directly learn
control policies that map observations to controls [5]. This
approach in principle removes the need for explicit state
estimation and extensive computation at test time, by using
a number of training episodes to iteratively improve the
policy from real-world experience. RL has been used to train
robotic controllers for games such as ball-in-cup and table
tennis [16], manipulation [31], [6], and robotic locomotion
[17], [40], [10], [8]. An overview of recent reinforcement
learning methods in robotics can be found in a recent survey
paper [15]. However, model-free RL is difficult to apply to
unstable systems such as quadrotors, due to the possibility
of catastrophic failure during training. Model-based RL can
mitigate this problem by training a model from real-world
experience, and then optimizing the policy under this model.
While such methods have been successfully applied to aerial
vehicles [1], [28], the requirement to be able to acquire an
accurate model means that these methods share many of the
challenges of MPC methods.

In this work, we use an off-policy reinforcement learning
method called guided policy search, which incorporates the
advantages of model-based methods at training time, while
still training the policy to use only the onboard sensors
of the robot, without explicit state estimation and using
only real-world data. Guided policy search has been applied
to locomotion [21], robotic manipulation [22], and vision-
based robotic control [23], but all prior applications rely
on an offline trajectory optimization phase to generate the
controller that is then executed on the real system. While this
offline optimization might use a learned model of the system
dynamics [19], the resulting trajectory-centric controller is
only adapted between episodes. This makes these methods
liable to fail catastrophically when the model is inaccurate.
We replace the offline trajectory optimization in guided
policy search with MPC, which prevents catastrophic failures
even during training, making the method suitable for learning
policies for autonomous aerial vehicles.

One of the key advantages of guided policy search is
its ability to train complex, high-dimensional, and highly
nonlinear policies [20]. This allows us to use deep neural
network representations for our policies, thus allowing them
to handle complex, raw input from onboard sensors, without
extensive engineering of the policy parameterization. While
neural networks have been used for control for decades [12],
[33], limitations on computation and algorithms have made
large neural network policies very difficult to learn. More
recently, deep neural network policies have been used for
tasks ranging from robotic control [22], [23] to video game
playing [27]. Deep neural networks have also been used to



learn models for MPC [18]. In this paper, we use neural
networks to represent the policy, rather than the model, while
MPC is used to help train this policy.

III. PRELIMINARIES

The goal of policy search is to minimize the expected
cost Er, [/, £(x;,u;)] with respect to the parame-
ters 6 of a policy mp(u;|los). Here, x; denotes the full
state at time ¢, o; the observation, u; the action, and
£(x¢,uy) the cost function that defines the task. For ex-
ample, a task that requires a quadrotor to fly to a po-
sition might have the cost be the distance between the
vehicle and the goal. The expectation is taken with re-

T
spect to p(7) = p(x1) [T;—; p(Xe+1[xe, ue)mo (ue[x:), where
7 ={x1,uy,...,Xr,ur} denotes a trajectory. The observa-
tion oy is distributed according to some unknown observation
distribution p(o¢|x:), which describes how the readings from
the robot’s sensors depend on the state.

Optimal control also seeks to solve problems of this
type, under various assumptions about the dynamics
p(x¢+1|%¢,1uz), observation function p(o:|x;), and policy.
For example, the differential dynamic programming (DDP)
algorithm can be viewed as approximately optimizing the ex-
pected cost under a locally linear-Gaussian dynamics model
and with time-varying linear [13], [24] or linear-Gaussian
[20] policies that act directly on the state (i.e. 0oy = xy).
While this method is not as general as policy gradient
RL algorithms, which can optimize arbitrary parameterized
policies with arbitrary observations under unknown dynamics
[32], it is fast, simple, and often effective [39]. In order to
combine the efficiency of DDP with the flexibility of general
policy search methods, guided policy search uses DDP-like
algorithms to solve the control problem from a variety of
initial states and generate training data for arbitrary param-
eterized policies, which are then trained with supervised
learning to mimic the behavior of the DDP solutions [20],
[19].

