
Optimal Event Handling by Multiple Unmanned Aerial Vehicles

Martijn de Roo, Paolo Frasca, and Raffaella Carloni

Abstract— This paper proposes a control architecture for a
fleet of unmanned aerial vehicles that is responsible for handling
the events that take place in a given area. The architecture
guarantees that each event is handled by the required number
of vehicles in the shortest time, while the rest of the fleet is
optimally distributed in order to achieve an optimal coverage
of the area. Each vehicle is steered to the specified location by
a path planner that follows the shortest path while avoiding
collisions. The control architecture has been validated both in
simulations and in experiments on a fleet of three vehicles.

I. INTRODUCTION

Thanks to their flexibility, fleets of autonomous Unmanned
Aerial Vehicles (UAVs) are starting to be used for surveil-
lance, inspection [1], search-and-rescue missions [2], and in
agriculture [3]. In these application scenarios, the fleet of
UAVs is responsible for a certain environment where events
can randomly occur and the UAVs should be positioned so to
guarantee an optimal coverage of the environment according
to the probability of the events. Upon occurrence, every event
should be quickly serviced by one or more UAVs, while
the rest of the fleet should redistribute itself to maintain the
optimal coverage.

This paper proposes a control architecture to achieve this
optimal event handling by a fleet of UAVs. As shown in
Figure 1, the control architecture consists of two parts,
i.e., a Group System that acts based on Events, and an
Individual System that controls each UAV. The Group System
is in charge of ensuring the optimal event handling and
the optimal coverage, in the following way. When an Event
occurs, the Event Handling module determines which UAVs
are the closest and then forwards the event location to the
Individual System control of the required UAVs. In this work,
the timing of the events is assumed to be unknown, therefore
no sequential events are considered and the system works
on a first-comes first-served basis. The Coverage module
determines the placement of the UAVs before the mission
starts and, once an event occurs, of all the UAVs that are
not involved in the event handling. More specifically, the
Coverage module takes into account a certain probability
distribution of events occurring in an area and the possibility
of requiring more than one UAV for an event. Optimality is
defined in terms of minimizing the average time to reach
the location of the event with the required number of UAVs.

This work has been funded by the European Commission’s Seventh
Framework Programme as part of the project SHERPA under grant no.
600958.

The authors are with the Faculty of Electrical Engineering,
Mathematics and Computer Science, CTIT Institute, University of
Twente, The Netherlands. Emails: m.deroo-1@alumnus.utwente.nl,
{p.frasca,r.carloni}@utwente.nl.

Fig. 1. The overall control architecture consists of the group system control
and of the individual system control.

Allowing for more than one UAV to service a single event
adds to the flexibility of the system: for instance, multiple
UAV can cooperatively carry large loads that are unfeasible
for single UAVs.

The classical solutions to similar coverage problems are
based on Voronoi tessellations [4]–[6]. Voronoi tessellations
divide the environment in a number of regions based on a
set of generators (that is, the positions of the UAVs), on
which the resulting regions give the area for which that
generator is closer than any other generator. This work fits
in this framework but goes beyond the state of the art
by considering events that require multiple UAVs, i.e., the
optimal coverage is defined by minimizing a novel cost
function, which depends on using multiple density functions
(as many as the maximum number of required UAVs). The
optimization problem is solved by a gradient algorithm im-
plemented in a central processing unit. However, in principle,
the gradient dynamics can be implemented by each UAV in
a distributed way, based on the positions of a limited number
of neighbors [7], [8]. The analysis presented here assumes
that the environment is a convex set, but is amenable to be
extended to non-convex environments along the lines of [5].

The Individual system is responsible for moving each UAV
from its original location to the desired position, i.e., either
the location of the event or the position ensuring optimal
coverage. The Path Planning module computes the path for
each UAV, the Control and Avoidance module guarantees
that the path is accurately tracked while avoiding collisions,
and the UAV module is the physical UAV. In this work, a
centralized approach is used that takes into account all the
UAVs at the same time, together with the paths they follow
and so to avoid possible collisions by changing the paths
they follow [9]–[12].

The remainder of the paper is organized as follows.
Section II describes the group system, the mathematical
formulation of the coverage problem, and its gradient-descent
solution. Section III describes the individual system, includ-
ing path planning, path following, and collision avoidance.
Sections IV and V present the results from simulations and
experiments, respectively. Section VI concludes the paper.

