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Abstract— Workspace determination for robots is an im-
portant step in analysis and synthesis. A couple of methods
for computing the wrench-closure workspace of cable-driven
parallel robots were reported in the literature but all methods
tend to be time consuming. In this paper, a new algorithm
is presented that exploits different techniques to speed upthe
computation. Pre-computation is largely exploited and benefit
are gained both from considerations in computer algebra and
efficient numerical routines. Results from the computationof
the translational (sometimes also called constant orientation)
wrench-closure workspace are presented and performance
values are provided. To the best of the authors’ knowledge,
the method proposed in this paper is superior in terms of
computational time to any other approach for workspace
computation.

I. INTRODUCTION

Workspace evaluation for cable-driven parallel robots is a
challenging task required amongst other for robot analysis
and parameter synthesis. Early studies of suspended cable
robots including workspace aspects were presented by Albus
[1]. Verhoeven [16] shows that the wrench-closure workspace
of completely and redundantly constrained cable robots is in
general bounded by polynomial surfaces and also provides
an explicit formula to compute the polynomials. Gouttefarde
[4], [6] shows that the wrench-closure workspace of planar
robots consists of conic sections and elaborates techniques
to determine the boundaries of that workspace. Later, a
technique was proposed to compute cross sections of the
wrench-closure workspace of cable robots and it was showed
that the translational workspace is bounded by cubic surfaces
[7]. Gouttefarde [5] provides some theorems to charac-
terize the boundary of the wrench-closure workspace for
six d.o.f. robots with seven cables. Using other arguments,
the results from Gouttefarde were generalized to spatial
robots by Stump [15]. Hadian [8] studies the wrench-feasible
workspace of a specific 6-6 suspended cable robot and
derives explicit formulas for cross section of the translational
workspace. Azizian [3], [2] determines the boundaries of
the wrench-feasible workspace for planar robots. Hassan
[9] presents an analytical expression for the wrench-closure
workspace for the example of a storage receival machine.
Therefore, the authors exploit the symmetric geometry of the
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Fig. 1. CAD draft of the spatial cable robot IPAnema with eight cables
and six d.o.f.

eight cables robot with six d.o.f. by essentially considering
a cross section of the workspace to simplify the analysis of
statics to an equivalent of a planar robot. Then, the separating
hyperplane approach is used to compute the workspace.
Recently, an algebraic form of the boundary of the wrench-
closure workspace was determined from sub-determinants of
the structure matrix using computer algebra by Sheng [14].

In this paper, we extend the latter approach [14] to com-
pute the wrench-closure workspace based on the algebraic
expressions. However, the approach presented here is based
on a mixture of considerations on the algebraic structure
where a numerical scheme is proposed that exploits the
structure without using computer algebra to manipulate the
equations. The proposed method employs relatively simple
mathematical tooling. In contrast to Verhoeven’s conjecture
[16] that the closed-form of the wrench-closure workspace
is practically useless due to is excessive length, we show
in this contribution that firstly the algebraic form can be
broken down to a handy data model and using a numerical
procedure, this workspace can be computed extremely fast.
Thus, applications in real-time systems are basically possible.
Thus, the key advantage of the scheme presented here is its
outstanding computation time to determine the shape, size,
and volume of the wrench-closure translational workspace of
robots with arbitrary geometry.

The rest of the paper is structured as follows. Sec. II recalls
the relevant background used in this paper. In Sec. III, the
idea and the algorithm for computing the analytic workspace
model are derived. Then, an algorithm is proposed to gen-
erate a standard workspace representation from the analytic
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Fig. 2. Vector loop for geometry and kinematics of a general spatial cable
robot

model (Sec. IV) and results are presented (Sec. V). The paper
closes with some conclusions and future work.