Algorithm [I] presents a generic guided policy search
method, where trajectory optimization is used to optimize
a set of guiding trajectory distributions p;(7), defined by the
corresponding linear-Gaussian controllers p;(u:|x;), and an
arbitrary nonlinear policy 7y (u¢|o;) is trained using samples
from all of these controllers. Since supervised learning does

Algorithm 1 Generic guided policy search summary

1: for iteration k =1 to K do

2:  Optimize trajectory distributions p;(7) to minimize
E,,[¢(7)] and deviation from the policy 7g(u;|o;)

3. Generate samples {77} from each p;(7)
Train nonlinear policy 7g(u,|o;) to match the sampled
trajectories {77}

5. Update Lagrange multipliers to encourage agreement
between p;(u;|x;) and g (ug|x;)

6: end for

7: return optimized policy parameters 6

not in general guarantee that the policy mp(u¢lo;) will
achieve good long-horizon performance [36], guided policy
search alternates between optimizing the policy and optimiz-
ing each of the trajectory distributions, each time adjusting
the trajectory cost and the policy optimization objective to
ensure that the linear-Gaussian controllers p;(u;|x;) and pol-
icy mg(u;]o;) converge to the same behavior. The objective
for trajectory optimization is modified by adding a penalty
for the deviation from the policy, and the policy objective is
modified by applying different weights to different samples
[19] or using dual variables [23]. Convergence to a policy
mo(ut|o;) that minimizes expected cost can be shown by
casting this alternating optimization as a relaxation of a
constrained optimization problem of the form

min B, [0(7)]

0,p
s.t. p(uefxe) = mo(uefx,) Vt

where ¢(7) is shorthand for Zthl L(x¢,ug), mo(uelxy) is
shorthand for [ mg(u;|o;)p(0¢|x;)doy, and p(7) is a mixture
of the guiding distributions p;(7). This constrained prob-
lem can be approximately transformed into the alternating
optimization in Algorithm [I] by using sampling over the
observations o, together with the framework of dual gradient
descent [19] or BADMM [23]. In this paper, we use the
BADMM version, which specifies the following objective
for trajectory optimization:

min E i(x¢,u) [Z(Xtv Uz) - utT)‘it

+ i Dic (pi (e o) o (e o) | (1)

where \,; is a Lagrange multiplier on the mean action,
and the third term is a KL-divergence penalty. Together,
these terms serve to keep p;(u:|x¢) close to mg(us|x¢). The
supervised objective for the policy is similarly given by

M T

min 30373 v D (mo(wefoi) s (i)

i=1 j=1 t=1

+ FE EN [ut]TAit} 2

mg(utloy

where N is the number of trajectory distributions p;, M is
the number of samples collected from each p;(7) and T is
the length of each trajectory 7. This objective uses samples to
estimate the integral [ 7g(u¢|o;)p(0¢|x;)do, and, in the case
where the policy is given by the Gaussian N (u”(ot), Z’T),
it corresponds to a weighted least squares objective on the
mean p" (o), while 3™ can be solved for in closed form. For
a detailed derivation of this method, as well as the update
equations for v} and Afm we refer the reader to previous
work [23]. Note that the policy mg(u¢|o;) only uses the
observations o; as input, which means that, once it has been
trained, it can be used in situations where the true state x;
is unknown.

Prior guided policy search methods optimized the guid-
ing trajectory distributions p;(7) using either offline tra-
jectory optimization with known system dynamics [21], or
trajectory-centric reinforcement learning [19]. The former



class of methods assumes that the true dynamics are known
in advance, while the latter requires iteratively learning
the dynamics by attempting to run potentially suboptimal
controllers on the real physical system. In the case of
unstable systems, such as autonomous aerial vehicles, neither
approach is ideal, since the true dynamics are not known
perfectly, and the suboptimal controller rollouts required
for reinforcement learning might cause catastrophic failure,
such as a crash. On the other hand, MPC methods that
continuously recompute the vehicle’s trajectory under an
approximate model of the dynamics have been shown to
exhibit good robustness to model errors [39]. In the next
section, we discuss how MPC can be combined with guided
policy search to learn effective control policies.