2016 IEEE International Conference on Robotics and Automation (ICRA)
Stockholm, Sweden, May 16-21, 2016

978-1-4673-8026-3/16/$31.00 ©2016 IEEE 1230

II. GROUP SYSTEM

The goal of the group system is optimally assigning
UAVs to the events. In this work, optimality is defined as
minimizing the average waiting time incurred by the events.
This goal is achieved by deploying the group of UAVs in
an optimal configuration (via the Coverage module) and by
assigning, upon the appearance of an event, the closest UAVs
to service it (via the Event Handling module). The key part
here is optimizing the configuration (i.e., the positions) of
the UAVs while they wait for the appearance of the events.
This problem is formally defined in Section II-A and solved
by on a gradient descent algorithm in Section II-B.

A. Optimal coverage problem

Let Ω be a bounded closed and convex domain of RN ,
where in our applications N ∈ {1, 2, 3}. In this domain,
events take place according to a random spatial process. The
events are heterogeneous in nature and thus require different
numbers of UAVs to be serviced: consequently, we define
for each m ∈ {1, . . . ,M} a smooth density function φm :
Ω → R>0, representing at each point in Ω the density of
events requiring m UAVs. For each i ∈ {1, . . . , n}, we let
pi denote the position of UAV i, so that p ∈ Ωn is the vector
of the UAV positions. We let ||q− pi|| denote the Euclidean
distance between pi and a generic point q in Ω. For the
sake of generality and in order to account for heterogeneities
among the UAVs in terms of speed, we define for each i ∈
{1, . . . , n} a smooth strictly increasing convex function fi :
R≥0 → R≥0, so that fi(||pi − q||) represents the traveling
time of UAV i from its current position to q. Whenever m
UAVs are required by an event, we assume that the event
cannot be serviced until it has been reached by all m UAVs:
hence, the waiting time of the event is the traveling time of
its m-th closest UAV. To formalize this fact, we shall write
m-min S to denote the m-th smallest element in a finite
set of real numbers S. With this notation in place, we are
ready to define the following integral cost function, which
represents the expected service time of an event,

Jexp(p) =

M∑
m=1

∫
Ω

m-min
i∈{1,...,n}

fi(||q − pi||)φm(q) dq (1)

and the corresponding optimization problem

min
p∈Ωn

Jexp(p).

In the special case when M = 1, this cost reduces to∫
Ω

min
i∈{1,...,n}

fi(||q − pi||)φ(q) dq.

The optimization of this cost has been extensively studied,
see for instance [13], by using Voronoi tessellations of the
domain Ω. In fact, also the cost (1) can be conveniently
rewritten by using a suitable decomposition of Ω into sub-
regions, in the following way.

Let W be a collection of measurable subsets of Ω such
that each region Wm

i is indexed by i ∈ {1, . . . , n} and
m ∈ {1, . . . ,M} and, for each m, the sub-collection

{Wm
i }i∈{1,...,n} is a tessellation of Ω: that is, ∪ni=1W

m
i = Ω

for every m and Wm
i ∩Wm

j is a set of measure zero if i 6= j.
Note that the regions Wm

i are not assumed to be connected,
i.e., a region can consist out of several disjoint sub-regions.
Given such a collection W , we can define the auxiliary cost

J (p,W) =

n∑
i=1

M∑
m=1

∫
Wm

i

fi(||q − pi||)φm(q) dq. (2)

Note that this cost depends both on the positions p and on the
regions W . By writing this cost, we assume that each UAV
i as responsible for servicing the events happening in the
region ∪Mm=1W

m
i : in region W 1

i it shall service all events,
in region W 2

i it shall service all events that require at least
two UAVs, and so forth.

In order to link the generic cost (2) with the expected
cost (1), we need to define one specific collection Z. Given
a configuration p with no coincident positions, let us define
the region Zmi (p) as the subset of Ω such that i is the
mth closest UAV to the points in Zmi (p). More formally,
let Zmi (p) = {q ∈ Ω : ∃H ⊂ {1 . . . n} such that |H| =
m − 1, i 6∈ H and fh(||q − ph||) ≤ fi(||q − pi||) ≤
f`(||q − p`||) for all h ∈ H, ` /∈ H, ` 6= i}. Note that the
sub-collection {Z1

i (p)}i∈{1,...,n} is just the classical Voronoi
tessellation generated by p. The dependence on p will be
dropped in what follows, provided this causes no ambiguity.

