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Abstract— This work proposes a novel relative localization
system, based on active markers and an on-board camera, for
tracking multiple quadrotors in a limited field of view. The
system extracts the 3D poses of the markers including one that,
by pulsating at a predefined frequency, provides an unique
platform ID. We discuss how the camera field of view can
be explored in presence of multiple targets, and what are the
conditions on the system visibility that lead to the establishment
of bidirectional sensing between robots with similar sensing
capabilities. A visibility analysis is conducted to show that the
developed relative localization system meets such requirements,
and a closed-loop experiment is used to validate its performance
under these conditions. Finally, its performance is compared
with other results from the literature, and a metric is established
with the intent of mapping different design solutions, facilitating
design choices in presence of different requirements.

I. INTRODUCTION

The use of Unmanned Aerial Vehicles (UAVs) has been
increasing, since their design has been simplified, enabling
for smaller sizes, and the attitude stabilization techniques
have been improved. Smaller size allows in turn for a more
convenient exploration of multi-UAV systems in confined
spaces, although at the cost of additional constraints in terms
of on-board resources. Because of such possible miniaturiza-
tion, UAV systems can also be used in environments without
easy access to absolute localization information (e.g., indoors)
or where GNSS-based technology simply does not provide
enough accuracy for close range navigation.

Typical indoor localization solutions leverages off-board
motion capture systems [3], [4], which might not be al-
ways feasible or desired, as they involve a deployment of
potentially expensive infrastructure before any operation
using the UAV system. In other approaches, each robot
autonomously acquires its position in the environment using
Simultaneous Localization and Mapping (SLAM) or Monte
Carlo Localization (MCL) techniques, as in [1], [2]. However,
for multi-robot coordination, those positions need to be shared
between robots, so they can compute the relative positions
of their neighbors. This can become unfeasible when high
communication throughput is necessary to cope with the high
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dynamics of the systems at hand. Relative sensing solves
this issue, as this information can be collected without the
use of communication channels. Additionally, the extracted
information can be more robust to disturbances from the
environmental background, since it is possible to engineer
precisely the dedicated features to be sensed on each vehicle.

Relative localization for AUVs has been demonstrated
using several physical channels, such as sound [16] or infra-
red [17]. However, the most mature approaches use camera
systems, extracting range and bearing information based
on the object size and position in the image. The simplest
methods use single blob detection [11], [12], [5], which can
be strongly dependent on the lighting conditions, shadows,
or partial occlusions by the 3D structures, making range
estimations unreliable. Although satisfactory results can be
achieved using circle matching techniques [13], [12], [7],
bearing information is still mainly preferred. This is the case
of the formation control algorithms in [12], [5], which have to
use additional information sharing and triangulation methods
to allow formation control under these limitations. Also, robot
IDs has to typically be extracted from colored markers, a
technique that has limited scalability.

However, range accuracy and blob detection reliability
can be improved using active multi-marker platforms. This
work is based on a similar method to that reported in [6],
where the full robot pose is extracted using the P3P algorithm.
Such method has lead to high precision measurements, for
large distance ranges, as reported in [9], [10]. As in [8],
inertial measurements are also fused with the relative sensing
data to obtain improved estimation and control performance.
However, previous works consist on single platform ob-
servations. This work tackles the problem of multi-vehicle
relative sensing, and studies the impact of the limited camera
Field Of View (FOV), including the corresponding visibility
restrictions. The system also implements an ID-recognition
algorithm based on a pulsating marker to avoid using different
configurations of the marker 3D layout, which hampers
the platform design and adds computational complexities.
Finally, this work proposes a metric to characterize the system
performance according to the chosen design, with the intent of
mapping the performance of different solutions, simplifying
future design choices when facing different requirements, for
example in terms of FOV or range. This work is developed
using CMOS cameras, but most of the concepts can be applied
on Dynamic Vision Sensors (DVS) [15], especially with the
results in [14], which allows the system to distinguish active
markers from the environment.