IV. MPC-GUIDED POLICY SEARCH

In this paper, we use MPC together with offline trajectory
optimization to generate guiding samples for guided policy
search. We assume that we have access to an approximate
model of the system dynamics, which we use during training
to choose actions that will accomplish the desired task, start-
ing from a variety of initial states. These samples are then
used as training data to train a nonlinear policy 7y(u;|os),
and this policy is included in the cost function for the next
batch of samples. By repeatedly collecting new samples and
training the policy mg(u¢|o;) in this way, the method can
acquire an effective nonlinear policy that generalizes to new
states.

This method is a special case of the generic guided policy
search framework presented in Algorithm [I} but a number
of modifications are necessary to adapt the approach to
use MPC to generate the guiding trajectory distributions.
First, the MPC procedure must minimize the objective in
Equation (1)), which means that it must also minimize de-
viation from the neural network policy. Second, each MPC
rollout produces a different locally linear controller, which
necessitates a modification to the supervised policy learning
phase. Lastly, since MPC uses a relatively short horizon,
we generate target trajectories using an offline trajectory
optimization phase, and then track these trajectories. We
develop a formulation for this tracking objective that is
compatible with guided policy search.

A. Model Predictive Control with DDP

The MPC method we use is based on differential dynamic
programming (DDP) [13]. In particular, we use an efficient
variant of this method called iterative LQG, which assumes
access to an approximate model of the system dynamics and
uses a local linear-quadratic expansion to solve the optimal
control problem. We summarize the method in this section.
However, our derivation largely follows prior work [41].

Iterative LQG assumes that the dynamics are given by
a deterministic mean function f(x:,u;) = E[X¢41|Xt, ue],
with additive Gaussian noise. The algorithm computes a
linear expansion of the dynamics around a nominal tra-
jectory 7= {%X1,01,...,%Xp,0r}, as well as a quadratic

expansion of the cost. Without loss of generality, we as-
sume that the nominal states and actions are zero for
notational convenience. The linearized dynamics have the
form p(xy41|x¢, w) = N (fxaxe + furu + fer, Fy), and the
quadratic cost approximation has the form

T T
0(x¢,up) ~ i[xﬁut] Cxcu,xut [Xt; U] +[X¢; U] Lyus +const,
where subscripts denote derivatives, e.g. lruy is the gradient

of ¢ with respect to [x;; uy], while fxy xut is the Hessian.
Under this model of the dynamics and cost function, the
optimal policy can be computed by recursively computing
the quadratic Q-function and value function, starting with
the last time step. These functions are given by

1
V(xe) = ixtTVx,xtXt + XtTth + const

1
Q(x¢,uz) = i[Xt§ut]Tqu,xut[Xt§ut]+[Xt§ut]Tqut+COHSt

We can express them with the following recurrence:

Qxuxut = Cxuxcut + ot Viext+1fxut
qut = éxut + f;[‘utvxﬂrl
Vx,xt = Qx,xt - Qg,xtQ;}thu,xt
Vit = Qxt — Qs xt Qe Quit»

which allows us to compute the optimal control law as
g(x¢) = 0 + ki + Ky (x; — %X¢), where K; = _Q;,lthu,xt
and k; = —Q;LtQut. Performing a forward rollout using
this control law allows us to find a new nominal trajectory,
and the backward dynamic programming pass is repeated
around this trajectory to take the next Gauss-Newton step.

To adapt DDP for performing MPC, we simply run the
algorithm for a shorter horizon H at each time time step ¢,
so that the backward pass is performed from time step ¢ to
t+ H.

B. Adapting MPC for Guided Policy Search

While we could simply adapt the DDP-based MPC algo-
rithm in the previous section to optimize Equation |1} the
short horizon typically used in MPC makes it difficult to
accomplish complex tasks like obstacle avoidance, which
require long-horizon lookahead, with only a high-level spec-
ification of the task, such as a desired flight direction and
an obstacle collision penalty. Instead, we use an offline
optimization based on iterative LQG [24] to first generate
a reference trajectory, and then track this trajectory using
MPC, with an additional term to account for differences from

the neural network policy 7y (us|os).

Offline, we run iterative LQG with our known approximate
model to optimize Equation [T} Since Equation [I| contains a
KL-divergence term, the objective can be rewritten as

T 1 .
. E, [7[ : _ 2 aTh
pnil(lTn) pa i(x¢,u¢) Vi (x¢, 1) 71/,? u; Ay

— log mo(ue|x¢) — H(pi(ut|xt))] , (3

where H represents the maximum entropy, and this maxi-
mum entropy objective can be optimized with iterative LQG.