II. KINEMATIC AND STATIC FUNDAMENTALS

A. Kinematic analysis

For better reference, the kinematics of cable robots is
briefly reviewed. Fig. 2 shows the kinematic structure of a
spatial cable robot, where the vectorsai denote the proximal
attachment points on the frame, the vectorsbi are the relative
positions of the distal attachment points on the movable
platform decomposed in the moving frame of the mobile
platform, andli denote the length of the cables. Letm be
the number of cables. Applying a vector loop, the closure-
constraint reads

li = ai − r −Rbi for i = 1, . . . ,m , (1)

where the vectorr is the Cartesian position of the platform
and the rotation matrixR represents the orientation of the
platform. The unit vector along the cable becomes

ui =
li

li
with li = |li| . (2)

For force and torque equilibrium, it holds true [11], [16]

[
u1 . . . um

Rb1 × u1 . . .Rbm × um

]

︸ ︷︷ ︸
AT

(r,R)




f1
...
fm




︸ ︷︷ ︸
f

+

[
fP

τP

]

︸ ︷︷ ︸
w

= 0,

(3)
wherefP, τP are the applied forces and torques, respectively,
acting on the platform andf is the vector of the cable forces.
The matrixAT is referred to asstructure matrix and permits
to investigate existence and quality of the workspace. A pose

(r,R) is said to belong to the wrench-closure workspace if
and only if there exist positive solutions forf for Eq. (3).

For the study presented here, we apply the structure matrix
in a non-normalized form

Â
T
=

[
l1 . . . lm

Rb1 × l1 . . . Rbm × lm

]
(4)

that can be represented as

Â
T
L−1 = AT , (5)

whereL = diag(l1, . . . lm) is the diagonal matrix with the
cable lengthsli. Since each cable lengthli is always positive,
the matrix is regular and trivial to determine. Technically
speaking, the cable forces are linearly scaled by the matrix

L−1. Therefore, one can usêA
T

for analyzing wrench-
closure workspace instead ofAT.

B. The Structure of the Workspace Boundary

Verhoeven [16], Gouttefarde [4], [6], Stump [15] and later
Sheng [14] showed that the boundary of the wrench-closure
workspace can be determined from algebraic expressions by

evaluating the structure matrix. If thêA
T

is used instead
of AT in the expressions, the resulting terms are largely
simplified and Sheng derived second or third order multivari-
ate polynomials for the workspace boundary using computer
algebra. Using this procedure, the analytic expressionsNi

potentially bounding the translational workspace were shown
[14] to be for a planar robot withm = 4 cables

N1 : det(A4,A2,A3) = 0 (6)

N2 : det(A1,A4,A3) = 0 (7)

N3 : det(A1,A2,A4) = 0 (8)

N4 : det(A1,A2,A3) = 0 (9)

and for a spatial robot withm = 7 cables

N1 : det(A7,A2,A3,A4,A5,A6) = 0 (10)

N2 : det(A1,A7,A3,A4,A5,A6) = 0 (11)
...

...

N6 : det(A1,A2,A3,A4,A5,A7) = 0 (12)

N7 : det(A1,A2,A3,A4,A5,A6) = 0 , (13)

whereAi is thei-th column of the non-normalized structure
matrixÂ

T
. Following the procedure presented in [14], a pose

belongs to the workspace if a subset of the equationsNi have
the same sign. This criterion is exploited later in Sec. IV
to quickly compute the workspace. One can essentially do
the same computation for the orientation workspace by
substituting a constant position into the structure matrix
and receive determinants that depend on the orientation
parameters rather than the position. However, the analysis
for the orientation workspace is different from the translation
due to the different topology ofIR3 and the rotation group
SO3 and we do not tackle this problem here.