The paper starts by providing a description of the developed



hardware of the relative localization system in Section II,
followed by a description of the dedicated tracking algorithm
in Section III, which includes the definition of the perfor-
mance metric and the considered sensor noise model. In
Section IV experiments analyze the accuracy of the sensor
measurements, and validate the proposed performance metric.
Additionally, a visibility study on the developed localization
system is performed, and multi-robot tracking is validated
with a closed-loop experiment using two observed quadrotors.
Finally, the work concludes with some remarks in Section V.

II. HARDWARE

The designed hardware platform, described in Fig. 1, is
composed by a set of five omni-directional active markers of
2 cm radius, emitting light through a plastic diffuser. These
markers are separated into two groups: four markers are used
for the relative 3D pose extraction of the platform, emitting
continuous light; one marker has pulsating capabilities,
enabling a specific ID extraction by measuring the marker
pulsating frequency. Regarding the first group, two active
markers (M1 and M2) are placed on the quadrotor horizontal
axes, and one (M3) at the vertical axis. The camera is placed
in the vertical axis in between the vertical marker and the
quadrotor frame origin, and it points in the direction shown in
the Fig. 1 (b), considered to be the platform front. The length
of the horizontal axes (24 cm) was chosen to be different
from the length of the vertical axis (20 cm) to avoid platform
symmetries. The last marker (M4) is placed below the camera
and moved away from the vertical axis in the same direction
of the camera’s heading, but without entering its vertical
FOV. The ID marker was placed below the previous marker,
as shown in Fig. 1, in a location that is not important for
localization.

The positions of the markers and the camera were designed
so that the platform could rotate more than the FOV of
the camera without generating any marker occlusions that
could compromise its visibility to other sensors observing
it. This visibility condition gives a quadrotor, equipped
with this platform, the ability of adjusting its direction to
optimize its FOV when tracking multiple targets, without
compromising the possibility of maintaining bi-directional
sensing connection with its neighboring robots. Note that this
condition is often a requirement in multi-robot cooperation
scenarios. On Section IV a study of the platform visibility
shows that this platform meets these requirements.

Both marker groups have different lighting properties, to
allow a clean decoupling between the ID extraction and
platform localization. There are several advantages for this
separation. Firstly, the relative localization accuracy and
bandwidth are not affected by a temporary loss of the
pulsating marker. Secondly, the platform ID is not generated
using different geometrical configurations, which would
require a careful choice of marker positions to prevent possible
ID misclassification, and would increase the computational
complexity of the used classification algorithms with the
number of IDs. Finally, as discussed later, this additional
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Fig. 1. Illustration of the sensing platform. (a) Complete set with camera
and the active markers; (b) conceptual top view of the structure.

marker also allows for additional filtering capabilities, provid-
ing a way to confirm the existence of the observed platform.
However, the initial ID extraction phase takes some time,
which increases as the time used between marker pulses
increases to allow for possible additional IDs. In this work,
the localization markers emit blue light, but different lighting
properties can be chosen, as for example infra-red (IR) used
in [6], [8], or the Active Led Markers (ALM) on [14] in a
DVS system. To increase the marker detection reliability in
brighter scenarios, blue paint was added to take advantage
of the reflections of incoming light on the markers. The ID
marker emits red light, as it was found to be well detected by
the cameras on the UAVs. A smaller layer of black paint was
added on top to prevent external light in bright environments
from overshadowing the marker emission.

III. PLATFORM TRACKING

Each quadrotor is equipped with the previously described
platform. A tracking software runs on-board each quadrotor
i, to extract the relative 3D position, velocity, and attitude,
along with the ID, of other platforms observed using the
on-board camera. Fig. 2 gives a description of the process.
First, an algorithm associates a set of image blobs to a
potential platform j observed in i’s camera frame. A relative
position and orientation of the platform, xc

ij and Rc
ij, is

computed to justify the image blobs as 2D projections of the
platform active markers in the camera image. The platform
ID is extracted from the frequency of the pulsating marker.
After the detection phase, measurements related to platform
j are converted to a flying frame, to eliminate perturbations
from quadrotor i roll (φi), and pitch (θi) inclinations, during
horizontal movements. This frame, described in Fig. 3, is
centered in the quadrotor i position, and has the same
yaw (ψi), but its z axis is aligned with gravity (vertical),
making its roll and pitch equal to zero. The resulting position
measurements are filtered with an Extended Kalman Filter
(EKF) to obtain accurate estimation of the 3D position, xe

ij,
and velocity, ve

ij, which compose the state variables of the
estimator for each platform j, defined in the flying frame.
The next sections describe each part.