By virtue of its definition, it is clear that Z(p) minimizes
J (p,W) as a function of W for fixed p. That is, we have

Jexp(p) = J (p, Z(p)) = min
W

J (p,W)

for every p /∈ C, where C = {p ∈ Ωn : ∃i, j s.t. pi = pj}.
This fact also permits to show –along the lines of [13, The-
orem 2.16]– that the function Jexp is Lipschitz continuous
on its domain and continuously differentiable outside the set
of coincident configurations C.

Constructing the regions Zmi : For the sake of clarity and
concreteness, we now illustrate with the help of Figure 2 how
to construct such regions Zmi for an example with n = 3
and m = 2. First, we construct the Voronoi regions Z1

i for
each i. Next, in order to get the second-closest tessellation
of the Voronoi region Z1

i , we leave out UAV i from the
generators and construct the Voronoi tessellation generated
by {1, . . . , n} \ {i}: its n − 1 regions are denoted by Xi

k.
Note that ∪k 6=iXi

k = Ω. By taking the intersection of the new
regions Xi

k and the regions Z1
i for all i ∈ {1, . . . , n} and

k 6= i we get T 2,i
k = Z1

i ∩Xi
k. Finally, for all i ∈ {1, . . . , n}

we define Z2
i = ∪ 6̀=iT 2,`

i .

B. Gradient descent optimization

The minimization of the coverage function can be sought
by following its gradient by the dynamics

ṗk = −κ∂Jexp(p)

∂pk
∀ k ∈ {1, . . . , n}, (3)

where κ ≥ 0. However, the coverage function is not convex,
so a gradient descent will not in general reach a global
minimum. We shall now compute the gradient under the

1231

Fig. 2. Example of the construction of the regions Zm
i with n = 3 and

m = 2.

simplifying assumption that fi(x) = x2 for all i: this
assumption, according to [5], is often adequate in practice
and can be relaxed at the cost of more involved notation.
Since Jexp(p) = J(p, Z(p)), we have

∂Jexp(p)

∂pk
=

∂

∂pk

M∑
m=1

n∑
i=1

∫
Zm

i

||pi − q||2φm(q) dq (4a)

=

M∑
m=1

n∑
i=1

∫
Zm

i

∂

∂pk
||pi − q||2φm(q) dq (4b)

= 2

M∑
m=1

n∑
i=1

∫
Zm

i

||pi − q||
∂

∂pk
||pi − q||φm(q) dq

(4c)

= 2

M∑
m=1

∫
Zm

k

||pk − q||
∂

∂pk
||pk − q||φm(q) dq,

(4d)

where for step (4a) to (4b) it is allowed to take the derivative
under the integral according to [6, Proposition 2] and for
step (4c) to (4d) the summation is removed because ∂

∂pk
||pi−

q|| = 0 if k 6= i. Since ∂
∂pi
||pi − q|| = pi−q

||pi−q|| , Equation (3)
becomes

ṗi = −2κ

M∑
m=1

∫
Zm

i

(pi − q)φm(q) dq, (5)

which corresponds to steering each UAV towards a weighted
“centre of mass” of its own responsibility region ∪mZmi .
Some convergence properties of the gradient dynamics are
stated in the next result.

Theorem 1: The trajectories p(t) of the dynamics (3)
converge to a set contained in

{q ∈ Ωn : ∇Jexp(q) = 0} ∪ C.
Proof: First of all, note that the Lie derivative, that is

the change in the objective function,

dJexp(p(t))

dt
=

n∑
i=1

∂Jexp(p(t))

∂pi
ṗi

= −κ
n∑
i=1

(
∂Jexp(p(t))

∂pi

)2

x
10 20 30 40 50 60 70 80 90

y

10

20

30

40

50

60

70

80

90

Starting point
Target point
Convergence path

Area of UAV 3

Area of UAV 2

Area of UAV 1

Fig. 3. Simulation of the group system for n = 3, M = 2 on a 100x100
grid. Virtual trajectories of the UAVs from the initial locations (star) to the
final locations (circles) are drawn as dashed black lines; colors illustrate
responsibility regions at convergence (the blue region corresponds to the
blue UAV, and so on): Z1 (left plot) and Z2 (right plot).

is negative semidefinite. However, since Jexp(p) is not
continuously differentiable in C, the classical LaSalle prin-
ciple can not be used. Instead, we resort to the generalized
invariance principle in [13, E1.8]. Note that the trajectories
p(t) stay in the compact set Ωn, but the set Ωn \ C is not
closed and is dense in Ωn. Then, the generalized invariance
principle implies convergence of the solutions to a subset
of the union between C and the largest invariant subset
contained in the zeros of the Lie derivative, that is, {q ∈
Ωn : ∇Jexp(q) = 0}.