The solution is a linear-Gaussian controller of the form
pi(ug|xy) = N(Kixy + ki, Q) L .), as shown in prior work
[20]. Prior methods sample dlrectly from the linear-Gaussian
controller p;(u;|x;) [21], but since we would like to use
MPC to robustly control the robot during the rollout, we
instead construct a surrogate cost function ¢(x;, u;) for MPC
that will allow us to robustly generate trajectories that have
high probability under p;(7).

This surrogate cost should fulfill a number of criteria in
order to be effective: first, it must encourage MPC to visit
states that have high probability under p;(7); second, it must
produce good long-horizon behavior even when optimized
under a short horizon; and third, it must keep the generated
behavior close to the neural network policy 7y (u|x:). When
we run MPC at time step ¢ from the current state xi,
we first compute p;(xy|x;) for each ¢’ € [t + 1,t + H|
under the known approximate dynamics and the time-varying
linear-Gaussian controller obtained from the offline LQG
optimization. Using pyp and X to denote the mean and
covariance of p;(xy |xt), we can compute these distributions
according to the following recurrence:

P41 = [fxt/ fut}[u/'i‘kt/“th/( t’_f(t’):|

Si = e fur] Yy SuKJ fT Yy
t'4+1 — xt ut Kt’Et’ Q;lllt/+Kt’Zt’KtT; fut/ t

The intuition here is that we would like to figure out
which states the offline LQG solution would prefer to visit,
independently of the actions required to get to these states.
This is important since, in the presence of model errors
and perturbations, the nonlinear approximate model might
indicate different actions when combined with MPC, but
the overall distribution over states should remain similar.
Once we obtain p;(X¢y1, - .., Xer g |Xe), we can marginalize
to obtain p;(xy/ ) for each time step ¢’ € [t + 1,¢ + H], and
we then construct the surrogate cost as

— log pi (x4 x¢)
— v}, log mp (up |x4) — uly

Z(Xt/ N ut/) =
P C))

We then run MPC on this cost as described in the previous
section to obtain a new linear-Gaussian controller for time
step ¢ of the form p;;(u|x;) = N(Kmxt + kt”, Qu ut”)
and choose the action by sampling from this linear-Gaussian.
The subscript ij here denotes the jth sample (generated via
MPC) from the ith trajectory distribution.

While samples generated in this way are not exactly
samples from p;(7), but rather samples from a distribution
formed by the product of independent marginals at each time
step, we found that the resulting algorithm was still able to
produce good training data for the neural network in guided
policy search. Furthermore, the additional information pro-
vided by p;(x¢|x;) allowed MPC to succeed in the presence
of model errors and disturbances, even on tasks such as
obstacle avoidance that require long-horizon lookahead.

One final detail is that both the cost in Equation () and
the offline optimization objective in Equation (3) require
access to logmy(us|x;), while we only have access to
log mg(us|oy), and oy is in general a complex and unknown
function of x;, since the observation might include, e.g., laser

rangefinder readings, while the state might consist of the
vehicle’s position and orientation. To obtain log mg(u|x:),
we follow prior work and approximately linearize the policy
by using the previous set of rollouts from the physical
system. This can be done by fitting a time-varying linear-
Gaussian model of log 7y (u|x;) to the samples, since each
sample includes both x; and oy, allowing us to evaluate the
policy at each sampled state x;. The fitting is done by using
linear regression with a Gaussian mixture model prior, as in
previous work [19].