A. 3D Relative Pose Extraction

To obtain platform poses from the image, a blob detection
algorithm, performed in all the image, identifies potential
observed markers. Blobs with a size smaller than a certain
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Fig. 2. Overall system architecture and information flow, for a specific
quadrotor i. Sensor measurements are extracted from the camera image and
fed into a tracking system block for velocity estimation and noise filtering.
The block “Saved Platforms” saves the relative 3D pose and pulsating marker
state of potential platforms observed on each image. This allows to compute
the pulsating marker frequency across images for ID extraction, and to
reduce the algorithm complexity on each image through the establishment
of ROIs for each platform.

threshold are discarded. With the resulting blob set, all combi-
nations of four blobs are tested as a potential platform j. Since
the problem is combinatorial, additional pruning methods are
performed to discard in advance wrong combinations.

For each accepted marker group j, an association between
the image markers with the respective 3D platform marker po-
sitions is performed. All association combinations within each
group of four markers are attempted. For each combination,
three of the markers are fed into the P3P algorithm, described
in [9], that is able to obtain four possible solutions for xc

ij

and Rc
ij justifying the current association. The fourth marker

is then used to select the right solution and to evaluate its
correctness, by comparing the distance error in pixels between
the 2D positions of the observed marker in the image and
the projection of the 3D marker associated to it in the image,
computed using the transformation of the solution that is
being tested. Marker configurations with an error bigger than
a threshold are not considered. Valid configurations are saved
with a local temporary identifier while the ID extraction is
not concluded. Their extracted 3D poses are used to define a
region of interest (ROI) and predict the blob positions for a
more efficient detection in the next images.

B. ID Extraction

The saved marker configurations are then subjected to
an ID extraction process, using the additionally fifth active
marker with pulsating capabilities. A new blob detection
procedure is launched for each currently saved configuration
to detect blobs with the lighting properties chosen for these
markers. However, since at this stage there is already an
estimate for the platform pose, the procedure is done in a
small ROI, with the center around the predicted position for
the marker projection in the image, and its size computed
from the predicted distance between the localization markers
and the camera. Again, a threshold is used to remove blobs
that are too small.

The platform ID is associated to an unique pulse frequency.
To detect these frequencies, the time between two marker
pulses is noted and used to create a pulse frequency histogram.
This histogram is used to compute an average pulse frequency,
which is then matched with a potential corresponding platform
ID. Only relevant frequencies, defined by being recorded
more than a few times (5 times was used in this work), are

considered to compute the average. This has the advantage
that any false positive generated by the pose extraction will
most likely be filtered out. Also, even if clutter affects the
pulse frequency, the created histogram avoids losing the
correct ID. The ID initialization takes the time needed to
observe at least one relevant frequency. But after this period,
ID information is always available.

C. Tracking Algorithm

Each measurement related to an observed platform j is
forward to a tracker. This tracker keeps a list of platforms,
each described by its ID, its estimated position and velocities
states (xe

ij, ve
ij), and its attitude Rij in the quadrotor i’s

flying frame. The filter tracks each platform independently at
discrete time intervals of ∆t seconds. Platform j states are
predicted at step k, using the desired vertical thrust commands
currently issued to the lower level control combined with
the current attitude measurements provided by the on-board
inertial sensors, φi, and θi, to predict the linear acceleration
felt in the quadrotor flying frame, ui, at that step. The angular
velocity around the z axis, ψ̇i, is also extracted and used as
yaw rate. Roll and pitch rotations are not considered since the
states are described in the flying frame. Note that the inertial
sensor measurements are considered as noise-free. With this
information, it is possible to define a motion model for the
motion of platform j relative to quadrotor i’s flying frame:[

xe
ij(k + 1)

ve
ij(k + 1)

