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Abstract— Workspace determination for robots is an im-
portant step in analysis and synthesis. A couple of methods
for computing the wrench-closure workspace of cable-drive
parallel robots were reported in the literature but all methods
tend to be time consuming. In this paper, a new algorithm
is presented that exploits different techniques to speed ughe
computation. Pre-computation is largely exploited and begfit
are gained both from considerations in computer algebra and
efficient numerical routines. Results from the computationof
the translational (sometimes also called constant orientin)
wrench-closure workspace are presented and performance
values are provided. To the best of the authors’ knowledge,
the method proposed in this paper is superior in terms of
computational time to any other approach for workspace
computation.

I. INTRODUCTION
Workspace evaluation for cable-driven parallel robots is a'wgd gi'x d(_ff}'? draft of the spatial cable robot IPAnema with ¢igables

challenging task required amongst other for robot analysis
and parameter synthesis. Early studies of suspended cable

robots including workspace aspects were presented by AlbUgint caples robot with six d.o.f. by essentially considgri
[1]. Verhoeven [16] shows that the wrench-closure workepac_d cross section of the workspace to simplify the analysis of

of completely and redundantly constrained cable robots is ktatics to an equivalent of a planar robot. Then, the seipgrat
general bounded by polynomial surfaces and also prowdﬂ?perplane approach is used to compute the workspace.
an explicit formula to compute the polynomials. Goutteéard Recently, an algebraic form of the boundary of the wrench-
[4], [6] shows that the wrench-closure workspace of plangtj,g re workspace was determined from sub-determinants of
robots consists of conic sections and elaborates tech®iqufa structure matrix using computer algebra by Sheng [14].

to determine the boundaries of that workspace. Later, a .
. . In this paper, we extend the latter approach [14] to com-
technique was proposed to compute cross sections of the .
élte the wrench-closure workspace based on the algebraic

wrench-closure workspace of cable robots and it was show . .
. . . xpressions. However, the approach presented here is based
that the translational workspace is bounded by cubic sesfac . . : .
on a mixture of considerations on the algebraic structure

[7]. Gouttefarde [5] provides some theorems to charac- . . .
terize the boundary of the wrench-closure workspace fc\)’\rlhere a numerical scheme is proposed that exploits the
. ry . P Structure without using computer algebra to manipulate the
six d.o.f. robots with seven cables. Using other arguments . . .

. .efuations. The proposed method employs relatively simple
the results from Gouttefarde were generalized to spatigl

robots by Stump [15]. Hadian [8] studies the wrench-feasiblnl]gthematlcal tooling. In contrast to Verhoeven’s conjextu
o ] that the closed-form of the wrench-closure workspace
workspace of a specific 6-6 suspended cable robot ar[1d

. . . . iS” practically useless due to is excessive length, we show
derives explicit formulas for cross section of the transtzil P y g

. . ) in this contribution that firstly the algebraic form can be
workspace. Azizian [3], [2] determines the boundaries Ot{:roken down to a handy datg model EEand using a numerical

the wrench-feasible workspace for planar robots. Hassan .
. ) procedure, this workspace can be computed extremely fast.
[9] presents an analytical expression for the wrench-cesu

Thus, applications in real-time systems are basicallyiptess

workspace for the example of a storage receival maChIrL?hus, the key advantage of the scheme presented here is its

Therefore, the authors exploit the symmetric geometry ef thoutstanding computation time to determine the shape, size,
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(r, R) is said to belong to the wrench-closure workspace if
and only if there exist positive solutions fgr for Eq. (3).

For the study presented here, we apply the structure matrix
in a non-normalized form

ST Iy . .
A = Rbl Xll Rbmxlm (4)
that can be represented as
AL t—aAT ()

where L = diag(ly,... l,,) is the diagonal matrix with the
cable lengthg;. Since each cable lengthis always positive,
the matrix is regular and trivial to determine. Technically
speaking, the cable forces are linearly scaled by the matrix

~T .
L~'. Therefore, one can usd for analyzing wrench-
closure workspace instead f .