III. A SYMBOLIC-NUMERIC WORKSPACE
APPROACH

A. The Concept

As shown by Verhoeven [16] and lately detailed by Sheng
[14], one can describe the boundary of the constant orien-
tation wrench-closure workspace by second or third order
polynomials for the planar or spatial case, respectively. The
basic approach to compute the workspace boundary is as
follows. Firstly, one sets up the structure matrix of the robot.
Secondly, the actual geometry parameters are substituted into
the formula of the robot. Thirdly, the pose parameterization is
introduced into the structure matrix. Then, one can compute
symbolically the determinants. Evaluating the resulting sym-
bolic expressions yields the desired parametric curves that
are the boundary of the workspace. It is straight forward
to execute the above workflow using a computer algebra
system and even for the spatial case with6×6 matrices, one
can compute the determinant for a certain parameterization.
However, if arbitrary geometry is assumed, the number of
symbols in the CAS system becomes that large, that it cannot
be handled.

To overcome this limitation, an symbolic-numeric ap-
proach is proposed in this work which is inspired by the
method from Walker and Orin [17] for the equations of
motion as well as by Hiller [10] for computing the Jacobian
matrix of multi-body systems. In both contributions, some
kind of coefficient identification scheme is employed to
extract the numerical values of an equation with known struc-
ture from numerical evaluation with carefully chosen special
values. Having realized that the mathematical structure ofthe
expressions of the workspace boundary are second or third
order multivariate polynomials, we can use a pose dependent
formulation to compute values ofNi.

The surprising effect of this evaluation is, that one can
reconstruct the full workspace boundary from only six (pla-
nar) or 20 (spatial) local evaluations of the structure matrix
and its determinants to receive a closed-form parametric
representation of the constant orientation wrench-closure
workspace.

B. The 1R2T Case

The approach for the computation of the constant ori-
entation representation for a robot with four cables is as
follows. For the sake of simplicity, we omit in the following
an additional index for the coefficientsa for each equation
Ni. Each boundary equation takes the form

Ni(x, y) = axxx
2 + axx+ ayyy

2 + ayy+ axyxy+ a0 (14)

for a planar robot. On the other hand, one can numerically
evaluate Eq. (6)–(9). The identification of the coefficients
axx, . . . , a0 is done by computing the determinants for six
position vectorsr = [x, y]T following the scheme:

• compute the coefficienta0 by evaluating the four deter-
minants for the position vectorr = 0.

• computeaxx and ax from the determinants received
from the position vectorsr = [1, 0]T andr = [−1, 0]T
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Fig. 3. Unit octahedron as initial configuration for the workspace data
model

• computeayy and ay from the determinants received
from the position vectorsr = [0, 1]T andr = [0,−1]T

• determineaxy from evaluating the positionr = [1, 1]T.

The numerical procedure is as follows. Compute the non-

normalized structure matrix̂A
T

for the positionr = 0

and the desired orientationϕ0 and the respective numerical
values ofNi for i ∈ 1, . . . , 4 from Eq. (6)–(9). Analyzing the
polynomial expression in Eq. (14) reveals that substituting
zero for bothx andy cancels out all terms but the coefficient
a0 and thusa0 = Ni(0, 0). Secondly, one repeats the trick
to identify both axx and ax by computingNi(1, 0) and
Ni(−1, 0). The identification of the coefficients is slightly
more complicated since we have to solve a linear2 × 2
equation system which coefficients are defined from our test
poses[1, 0]T and [−1, 0]T, thus

[
1 1
1 −1

] [
axx
ax

]
=

[
Ni(1, 0)− a0
Ni(−1, 0)− a0

]
(15)

has the simple solution

axx =
1

2
(Ni(1, 0) +Ni(−1, 0))− a0 (16)

ax =
1

2
(−Ni(1, 0) + (Ni(−1, 0)) . (17)

The computation ofayy anday with the positions[0, 1]T and
[0,−1]T is done respectively. In the final step, we compute
axy from the position[1, 1]T with the simple equation

axy = Ni(1, 1)− axx − ax − ayy − ay − a0 . (18)

Thus, we have numerically received the exact algebraic
representation of the workspace boundary by as little as
computing numerically the structure matrices for six poses
and determine four determinants for each structure matrix.