]
=

[
I3 ∆tI3
03 I3

] [
xe
ij(k)

ve
ij(k)

]
−
[

0.5∆t2I3
∆tI3

]
ui(k)

+

[
xe
ij(k) × Ωi(k)

ve
ij(k) × Ωi(k)

]
+ wm(k)

,

(1)
where I3, 03 are 3x3 identity and zero matrices, and Ωi

is the vector (0, 0, ψ̇i), which provides a yaw rotation of
xe
ij and ve

ij for a non-zero yaw rate. This term uses directly
the angular velocity from the z axis of the quadrotor, which
makes the model only valid with small values of roll and
pitch (otherwise a transformation would have to be applied
in order to convert the angular velocity to the true yaw rate
on the flying frame). But in this work it is assumed that
those conditions are met, which makes sense since usually
the quadrotors do not need to tilt more than a few degrees
to achieve good reaction times. The last term, wm(k), is the
movement noise simply considered as a zero mean Gaussian
distribution with a covariance profile that tries to encapsulate
the noise of all the previous terms combined.

For each measurement of platform j generated by the image
processing algorithm, the tracker updates the 3D relative
position of the respective platform on the list. First, the
measurement is converted to the flying frame, using the known
camera pose in quadrotor i body frame, and the current φi
and θi values. Platform j’s position in the flying frame is
then updated with the following observation model:

zij(k) =
[
I3 03

] [xe
ij(k)

ve
ij(k)

]
+ wo(k), (2)

where zij(k) is the vector containing the 3D position mea-
surement of platform j relative to quadrotor i, and wo(k)
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is the noise vector, with zero mean. The covariance of this
noise is further explained in the next section.

It is important to consider the case when the platform leaves
the camera FOV for a sufficient amount of time, causing the
sensor to drop the platform. Pose and ID detection has to be
reinitialized on FOV reentry. To avoid a potential interruption
on the platform tracking in this period, the tracked platform
is set into a lost mode, which allows platform measurements
with unassociated IDs that are sufficiently close to the current
estimated location, to be accepted as valid measures. The
situation returns to normal as soon the ID initialization is
finalized. The complete tracking system, as it is, does not
deal well with marker occlusions (a study of the visibility is
performed in the next section), but it could be easily extended
with least square methods [6], or a particle filter [14] approach
to tackle this issue. However, this factor is not considered to
be the main focus of this work.

D. Sensor Noise
To characterize the sensor noise, the measurements ex-

tracted from the image processing algorithm are divided into
range and bearing components. After a proper calibration of
the system, the noise can be assumed to be produced solely
by instant irregularities on the vision sensor (e.g., blur effects).
Considering the pin-hole camera model in one dimension,
the edges of a line segment of size l, parallel to the camera
plane, at a range z from the camera focal point, and centered
with its principal axis, have a size in the image p, of:

p =
lf

z
, (3)

where f is the camera focal length (in this work f is defined
in pixels). Differentiating Eq. (3) in respect to z and l, and
rearranging the terms, it is possible to derive the range, δz,
and bearing, δl, errors:

δz = −z
2

lf
δp, δl =

z

f
δp (4)

where δp is an error on the observed segment length caused
by pixel noise in the image. Note that this result is general
for any position of the line segment around the camera. Also,
it is possible to define f as:

f =
N

2tan(αM )
, (5)

where N is the camera resolution (number of pixels), and
αM is half of the camera FOV. Therefore one can observe
that the range error progresses faster with the range from
the camera than the bearing error. Also, it depends on the
object size, which is usually small. For this reason, the sensor
noise is assumed to be mostly in the range component, and
a transversal-longitudinal model is used for its covariance,
represented by an ellipse with its major (longitudinal) axis
pointing to the origin of the camera frame, and the other axis
belong to the transversal plane, perpendicular to that axis, as
shown in Fig. 3. The axes lengths are set to evolve linearly
with the range from the sensor, as a simplified representation
of the error dependency with range.