B. The Structure of the Workspace Boundary

Fi%. 2. Vector loop for geometry and kinematics of a genepatial cable Verhoeven [16], Gouttefarde [4], [6], Stump [15] and later
robot Sheng [14] showed that the boundary of the wrench-closure
workspace can be determined from algebraic expressions by

model (Sec. IV) and results are presented (Sec. V). The pa@aluating the structure matrix. If thd ' is used instead
closes with some conclusions and future work. of AT in the expressions, the resulting terms are largely
simplified and Sheng derived second or third order multivari
Il. KINEMATIC AND STATIC FUNDAMENTALS ate polynomials for the workspace boundary using computer
A. Kinematic analysis algebra. Using this procedure, the analytic expressivps
fotentially bounding the translational workspace werexsho

For better reference, the kinematics of cable robots 5.[4] to be for a planar robot withn — 4 cables

briefly reviewed. Fig. 2 shows the kinematic structure of

spatial cable robot, where the vectarsdenote the proximal Ny : det(Ay, Ay, A3) =0 (6)

attachment points on the frame, the vectiarare the relative N, - det(Ar, Ag, As) = 0 @)

positions of the distal attachment points on the movable 2 b

platform decomposed in the moving frame of the mobile Ns det(A1, Az, Ag) = 0 (8)

platform, andl; denote the length of the cables. Let be Ny : det(A;, Az, A3) =0 9)

the number of cables. Applying a vector loop, the closure- i .

constraint reads and for a spatial robot withn = 7 cables
li=a;—7—Rb; for i=1,....,m |, (1) Ni:  det(A7, Aj, A, Ay, A5, A6) =0 (10)

Ny : det(Ay, A7, Az, Ay, A5, Ag) = 0 (11)

where the vector is the Cartesian position of the platform
and the rotation matri® represents the orientation of the : :
platform. The unit vector along the cable becomes Ng : det(Ay, Ap, Az, Ay, A5, A7) = 0 (12)

w — ;_Z with 1, = || . @) Nz:  det(Aq, A, A3, Ay, A5, Ag) =0, (13)

' where A; is thei-th column of the non-normalized structure

For force and torque equilibrium, it holds true [11], [16] matrix A . Following the procedure presented in [14], a pose

f1 belongs to the workspace if a subset of the equatiénisave
uy Um ] . i [ Ie } -0 the same sign. This criterion is exploited later in Sec. IV
Rby x uy ... Rby X U, e ’ to quickly compute the workspace. One can essentially do

fm the same computation for the orientation workspace by
f substituting a constant position into the structure matrix
(3) and receive determinants that depend on the orientation
where f,, 7 are the applied forces and torques, respectivelparameters rather than the position. However, the analysis
acting on the platform and is the vector of the cable forces. for the orientation workspace is different from the tratisia
The matrix AT is referred to astructure matrix and permits due to the different topology dR® and the rotation group
to investigate existence and quality of the workspace. A2po$SO; and we do not tackle this problem here.

ATr R)



1. ASYMBOLIC-NUMERIC WORKSPACE vA
APPROACH

A. The Concept

As shown by Verhoeven [16] and lately detailed by Sheng
[14], one can describe the boundary of the constant orien-
tation wrench-closure workspace by second or third order S P
polynomials for the planar or spatial case, respectivelhe T 1
basic approach to compute the workspace boundary is as ) ‘
follows. Firstly, one sets up the structure matrix of theab
Secondly, the actual geometry parameters are substituied i | /
the formula of the robot. Thirdly, the pose parameterizaiso vrl
introduced into the structure matrix. Then, one can compute
symbolically the determinants. Evaluating the resunmg]s Fig. 3. Unit octahedron as initial configuration for the wspkce data

. . . . . model

bolic expressions yields the desired parametric curves tha
are the boundary of the workspace. It is straight forward
to execute the above workflow using a computer algebra
system and even for the spatial case with6 matrices, one
can compute the determinant for a certain parameterization
However, if arbitrary geometry is assumed, the number of
symbols in the CAS system becomes that large, that it cannbie numerical procedure is as follows. Compute the non-
be handled. normalized structure matrixd~ for the positionr = 0

To overcome this limitation, an symbolic-numeric ap-and the desired orientatian, and the respective numerical
proach is proposed in this work which is inspired by thevalues ofN; fori € 1,...,4 from Eq. (6)—(9). Analyzing the
method from Walker and Orin [17] for the equations ofpolynomial expression in Eq. (14) reveals that substigutin
motion as well as by Hiller [10] for computing the Jacobiareero for bothz andy cancels out all terms but the coefficient
matrix of multi-body systems. In both contributions, some:, and thusay = N;(0,0). Secondly, one repeats the trick
kind of coefficient identification scheme is employed tao identify both a,, and a, by computing NV;(1,0) and
extract the numerical values of an equation with known struav;(—1,0). The identification of the coefficients is slightly
ture from numerical evaluation with carefully chosen spkci more complicated since we have to solve a lingax 2
values. Having realized that the mathematical structuthef equation system which coefficients are defined from our test
expressions of the workspace boundary are second or thjgdses[1,0]T and[-1,0]T, thus
order multivariate polynomials, we can use a pose dependent
formulation to compute values d¥;. { 11 ] [ Qre } B [ N;(1,0) — ag

The surprising effect of this evaluation is, that one can 1 -1 ay | | Ni(=1,0) —ag
reconstruct the full workspace boundary from only six (pla-
nar) or 20 (spatial) local evaluations of the structure iratr has the simple solution
and its determinants to receive a closed-form parametric
representation of the constant orientation wrench-cksur Uy =
workspace.