A prerequisite of the procedure above is that the generic
test poses used in the algorithm are not singular. If the poses
are singular, a rigid body transformation is applied to the
parametersai, bi to move the reference points away from
the singular loci.



C. The 3R3T Case

The procedure for the spatial robot is essentially the same
but to avoid the tiresome computation, we turn to a linear
equation formulation here. The main part in reconstructing
the polynomial boundary is solving a large system. The
sought polynomial boundaryNi(x, y, z) takes the form

Ni = axxxx
3 + ayyyy

3 + azzzz
3 + axxyx

2y +

axxzx
2z + axyyxy

2 + ayyzy
2z + axzzxz

2 +

ayzzyz
2 + axxx

2 + ayyy
2 + azzz

2 +

axyxy + axzxz + ayzyz + axx+ ayy + azz +

axyzxyz + a0 (19)

The system matrix for identifying the 20 coefficients of the
polynomials reads as block matrix

S =




1 0
T

0
T

0
T

0
T

0
T

0
T 0

1 A 0 0 0 0 0 0

1 0 A 0 0 0 0 0

1 0 0 A 0 0 0 0

1 C D 0 B 0 0 0

1 C 0 D 0 B 0 0

1 0 C D 0 0 B 0

1 1
T

1
T

1
T

1
T

1
T

1
T 1




, (20)

where the first and last column as well as the first and
last row are scalars. Furthermore,0 is a matrix with zero
elements of appropriate size and1 is a matrix having a 1
in each element. In contrast, the other columns and rows
are constructed each from3× 3 matrices from the following
matrices

A =




1 1 1
−1 1 −1
8 4 2


 (21)

B =




1 1 1
−1 −1 1
−1 1 −1


 (22)

C =




1 1 1
−1 1 −1
1 1 1


 (23)

D =




1 1 1
−1 1 −1
−1 1 −1


 (24)

From the structure of matrixS, one can see that it is block
lower triangular. Obviously, bothA and B are regular,
therefore alsoS is regular. Inverting or solving a linear
system withS can be done efficiently. Basically, one can
apply an algorithm similar to the procedure described in the
section above by computing first the coefficienta0, then the
triple axxx, axx, ax from a 3× 3 system and so on.

The vector of the sought coefficientsk of the polynomial
and the right-hand sideh of the equation read

k =




a0
axxx
axx
ax
ayyy
ayy
ay
azzz
azz
az
axxy
axyy
axy
axxz
axzz
axz
ayyz
ayzz
ayz
axyz




, h =




Ni(0, 0, 0)
Ni(1, 0, 0)
Ni(−1, 0, 0)
Ni(2, 0, 0)
Ni(0, 1, 0)
Ni(0,−1, 0)
Ni(0, 2, 0)
Ni(0, 0, 1)
Ni(0, 0,−1)
Ni(0, 0, 2)
Ni(1, 1, 0)

Ni(−1,−1, 0)
Ni(1,−1, 0)
Ni(1, 0, 1)

Ni(−1, 0,−1)
Ni(1, 0,−1)
Ni(0, 1, 1)

Ni(0,−1,−1)
Ni(0, 1,−1)
Ni(1, 1, 1)




. (25)

The coefficients of the polynomial can now be determined
from the simple linear system

Sk = h . (26)

Computing the coefficients of the wrench-closure workspace
of a spatial cable robot with seven cables thus requires the
following steps:

• Numerically determine the structure matrix for the 20
positions listed in Eq. (25).

• For each of these matrices, extract the seven6 × 6
determinants as described in Eq. (10) to generate the
vectorsh.

• Solve the system Eq. (26) to compute the coefficients
for each of the seven polynomials.

• The seven vectorsk contain in their 140 elements the
full information on the constant orientation wrench-
closure workspace of the robot.

The computational costs of the main steps are: setting up 20
structure matrices, computing 140 determinants, and solving
seven20×20 linear systems, when solving the linear system
can be done in linear computation time due to the almost
triangular structure.