C. Training the Nonlinear Policy

The final nonlinear policy mp(u¢|o:) is trained using
standard supervised learning, from samples collected via
MPC. The objective for this supervised learning is given in
Equation @I) though in the case of MPC-based samples, we
substitute p;;(u¢|x;) for p;(us|x;). In the case of a con-
ditionally Gaussian policy mp(uzos) = N (u™(0¢), X7 (0¢)),
the KL-divergence Dy (mg(ut|oy”)||psj(us|x;”)) in this ob-
jective can be written out as

Dy (mo(ueloy?) |5y (uelx; 7)) =

1 T ~ A T

5(# (06) = Grij (%¢)) Quiutij (1
1 .-

- itr[Qu,utijEW(ot)} +

(0¢) — Grij(xt))
1 us us
§log|2 (o) +)\Et,u (0v),

where §1;(x¢) = Kyijx; + ky;;. Note that this is simply
a weighted least squares objective on the mean function
1™ (04). In this work, we represent p™ (o;) with a multilayer
neural network, which allows us to train flexible and ex-
pressive policies. Since we prefer deterministic or nearly-
deterministic policies, we choose X"(0;) to be constant,
which means that we can solve for it in closed form
according to

N M -1
o0 = (23 0uns)
i=1 j=1
The neural network mean function p™ (0;) is optimized using
stochastic gradient descent (SGD). As noted earlier, one of
the key advantages of this type of training approach is that
the input o, to the neural network policy need not match the
state x; used during trajectory optimization and MPC, which
allows us to train policies that operate directly on raw inputs
from the onboard sensors.

Algorithm 2 MPC-guided policy search

1: for iteration k£ =1 to K do

2:  Optimize p;(7) offline according to Equation

3:  Run MPC M times from initial states x; ~ p;(x1) to
create {p;;(7)} and {7;;} using ¢(7) in Equation

4:  Train nonlinear policy mg(u;lo;) to match each
Pij(u¢|x¢) along each 7;;, using Equation (2))

5. Fit time-varying linear-Gaussian model to estimate
mo(ue[x;) around each p;(7) using samples {7;;}

6:  Update vf and \!,; as in [23]

7: end for

8: return optimized policy parameters 6




D. Algorithm Summary

A summary of our method is presented in Algorithm [2]
At each iteration, we first generate an offline solution by
using iterative LQG to optimize the augmented objective in
Equation (3). This offline solution allows us to initialize and
construct the cost for MPC rollouts. We conduct M MPC
rollouts for each trajectory distribution p;(7), constructing a
new surrogate cost 1 (x¢,uy) at each time step. These MPC
rollouts provide us with sample trajectories {7;;} and MPC
controllers {p;;(7)}, which we can use to train the nonlinear
neural network policy 7 (u;|o;) as described in the previous
section. After the policy is trained, we update our time-
varying linear-Gaussian fit for 7g(u;|x;) by using the latest
samples. Note that a separate linear-Gaussian estimate of
mo(ut|x¢) is constructed around each trajectory distribution
p;(7). Finally, we adjust the dual variables as described in
previous work [23].

V. EXPERIMENTAL EVALUATION

We evaluated our method on simulated quadrotor obstacle
avoidance tasks.

A. Quadrotor System

The simulated quadrotor was modeled after 3DR’s
IRIS+E|, which has width 0.47m, height 0.11m, and weight
1.5kg. The dynamics followed the formulation described
by Martin and Salaun [25]. The true state of the ve-
hicle x; = (p¢, Vi, s, w;) € R consisted of the posi-
tion p; = (x4,y:,2;) and orientation q;, expressed as a
quaternion, as well as their time derivatives, i.e. lin-
ear velocity v, and angular velocity w;. The controls
u; € R* consisted of rotor velocities. The observation model
o; = (r¢, Vi, qs, wi) € R4 lacked the position p; and in-
stead included readings r; from a set of 30 equally spaced
laser rangefinders with max range 5Sm arranged in 180 degree
fan in front of the vehicle. This type of observation model is
quite challenging to integrate into simple control methods,
such as time-varying linear controllers, but can be easily
processed by a multilayer neural network policy.

B. Cost Function
_ The cost function for the iterative offline LQG optimiza-
tion was
I(x¢,u;) =10%| vy — v*||3 + 500||z: — 2|3+
10| ar — q"[[3 + 250]|wr — w”| I3+
0.5[[uy — Wiovex| 5+

10* max (dsars — signed_distance(x; ), 0)

where x; = ((z1, Y, 2t), Vi, Q,wy) is the full state as
defined previously; z*, v*, q*, w™ are the target height, linear
velocity, orientation, and angular velocity, respectively; and
Uuj,ver 1S the desired rotor velocity for hovering. The final
term is a hinge loss on the distance of the quadrotor to the
nearest obstacle; there is no penalty if the nearest obstacle
is further than dgapg.

https://3dr.com/kb/iris/

Fig. 2: The quadrotor must learn to fly around a cylindrical
obstacle and down a hallway using only onboard sensing. The blue
semicircle is the range of the onboard laser range finders.