(46} 1

5
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e computea,, anda, from the determinants received
from the position vectors = [0, 1]T andr = [0, —1]T
. determinea,, from evaluating the position = [1,1].

(15)

(Ni(1,0) + N;(—1,0)) — ao (16)

(=Ni(L,0) + (Ni(=1,0)) . (27)

(07% —

N~

B. The 1R2T Case

The approach for the computation of the constant orirpe computation of,, anda, with the positiong0, 1] and

entation representation for a robot with four cables is %, —1] is done respectively. In the final step, we compute
follows. For the sake of simplicity, we omit in the following %’ from the position[1, 1]T with the simple equation
an additional index for the coefficientsfor each equation ! ’

N;. Each boundary equation takes the form oy = Ni(1,1) = Ggp — g — ayy — ay —ag - (18)

2 2

Ni(@y) = @™ + 052+ ayyy” +ayy +azyy +ao (14) Thus, we have numerically received the exact algebraic
for a planar robot. On the other hand, one can numericalkgpresentation of the workspace boundary by as little as
evaluate Eq. (6)—(9). The identification of the coefficientgomputing numerically the structure matrices for six poses
Uza, - - -, a0 IS done by computing the determinants for sixand determine four determinants for each structure matrix.
position vectors: = [z,y|" following the scheme: A prerequisite of the procedure above is that the generic
« compute the coefficienty by evaluating the four deter- test poses used in the algorithm are not singular. If thegose
minants for the position vectar = 0. are singular, a rigid body transformation is applied to the

e computea,, anda, from the determinants received parameterss;, b; to move the reference points away from

from the position vectors = [1,0]T andr = [-1,0]T  the singular loci.



C. The 3R3T Case The vector of the sought coefficienksof the polynomial
and the right-hand sida of the equation read
The procedure for the spatial robot is essentially the same - -

but to avoid the tiresome computation, we turn to a linear @0 xf(?’g’g)
equation formulation here. The main part in reconstructing Gaze N-Z( i (’) ())
the polynomial boundary is solving a large system. The o J\Zf((} ’0 ’0))
sought polynomial boundary;(z, vy, ) takes the form Gz B
ght poly Wi(2,y,2) dyyy N;(0,1,0)
Ay Nz(oa 130)
N, = Qppet® + ayyyy3 F .20+ amnyy + ay N;(0,2,0)
aMZxQZ + amyyny + ayyzy22 + amzzxZQ + Azzz N;(0,0,1)
G/yzzyZQ + amme + ayyy2 + a/zzZQ + a;]/zz ]\J/v(/v((()(’) 6_2:;)
AzyTY + QzzT2 + Ay Yz + azx + ayy + a2z + k= awiy , h= Nz(lz 1: 0) (25)
ApyzTYZ + ao (19) Qayy Nz(_17 _17 O)
Qay Nz 17 _13 O)
The system matrix for identifying the 20 coefficients of the Oz NNl(i’ 8’ 1)
polynomials reads as block matrix zz i —1)
Qg2 Nz(la 7_1)
r T T oT AT T T 7 Dyy> Ni(0,1,1)
1 0% o o" o o' of o ay N(Ol,l)
14 0 0 0 O 0 O ay- N;(0,1,—1)
10 A 0 0 O 0 O Oy N;(1,1,1)
1 0 0 A O 0 0 O ST ) . .
S = 1iC D o B o o0 ol (20)  The coefficients of the polynomial can now be determined
1 C 0 D O B 0 0 from the simple linear system
1 0 C D o0 0 B O
117 1™ 1T 1T T T g Sk=h . (26)

Computing the coefficients of the wrench-closure workspace
where the first and last column as well as the first anff @ spatial cable robot with seven cables thus requires the
last row are scalars. Furthermoi@,is a matrix with zero following steps:
elements of appropriate size addis a matrix having a 1~ « Numerically determine the structure matrix for the 20
in each element. In contrast, the other columns and rows positions listed in Eq. (25).
are constructed each frogx 3 matrices from the following ~ « For each of these matrices, extract the seder 6

matrices determinants as described in Eq. (10) to generate the
vectorsh.
T 1 1 1 o Solve the system Eq. (26) to compute the coefficients
A — 11 -1 (21) for each of the seven polynomials.
8 4 9 o The seven vectork contain in their 140 elements the
- 1 1 1 full information on the constant orientation wrench-

B - 111 (22) closure workspace of the robot.