The procedure can be generalized to robots with more
than seven cables, where in this case we have to compute
more determinants from the structure matrices. However, the
description of the exact procedure is out of the scope of this
contribution.

IV. WORKSPACE COMPUTATION

Here, we compute the hull using the triangulation ap-
proach used in an earlier work [12]. One core concept is a
parametric line search which can be used here in an elegant
way.



Here, the translational workspace for a given orientation
of the cable robot is represented by a triangulation of its
hull. The idea for the determination of the workspace is
to start with a unity sphere in the estimated centerm of
the workspace and to successively extend the sphere in
radial directions. Clearly, this assumption may lead to an
underestimation of the workspace and the estimation depends
on the chosen value ofm. Contrary, for most technical
applications, only robots with a compact workspace are
interesting and therefore it seems reasonable to restrict a
quick design procedure to such a subspace. The surface of the
sphere is approximated by triangles which are created from
iterative subdivision of the faces of an octahedron. Alterna-
tively, one can also subdivide other regular polyhedrons and
especially the Platonic solids with triangular facettes such as
a tetrahedron or an icosahedron.

In the first step, the eight faces of an octahedron (Fig. 3)
located around the pointm are described as triplets of
vertices, e.g.F1 = {vA,vB,vC}i. Initially, there is a set
L = {F1, . . . , F8} containing eight faces. These faces of
the octahedron are subdivided into four congruent triangles.
This is done by constructing the three verticesvAB,vAC,vBC for
each triangleFi in L and projecting the generated vertices
onto a unit sphere

vij =
vi + vj

|vi + vj |
, i, j ∈ {A,B,C}, i 6= j. (27)

Then, the original triangleFi is replaced by the four triangles
(vA, vAB, vAC), (vB, vAB, vBC), (vC, vBC, vAC), (vAB, vAC, vBC).
This process is repeatedni times thus generating a setL
containingnT = 22ni+3 triangles.

In the second step, the vertices of the triangles are pro-
jected onto the hull of the workspace. Starting from the
estimated centerm of the workspace, the line

Li : ri = m+ λivi λi > 0 (28)

is searched for its roots. Instead of the regula falsi based
line search proposed in [12], one can do better with the
parametric representation derived above. Since the recently
used workspace criteria can only be evaluated as Boolean
test of complex numerical algorithms, we used a regula falsi
line search. Due to the algebraic form of the workspace
boundary, we propose to substitute the lineLi in Eq. (28)
into the surface constrained Eq. (14) providing the following
expression which reads for the planar case

(
axxv

2
xi + axyvxivyi + ayyv

2
yi

)
λi

2

+(2axxmxvxi + axymxvyi + axymyvxi

+2aymyvyi + axvxi + ayvyi)λi

+axxm
2
x + axymxmy + ayym

2
y

+axmx + aymy + a0 = 0 (29)

Analyzing this lengthy expression reveals the simple form
of a quadratic equation inλi. Here, we earn again the
benefit of the algebraic formulation since the boundary of

the workspace is computed by just solving the polynomial
with the well-known formula

λ
1,2
i = −

p

2
±

√(p
2

)2

− q . (30)

According to the assumptions made for the hull computation,
we use the smallest positive value ofλ

1,2
i received for any

one polynomialNi. If the roots are complex or all negative,
we setλi = 0. In the latter case, the projection center was
not part of the workspace.

For the spatial case, one can do essentially the same where
the final solving forλi requires to compute the closed-
form solution to a third order polynomial. However in both
cases, we have shown that all computation steps from the
geometry of the robots to the triangulation of the constant
orientation workspace can be executed in closed-form with
simple mathematical tools.