Additionally, from Eq. (4) it is possible to predict the
range error δz, in function of z, given the knowledge of δp,
l, and f . The bearing error is discarded since it is assumed
to be small. Here, f is taken from the camera intrinsic
parameters, and l from the diameter of the smallest sphere
that can encapsulate the marker configuration, also called
the object circumsphere. The marker configuration developed
in this work has a circumsphere of 28 cm in diameter. The
value of δp in this work is considered to be the maximum
pixel error that can be observed in the image, and it can be
computed from experiments that will be explained on the
results section. These predictions can provide a metric for
the maximum errors that can occur with a certain camera and
marker configuration, providing a way to easily map desired
performances across different design choices.

This result is considered to be an approximation for two
reasons. Firstly, object rotations can produce errors not neces-
sary related to the object size. Secondly, common distortion
effects, such as radial distortion, alter this relationship, since
the value of αM changes (usually increases) as the object
moves away from the camera principal axis, altering f .

IV. EXPERIMENTS

To evaluate the system performance, a set of experiments
were conducted with the aid of a Motion Capture System
(MCS), shown in Fig. 4, to provide ground truth millimetric
and sub-degree accuracy of the full quadrotor poses. Sensor
data were validated by comparing the sensor measurements
with the MCS poses, both recorded on-board the vehicle for
straightforward synchronization (MCS measurements were
communicated to the quadrotor with a latency of about 5 ms,
considered negligible for synchronization given the low speed
of the vehicle maneuvers). A low resolution camera with
320x240 pixels and 90◦ FOV was used for the experiments.
With this configuration, platform tracking could be done at
an average of 20 Hz observing one quadrotor, and 17 Hz
observing two quadrotors, with all functions running on-board.
Note that the comparison between ground truth and sensor
data revealed a sensing lag of around 150 ms. The considered
maximum range of the sensor was 3 m.

The camera pose in the quadrotor body frame and its
intrinsic parameters were manually calibrated, by overlapping
3D position readings from the sensor and the MCS. This
was achieved by manually moving a quadrotor equipped
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Fig. 4. Our MCS is manufactured by Motion Analysis Inc. and is composed
of 20 Osprey cameras able to track a set of at least four reflective markers
in an useful volume of 4x7x2.5 meters.

with markers in front of the on-board sensor, at a certain
distance. The quadrotor had a constant orientation during
these trajectories. The camera’s focal length, principal point
and radial distortion parameters were considered. The param-
eters where divided into vertical and horizontal. The radial
distortion is modeled, for each dimension, with a second
degree polynomial model.

A. Relative Position Evaluation

The accuracy of the 3D relative positions extracted through-
out the sensor FOV was assessed with experiments similar
to the calibration procedure, where the moving quadrotor
had the same orientation as the one used during calibration.
Fig. 5 shows the norm of the 3D position error as a function
of the relative distance between the observed platform
and the camera sensor. The used dataset contained 1063
measurements, conducted with a relative distance of 1 to 3.5
m. Only 8 outliers were registered outside the 99.7% quantile
of the computed data distribution, most of them with angles
between 25◦ and 30◦ in the camera FOV.

To evaluate the estimator and the longitudinal-transversal
noise model described above, the quadrotor was flown in
a plane, 3 m from the camera in the y direction of the
frame described in Fig. 8 (a). The quadrotor performs
on that plane a set of vertical and horizontal movements,
as described in Fig. 6 (a). The error covariance of the
extracted sensor data was computed for the longitudinal and
transversal components, which showed values of (0.13 m)2

and (0.03 m)2 respectively. This confirms the small bearing
error that was assumed in this work. The respective axes of
the covariance ellipse were set to respect the assumed linear
relationships with the range to the sensor, and they were
fitted so they would have, at a 3 m range, a covariance of
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(0.15 m)2 for the longitudinal axis, and of (0.03 m)2 for
the transversal axes. The sensor data are then fed into the
estimator described above, running at 40 Hz (setting ∆t at
0.025 s). The attitude measured from the on-board inertial
sensors and the desired thrust commands (in this case it has
zero thrust because the sensor is static) were also provided.
Fig. 6 shows the results of the velocity estimation error for
a testing trajectory, comparing the longitudinal-transversal
model with a simple spherical model with a covariance of
(0.15 m)2. The position estimations are not shown as the
raw sensor data has already low noise. It is observed that the
considered model drastically improves the velocity errors on
the transversal dimension (in this case the y dimension).