1 1 -1 The computational costs of the main steps are: setting up 20
- - structure matrices, computing 140 determinants, and replvi

ol seven20 x 20 linear systems, when solving the linear system
¢ = -l (23) can be done in linear computation time due to the almost
Lt J triangular structure.
1 1 The procedure can be generalized to robots with more
D = -1 1 -1 (24)  than seven cables, where in this case we have to compute
| -1 1 -1 more determinants from the structure matrices. However, th

description of the exact procedure is out of the scope of this
From the structure of matri$, one can see that it is block contribution.
lower triangular. Obviously, bothrA and B are regular,
therefore alsoS is regular. Inverting or solving a linear IV. WORKSPACE COMPUTATION
system withS can be done efficiently. Basically, one can Here, we compute the hull using the triangulation ap-
apply an algorithm similar to the procedure described in theroach used in an earlier work [12]. One core concept is a
section above by computing first the coefficiept then the parametric line search which can be used here in an elegant
triple azez, 4ze, a, from a3 x 3 system and so on. way.



Here, the translational workspace for a given orientatiothe workspace is computed by just solving the polynomial
of the cable robot is represented by a triangulation of itaith the well-known formula
hull. The idea for the determination of the workspace is 5
to start with a unity sphere in the estimated centerof A2 P (1_9) —q . (30)
the workspace and to successively extend the sphere in ' 2 2
radial directions. Clearly, this assumption may lead to apccording to the assumptions made for the hull computation,
underestimation of the workspace and the estimation depenge use the smallest positive value D;faz received for any
on the chosen value ofn. Contrary, for most technical one polynomialV;. If the roots are complex or all negative,
applications, only robots with a compact workspace arge set); = 0. In the latter case, the projection center was
interesting and therefore it seems reasonable to restrictnat part of the workspace.
quick design procedure to such a subspace. The surface of thg=or the spatial case, one can do essentially the same where
sphere is approximated by triangles which are created frofRe final solving for \; requires to compute the closed-
iterative subdivision of the faces of an octahedron. Akkern form solution to a third order polynomial. However in both
tively, one can also subdivide other regular polyhedrors arzases, we have shown that all computation steps from the
especially the Platonic solids with triangular facetteshsails  geometry of the robots to the triangulation of the constant
a tetrahedron or an icosahedron. orientation workspace can be executed in closed-form with
In the first step, the eight faces of an octahedron (Fig. 3imple mathematical tools.
located around the pointn are described as triplets of Even more, the triangulated hull of the workspace allows
vertices, e.g.F1 = {u, v, v}, Initially, there is a set for some geometric characterizations of the workspace. It

L = {F,...,Fs} containing eight faces. These faces ofs straight forward to calculate the surfadé)V) and the
the octahedron are subdivided into four congruent triagleyolume V(W) of the workspace as follows
This is done by constructing the three vertiegs v c,vgc for

each triangleF; in £ and projecting the generated vertices
onto a unit sphere sw) = 5 Z [[(ra — 78) X (14 — 70)]|2 (31)
vij = % i.j€pachi#j (27 voy) = ¢ Z((rA—m) x (ry—m)) - (re—m) (32)
d J

where L is the set of the triangles. For the volume, one can
do better by substituting; — m = \,;v; the parametric form
using the direction vector; and its length);. Then, the
equation for the volume becomes