C. Neural Network Policy

The neural network policy consisted of two fully con-
nected hidden layers, each with 40 rectified linear (ReLU)
units [30]. For training the neural network in each iteration
of guided policy search, we used the ADAM [14] algorithm,
optimizing using 20,000 minibatches with a minibatch size
of 50. We used default values for all learning parameters as
presented in [14].

D. Experimental Domains

Figure 2] depicts the two simulated environments in which
we trained our neural network policies: a single cylindrical
obstacle of radius 0.5m and height 4m, and a straight hallway
of width 5m and height 4m. For the cylinder avoidance task,
we used N = 18 initial states with varying initial (z,y)
positions in front of the cylinder; for the hallway task, we
used N = 6 initial states with varying y-coordinate values.
For both tasks, each initial state corresponds to a different
trajectory distribution p;(7), with M = 4 samples from each
distribution. Each trajectory 7 has length 7" = 150, which
equates to 7.5 seconds. Collision with an obstacle or the
ground, or flying above an obstacle were considered as a
training crash.

E. Baseline Methods and Model Errors

To evaluate the importance of using MPC, we trained
neural network policies on each of the tasks in the presence
of model errors, using three variants: the full MPC-guided
policy search algorithm with the surrogate cost ¢(x:,u;)
described in Section [[V-B], a variant of MPC-guided policy
search that uses the true cost ¢(x;,u;) with the policy KL-
divergence term and dual variables for MPC, and a variant
that does not use MPC at all, and instead performs the
rollouts by using the time-varying linear-Gaussian policy
generated by the offline iterative LQG algorithm. All meth-
ods were trained for K = 5 guided policy search iterations.

We evaluated each of the above variants in the presence
of four different types of model errors: no model error, the
actual weight of the quadrotor was 0.05kg (3.3%) greater
than the expected weight, the two rotors on one side of
the quadrotor had an 8% multiplicative rotor velocity bias,
and all model parameters (e.g. moments of inertia, drag
coefficients) were perturbed by retaining only one significant
digit.
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train: single cylinder; test: infinite forest
no model error 0.05kg mass error 8% rotor bias perturbed model parameters
(baseline) | (baseline)|  full (baseline) | (baseline) | full (baseline) | (baseline)|  full (baseline) | (baseline) | full
method offline MPC | MPC offline MPC | MPC offline MPC | MPC offline MPC | MPC
L(xt,ue) |£(xt,ue) | £(xe, ug) || £0xt, ue) [ (%, ue) | £(xe, ug) || €(Xt, ue) | £(xe, ue) [ €(x¢, ug) || £(xe, ue) | €(xt,ue) | £(xq, uyg)
number of 0 0 1 0 0 46 0 0 N/A 4 0
training crashes
average test 56.9 35.8 53.4 11.3 6.9 344 60.0 56.1 95.7 N/A 20.8 60.5
flight duration (s)| £ 27.3 | £225 | £ 225 + 52 + 2.6 + 84 + 158 | £308 | £9.8 +98 | £27.0
train: straight hallway; test: winding hallway
no model error 0.05kg mass error 8% rotor bias perturbed model parameters
(baseline) | (baseline) |  full (baseline) | (baseline) |  full (baseline) | (baseline) |  full (baseline) | (baseline) |  full
method offline MPC | MPC offline MPC | MPC offline MPC | MPC offline MPC | MPC
L(xe,up) | €(xe,ue) [ £(xe, ug) || €0xe, we) [ £(xe, ue) | £(xq, ug) || 0(x¢, ue) | £(xe, ue) [ £(xe, ue) || 0(xe, ur) | €(x¢,0e) | £(x¢, uy)
number of 0 0 0 0 0 0 76 0 0 N/A 0 0
training crashes
average test 46.2 35.2 352 21.7 15.7 31.8 26.0 51.1 28.5 N/A 9.9 55.2
flight duration (s)| + 284 | + 13.3 | 4 20.0 + 5.8 +13 | £157 +21.1 | +£286 | +16.2 +42 | £175