Even more, the triangulated hull of the workspace allows
for some geometric characterizations of the workspace. It
is straight forward to calculate the surfaceS(W) and the
volumeV (W) of the workspace as follows

S(W) =
1

2

L∑
||(rA − rB)× (rA − rC)||2 (31)

V (W) =
1

6

L∑
((rA−m)× (rB−m)) . (rC−m) (32)

whereL is the set of the triangles. For the volume, one can
do better by substitutingri−m = λivi the parametric form
using the direction vectorvi and its lengthλi. Then, the
equation for the volume becomes

V (W) =
1

6

L∑
λAλBλC(vA × vB) .vC, (33)

where the scalar value of the product(vA×vB) .vC is equal for
all triangles and depends only on the number of subdivisions
nT done. Thus, one finds the simple form

V (W) =
(nA × nB) .nC

6

L∑
λAλBλC, (34)

with the constant factorV (nT)
i = (nA × nB) .nC. Eventually,

even these expressions are received in a constant number of
steps without approximation excepts for the assumption that
the triangulation for the quadratic and cubic surfaces is exact.
However, the polynomial form of the workspace boundary
allows to compute and bound the error for the triangulation
e.g. using interval analysis.

V. COMPUTATION RESULTS

A. Quantitative Results

The workspace of the cable robot IPAnema 1 was deter-
mined for verification purpose using the algebraic expression
method. The robot has seven cables and its geometrical
parameters are given in Tab. I. The determined translational
wrench-closure workspace is depicted in Fig. 4.



TABLE I

IPANEMA 1 GEOMETRICAL PARAMETERS FOR ROBOT WITH SEVEN

CABLES: PLATFORM VECTORSb AND BASE VECTORSa

cablei platform vectorbi base vectorai

1 [−0.125, 0.0, 0.0]T [0.0, 0.0, 0.0]T

2 [−0.125, 0.0, 0.0]T [4.0, 0.0, 0.0]T

3 [0.0, 0.25, 0.0]T [4.0, 3.0, 0.0]T

4 [0.0, 0.25, 0.0]T [0.0, 3.0, 0.0]T

5 [−0.125, 0.0, 0.0]T [0.0, 0.0, 2.0]T

6 [−0.125, 0.0, 0.0]T [4.0, 0.0, 2.0]T

7 [0.0, 0.25, 0.0]T [2.0, 3.0, 2.0]T
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Fig. 4. Constant orientation wrench-closure workspace of the IPAnema 1
design with seven cables.

B. Computation Time

In order to determine the computational costs of the
proposed method, an implementation in C++ was employed.
In order to compute the matrix operations including the eval-
uation of the determinants, the eigen 3 library was used. The
computation time was assessed on an Intel Core i5-3320M
2.6 GHz, Visual C++ 2010 using a single thread. A first
test for a planar robot reveals computation times of around
0.12 ms per constant orientation evaluation with 36 points on
the boundary and 0.26 ms for a resolution with 360 points.
The computation time for computing the coefficients of the
workspace polynomials without workspace computation are
estimated to be 0.025 ms. Testing the components of the
vector base of the matrix kernel to have the same sign, leads
to a computation time of 10 ms for 360 poses.

The evaluation of wrench-feasibility using the fast closed-
form method [13] requires for 360 points with regula falsi
line search around 12.5 ms.

VI. CONCLUSIONS

In this paper, a numerical approach to compute the
wrench-closure workspace of cable-driven parallel robots
is proposed. The method efficiently exploits findings from
theoretical considerations on the structure of the workspace
where a simple but efficient numerical scheme is presented
to execute the actual computation. A surprising result of the
study is that for a planar cable robot with four cables the
translational wrench-closure workspace can be reconstructed
from the numerical evaluation of the structure matrix of only
six regular poses. In the spatial case, the same procedure

is possible using only 20 regular poses. The numerical
algorithm is applied to some case studies showing very
short computation time. Interestingly, the mathematical tools
required to do the computations are limited to computing
determinants and solving linear systems with standard tools.
All steps are executed explicitly without numerical iteration.

Based on these results, we expect more efficient assess-
ment of workspace computation in real-time control, e.g. to
compute the translational distance between the current robot
pose and the boundary of the workspace.
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