Then, the original trianglé’; is replaced by the four triangles
('UAa Ve vAC)v ('UBa Ve, vBC)! ('Um Ve, 'UAc)y ('UABa Vnc 'UBC)-
This process is repeated times thus generating a sét
containingn, = 22™13 triangles.
In the second step, the vertices of the triangles are pro- 1
jected onto the hull of the workspace. Starting from the V(W) = EZ)\«)B)C(UA X W) " e, (33)
estimated centem of the workspace, the line
where the scalar value of the prodiet x v ) - v is equal for
Li:ri=m+ X v, X\ >0 (28) all triangles and depends only on the number of subdivisions

n; done. Thus, one finds the simple form
is searched for its roots. Instead of the regula falsi based

line search proposed in [12], one can do better with the m X nB
parametric representation derived above. Since the fgcent viw) = Z’\A)“)“
used workspace criteria can only be evaluated as Boolean
test of complex numerical algorithms, we used a regula fal¥ith the constant faCtOVi(m) = (n. X ng) - mc. Eventually,

line search. Due to the algebraic form of the workspac@ven these expressions are received in a constant number of
boundary, we propose to substitute the libgin Eq. (28) steps without approximation excepts for the assumption tha
into the surface constrained Eq. (14) providing the follogvi the triangulation for the quadratic and cubic surfaces &ex

(34)

expression which reads for the planar case However, the polynomial form of the workspace boundary
allows to compute and bound the error for the triangulation
(GwaV2; + GayVaiVyi + Qyyvs;) A2 e.g. using interval analysis.

+ (2azzmmvmi + Ay T3 Vo + Qg MMy Ve
V. COMPUTATION RESULTS
F2aymyvyi + AgUgi + yUyi ) Ai
Fagam?2 + AayMamy, + ayymi A. Quantitative Results
+azmg +aymy +ag = 0 (29) The workspace of the cable robot IPAnema 1 was deter-
mined for verification purpose using the algebraic expogssi
Analyzing this lengthy expression reveals the simple forrmethod. The robot has seven cables and its geometrical
of a quadratic equation im\;. Here, we earn again the parameters are given in Tab. |. The determined transldtiona

benefit of the algebraic formulation since the boundary ofirench-closure workspace is depicted in Fig. 4.



TABLE |
IPANEMA 1 GEOMETRICAL PARAMETERS FOR ROBOT WITH SEVEN
CABLES: PLATFORM VECTORSb AND BASE VECTORSa

is possible using only 20 regular poses. The numerical
algorithm is applied to some case studies showing very

short computation time. Interestingly, the mathematioald

required to do the computations are limited to computing

cablei platform vectord; base vectow; ; . . )

1 [~0.125,0.0,0.0] 7 [0.0,0.0,0.0]T determinants and solving linear systems with standardtool

2 [—0.125,0.0,0T.0}T [4.0,0.0, 0.0@ All steps are executed explicitly without numerical itévat

3 [0.0,0.25,0.0] [4.0,3.0,0.0] Based on these results, we expect more efficient assess-
4 0.0,0.25, 0.0 00,3.0,0.0] ment of workspace computation in real-time control, e.g. to
5 [0.125,0.0,0.0]T  [0.0,0.0,2.0]T pace comput » €.9.

6 [~0.125,0.0,0.0]T  [4.0,0.0,2.0]" compute the translational distance between the curremwt rob

7 [0.0,0.25,0.0]T [2.0,3.0,2.0]T pose and the boundary of the workspace.

(1]

(2]

z[m]

(3]

(4

15 50

2lmp 3

30 35

(5]

Fig. 4. Constant orientation wrench-closure workspaceneflPAnema 1
design with seven cables.

(6]

B. Computation Time

In order to determine the computational costs of the
proposed method, an implementation in C++ was employed.
In order to compute the matrix operations including the-eval [g]
uation of the determinants, the eigen 3 library was used. The
computation time was assessed on an Intel Core i5-3320M
2.6 GHz, Visual C++ 2010 using a single thread. A firstg
test for a planar robot reveals computation times of around
0.12 ms per constant orientation evaluation with 36 points o
the boundary and 0.26 ms for a resolution with 360 points.
The computation time for computing the coefficients of thé10]
workspace polynomials without workspace computation are
estimated to be 0.025ms. Testing the components of the
vector base of the matrix kernel to have the same sign, leald$l
to a computation time of 10 ms for 360 poses.

The evaluation of wrench-feasibility using the fast closed
form method [13] requires for 360 points with regula falsil12]
line search around 12.5ms.

VI. CONCLUSIONS

In this paper, a numerical approach to compute the
. 4]
wrench-closure workspace of cable-driven parallel robots
is proposed. The method efficiently exploits findings from
theoretical considerations on the structure of the workspa
where a simple but efficient numerical scheme is present
to execute the actual computation. A surprising result ef th
study is that for a planar cable robot with four cables thé&l6l
translational wrench-closure workspace can be recortstiuc 17]
from the numerical evaluation of the structure matrix ofyonl
six regular poses. In the spatial case, the same procedure

(7]

(23]
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