TABLE I: Training and test results comparing our full MPC-guided policy search method with two baselines. The test flight duration
was averaged over 20 runs of the learned policies. In one scenario (top table), the policy search method variants were trained on a single
cylinder and tested in an infinite forest. In the other scenario (bottom table), the policy search variants were trained in a straight hallway
and tested in a winding hallway. Each policy search variant was tested with four different model errors. Experiments labelled N/A were
unable to complete due to excessive crashing. In the majority of experiments, the full MPC-guided policy search method outperformed
the two baselines, crashing less during training and with the final learned neural network policy flying for the longest duration in the test

scenarios.

F. Results

Table [I| shows the number of crashes experienced by the
quadrotor during training. These results indicate that MPC
using the surrogate cost is able to train a successful neural
network policy without experiencing catastrophic failure.

To evaluate the generalization of the learned policies, we
ran the trained neural networks in two test scenarios: an
infinite forest of cylinders of the same shape as in training,
but at random positions an average distance of Sm apart,
and a winding hallway with randomized turns of at most
30° every 5Sm. We ran the policies trained with a single
cylinder in the infinite forest, and we ran the trained policies
for the straight hallway in the winding hallway. The average
flight duration of the final trained neural network policies
are shown in Table [ With no model errors, our MPC-
guided policy search algorithm was comparable to the other
methods. When model errors were introduced, our method
outperformed the two baselines in the majority of scenarios.
Videos of the resulting flights are included as supplementary
material, and may also be viewed on the project Webpageﬂ

Our evaluation shows that MPC-guided policy search is an
effective algorithm for off-policy training of complex neural
network policies for autonomous aerial vehicles. Our full
method was able to learn each of the two behaviors without
experiencing any catastrophic failures during training, and
the trained policy was able to generalize effectively.

VI. DISCUSSION AND FUTURE WORK

We presented an algorithm for training deep neural net-
work control policies for autonomous aerial vehicles, by
using model predictive control to generate guiding samples
for guided policy search. Our MPC-guided policy search uses

Zhttp://rll.berkeley.edu/icra20l6mpcgps

a modified MPC algorithm that trades off minimizing the cost
against matching the current neural network policy, so as to
generate good training data that can be used to train a better
policy with standard supervised learning. Since the partially
trained neural network policy is never used to choose actions
at training time, the more robust and reliable MPC method
provides a substantial improvement in safety over traditional
reinforcement learning methods. Our results show that this
algorithm is able to learn complex policies, such as high
speed obstacle avoidance, using raw sensor inputs and low-
level rotor command outputs.

One of the key ideas behind our method is the notion
of an instrumented training setup, which allows MPC to be
performed at training time with full state observations, which
could be provided, for example, by using motion capture. At
the same time, the vehicle gathers observations from its own
onboard sensors, and trains the policy to mimic the action
chosen by MPC using only the raw sensor readings, without
relying on the full state. Acquiring the sensor readings is
important, because accurately modeling complex sensors,
such as laser range finders and cameras, is very difficult,
while obtaining a model of the vehicle that is accurate
enough to perform MPC is comparatively easier.

While our approach can train very complex, high-
dimensional policies, it shares many of the limitations of
prior guided policy search methods [23]. In particular, full
state observations are required at training time, in order
to perform MPC, even though the final neural network
policy can perform the task using only onboard sensors.
In the real world, this kind of state information could be
obtained using an instrumented training environment (with,
for example, motion capture). Since the instrumentation is
only required during training, the final neural network is still
able to act in the real world, so this approach is practical
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for a wide range of robotic tasks. However, not all aerial
maneuvers can be learned in such an instrumented training
setup, and combining explicit state estimation with guided
policy search in future work could lead to a much more
broadly applicable algorithm. Another direction that can be
explored in future work is to combine guided policy search
with more sophisticated MPC and planning algorithms. In
principle, a wide variety of methods can be used to generate
guiding samples, and more sophisticated methods might
afford superior robustness and obstacle avoidance [7].
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