The maximum errors are then predicted from Eq. (4) for
the range, with f of 220 pixels, found during calibration,
and l of 28 cm. To compute δp in function of the distance
to the sensor, a set of experiments were performed, where a
platform was placed in front of a camera sensor at different
distances, and was shaken while its blob positions and their
distances were being tracked. The value of δp was set to
be half of the average of the distance fluctuation observed
for each blob pair, since the error is assumed to fluctuate
around the correct value. This values seemed to vary little,
around 2.5 pixels for the considered distances of 1 to 3.5
m. This is because active markers produce image blobs that
only change on the borders, which varies less with distance.
Fig. 7 shows a comparison between the predictions obtained
with the previous values, and the maximum errors of the
distributions found for the accuracy performance, displayed
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in Fig. 5, considered to be inside the 99.7% quantile.
This work was also compared to the results in [6], which

uses a higher resolution camera, with 752x480 pixels and 90◦

FOV, resulting in a f value 752/320 = 2.35 times bigger.
The values for δp were assumed to be the same as the ones
computed in this work, as an active-marker localization system
was also used, but the same experiments should be carried
out on that system to be more accurate. They also provide
a circumsphere with 22 cm diameter for their marker set,
which was used for the l value. The maximum values of
the error were taken from their boxplots in Fig. 7) (a), and
matched against the predicted values. From Fig. 7, both works
follow well the behavior of predicted values, although this
work has measured values bigger than predicted. This could
be explained by the distortion of the camera that affects the
value of αM in Eq. (5), with increased effect as tests are done
closer from the FOV edges. As previously observed, the used
datasets contained positions sufficiently far from the camera
center for this to happen. From the previous results it is
possible to conclude that the metric is a good indicator of the
system limitation, and that accuracy of both systems have a
comparable performance within their own design limitations.

B. Relative Attitude and Visibility Evaluation

The 3D attitude accuracy is assessed by applying rotations
around the x, y, and z axis of a quadrotor with a marker
platform, in several static positions with respect to the camera
sensor, as shown in Fig. 8 (a). The attitude error is expressed
in the axis-angle form, and the obtained angle is used for the
error. Fig. 8 (b) shows these errors as a function of the distance
between the observed platform and the camera sensor, for a
dataset containing 1229 measurements, conducted between
1 and 2.5 m from the camera and throughout its FOV area.
The angle errors are small but remain roughly the same also
at larger ranges. Also, Fig. 8 (a) shows position errors up to
10% of the distance, evolving as the platform is rotated on
the spot. This fact is associated to a calibration inaccuracy
of either the platform geometries or the camera parameters,
but is not explored further.

By leveraging the same rotational experiments mentioned
above, we assessed the relative visibility of our solution. In
particular, we observed the maximal rotation point until the
camera sensor lost its pose due to occlusions between the
markers and the quadrotor structure. In this case, we only
considered yaw rotations, since quadrotors usually operate
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with small roll and pitch angles. The experiments were done
observing the platform 50 cm from above and below. Fig. 8 (b)
shows the rotation bounds for the five highlighted locations,
representative of the FOV coverage. In this case the platform
was observed from below. Using all the data, it was revealed
that the observed platform can rotate at least ±90◦ from the
platform front when observed from above, and ±45◦ when
observed from bellow. The bounds are smaller in the latter
case as the middle marker (M4) is more easily occluded.
Note that, in Fig. 6, the sensor loses track while still in these
bounds. This happens at higher distances, due to a threshold
of the blob detection algorithm that merges blobs that are
close in the image. This could be solved if this threshold is
made adaptive to the sizes of the blobs that are being merged.

These previously discussed bounds are above the FOV
bounds of the camera (± 45◦ from the platform front).
Therefore the platform meets the visibility requirements
mentioned in Section II, allowing bi-directional sensing
between itself and its neighbors while freely exploring its
full camera FOV. The next experiment shows one such case.

C. Closed-Loop Validation

The system was tested in a closed-loop control experiment,
illustrated in Fig. 4, where a flying quadrotor had to maintain
a desired relative horizontal and vertical distance in respect
to two static neighbors, using a proportional and derivative
controller. The algorithm also adjusted the quadrotor yaw
orientation on the fly in order to even both observed targets on
each side of the sensor FOV. The quadrotor is first teleoperated
into its initial position, using the MCS position feedback.
When activated, the algorithm runs exclusively on-board,
using just the camera sensor as sensory feedback, until a
stop and land command is specified. The chosen ID marker
frequencies were chosen to be 10 Hz for the flying quadrotor,
5 Hz, and 3.3 Hz for the static neighbors.
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Fig. 9. Comparison between on-board estimation and the MCS values for
the horizontal (a) and vertical (b) distances of the quadrotor to neighbors.
Vertical distances are too close together to be distinguished. Target horizontal
distances for each platform are shown with dashed lines. Star-shaped points
shown in (a) represent zones where the sensor took more than 100ms to
provide a measurement for a given platform.

Fig. 9 compares the MCS measures and the on-board
sensor estimates of the evolution of the target distances,
during a run of this task. The desired vertical distance was
set to zero. The desired horizontal distances were 2.12 m
and 1.5 m (see Fig. 9). The angle between the two neighbors
and the flying quadrotor on the reported experiment was
45◦. The experiment was tested up to 60◦, where control
fluctuations already made it difficult to hold both neighbors
within the FOV. Besides from a small, almost constant (17
cm), mismatch between the estimated and the actual horizontal
distances, the closed-loop control appeared to follow well
the desired distances. The mismatch can be explained by
the calibration errors observed in Fig. 8 (a). The higher
oscillations (maximum of 25 cm) observed for the horizontal
distances can be explained by of the quadrotor dynamics for
horizontal movements, and the fact that camera transversal
noise is higher than the tangential noise.

Besides the ID initialization period (not shown here
but the maximum highest value was 1.5 s to track the
3.3 Hz frequency), the quadrotor received regular sensor
measurements from both neighbors. There is just one point
(see Fig. 9) where the measures stopped for more than 100
ms, but since it was for both neighbors simultaneously, the
problem was attributed to sensing frequency fluctuations.

V. CONCLUSION

This work proposes a system capable of providing 3D
relative pose measures and object ID for multiple platforms
simultaneously within the sensor FOV. The experiments
showed that the developed system has the capability to
establish bi-directional sensing between robots with similar
sensing capabilities, without compromising the possibility of
exploring the sensor FOV in multi-robot cooperation scenarios.
Despite the low sensor accuracy, the tracking system with the
proposed noise model was able to track well the position and
velocity of the observed quadrotors, allowing the stabilization
of a second order system without the help of external systems.

Additionally, a metric was proposed to evaluate the sensor
accuracy, and it was shown how to be used to map the
performance between different designs. As future work, the
tracker will be extended to mitigate the impact of marker
occlusions. Also, a dedicated study will be performed on
the camera borders in order to maximize the usability of the
available FOV. Finally, the results will be exported to systems
with higher FOV, making use of the developed metric.

REFERENCES

[1] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar, “Vision-Based
State Estimation and Trajectory Control Towards High-Speed Flight
with a Quadrotor,” Robotics: Science and Systems, 2013.

[2] D. Scaramuzza, M. Achtelik, L. Doitsidis, F. Friedrich, E. Kosmatopou-
los, A. Martinelli, M.W. Achtelik, M. Chl, S. Chatzichristofis, L. Kneip,
D. Gurdan, L. Heng, H. Gim , S. Lynen, M. Pollefeys, A. Renzaglia, R.
Siegwart, J. Stumpf, P. Tanskanen, C. Troiani, S. Weiss, and L. Meier
, “Vision-Controlled Micro Flying Robots: from System Design to
Autonomous Navigation and Mapping in GPS-denied Environments,”
IEEE Robotics & Automation Magazine, vol. 21, no. 3, pp. 26-40,
2014.

[3] M. Turpin, N. Michael, and V. Kumar, “Trajectory Design and Control
for Aggressive Formation Flight with Quadrotors,” Autonomous Robots,
vol. 33, no. 1-2, pp. 143-156, 2012.

[4] F. Augugliaro, A. P. Schoellig, R. D’Andrea, “Generation of collision-
free trajectories for a quadrocopter fleet: A sequential convex program-
ming approach,” International Conference on Intelligent Robots and
Systems, pp. 1917-1922, 2012.

[5] A. Franchi, C. Masone, V. Grabe, M. Ryll, H. Bülthoff, and P. Giordano,
“Modeling and control of UAV bearing formations with bilateral high-
level steering,” International Journal of Robotics Research, vol. 31 no.
12, pp. 1504-1525, 2012.

[6] M. Faessler, E. Mueggler, K. Schwabe, and D. Scaramuzza, “A
Monocular Pose Estimation System based on Infrared LEDs,” IEEE
International Conference on Robotics and Automation, 2014.

[7] M. Achtelik, T. Zhang, K. Kiihnlenz, and M. Buss, “Visual Tracking
and Control of a Quadcopter Using a Stereo Camera System and Inertial
Sensors,” International Conference on Mechatronics and Automation,
pp. 2863-2869, 2009.

[8] M. Cutler, B. Michini, and J. How, “Lightweight Infrared Sensing
for Relative Navigation of Quadrotors,” International Conference on
Unmanned Aircraft Systems, pp. 1156-1164, 2013.

[9] L. Kneip, D. Scaramuzza, and R. Siegwart, “A Novel Parametrization
of the Perspective-Three-Point Problem for a Direct Compuation
of Absolute Camera Position and Orientation,” IEEE International
Conference on Computer Vision and Pattern Recognition, pp. 2969-
2976, 2011.

[10] A. Breitenmoser, L. Kneip and R. Siegwart,“A Monocular Vision-based
System for 6D Relative Robot Localization,” IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 79 - 85, 2011.

[11] S. Roelofsen, D. Gillet, A. Martinoli, “Reciprocal Collision Avoidance
For Quadrotors Using On-board Visual Detection,” IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 4810-4817,
2015.

[12] R. Tron, J. Thomas, G. Loianno, J. Polin, V. Kumar, and K. Daniilidis,
“Vision-based formation control of aerial vehicles,” Robotics: Science
and Systems, 2014.

[13] T. D’Orazio, C. Guaragnella, M. Leo, A. Distante, “A new algorithm
for ball recognition using circle Hough transform and neural classifier,”
Journal of Pattern Recognition, vol. 37, no. 3, pp. 393-408, 2004.

[14] A. Censi, J. Strubel, C. Brandli, T. Delbruck, and D. Scaramuzza, “Low-
latency localization by Active LED Markers tracking using a Dynamic
Vision Sensor,” International Conference on Intelligent Robots and
Systems, pp. 891 - 898, 2013.

[15] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128x128 120 dB 15
us Latency Asynchronous Temporal Contrast Vision Sensor,” IEEE
Journal of Solid-State Circuit, vol. 43, no. 2, 2008.

[16] M. Basiri, F. Schill, D. Floreano, and P. U. Lima, “Audio-based
Localization for Swarms of Micro Air Vehicles,” IEEE International
Conference on Robotics and Automation, pp. 4729 - 4734, 2014.

[17] J. Roberts, T. Stirling, J. Zufferey, and D. Floreano, “3-D relative
positioning sensor for indoor flying robots,” Autonomous Robots, vol.
33, no. 1, pp. 5-20, 2012.