In words, we have proved that the gradient dynamics
converges to either the critical points of the cost or to
configurations with coincident positions. Note that possible
convergence to coincident positions is not an artefact of our
analysis but instead an inherent feature of this optimization
problem, as examples show that local minima of Jexp can in
fact involve coincident positions. Clearly, the implementation
of such minima would be approximate, so to avoid collisions
between UAVs. The convergence of (3) is illustrated in Fig-
ure 3 in a simple square environment. For the implementation
of the control law in equation (5), we perform a discretization
of the environment, resulting in an approximation of the
algorithm. Similar discretizations are done in [5], [14].

III. INDIVIDUAL SYSTEM

The goal of the individual system is to move the UAV(s)
to the location where the event occurs. To this goal, path
planning, path following, obstacle avoidance, and attitude
control should be implemented on each UAV. A detailed
overview of the Individual System controller of a UAV is
shown in Figure 4.

A. Quadcopter UAV dynamics

In this work, quadcopter UAVs are considered, as schemat-
ically depicted in Figure 5. The dynamics of a quadcopter is
based on the model presented in [15], on which a drag force
for each angular velocity has been added in the inertial frame.

1232

Fig. 4. Control scheme of a UAV.

T

φ

θ

ψ

ω2

ω4

ω1

ω3

Fig. 5. Quadcopter with the angular velocities of the rotors, ω1, ω2, ω3

and ω4; the roll, pitch and yaw are the angles φ, θ and ψ; the thrust is
indicated by T .

Thus, the dynamics is given by:

mξ̈ = −mgez +RezT − Cξ̇
IΩ̇ = −Ω× IΩ−G+ τ

T = b

4∑
i=1

ω2
i

τ =

 d b (ω2
2 − ω2

4)
d b (ω2

1 − ω2
3)

κ (ω2
1 + ω2

2 − ω2
3 − ω2

4)

G =

4∑
i=1

Ir(Ω× ez)(−1)i+1ωi

where m ∈ R and I ∈ R3 are the mass and the diagonal
inertial matrix of the UAV with respect to the body-fixed
frame, ξ ∈ R3 and R ∈ SO(3) the position and the rotation
matrix of the body-fixed frame in the inertial frame, g ∈ R
the gravity acceleration, T ∈ R the thrust applied to the
airframe, C ∈ R3×3 the diagonal drag force matrix, ωi, with
i = (1, · · · , 4) the rotors’ angular velocities, Ω ∈ R3 the
angular velocity of the airframe in the body-fixed frame,
G the gyroscopic forces, and τ the external torque. The
constants are b ∈ R (the proportionality constant of the
rotor), d ∈ R (the distance of the rotor to the airframe’s
center of mass) and κ ∈ R (the rotor thrust factor).

The rotation matrix R is expressed as the Zψ - Yθ - Xφ

(yaw - pitch - roll) Euler angles to map the inertial and the
body-fixed frame, resulting in

R =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθcψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

where for brevity s = sin and c = cos.

B. Path planning

Once the event location is known, a path has to be
generated for the UAV to reach the desired location. An
overview on different path planning methods is given in [16].

In this work, the path is planned though a graph-based
approach, in which the environment is discretized into a grid.
To find the path on a grid, several methods can be used. The
A* algorithm [17] or the Dijkstra’s algorithm [18] are well
known algorithms and they both ensure that the planned path
is the shortest path between the initial location to the desired
one. The A* algorithm has been chosen because, in general,
it is faster thanks to the possibility of selecting heuristics on
a preferred direction. The A* algorithm generates a set of
points on the planned path.

Figure 6 shows the result of the A* algorithm, as simulated
on a 100 × 100 grid for three UAVs in Matlab/Simulink
(MathWorks, Natick, MA, USA). The three UAVs starts from
a position close to (0, 0) and the algorithm gives the shortest
path for each UAV to reach the target. In case several paths
have the same length, the shortest path that has no overlap
with other paths is selected to reduce the risk of collisions.

10 20 30 40 50 60 70

10

20

30

40

50

60

70 Starting point
Target point
A* path

Fig. 6. A* shortest path in a 100x100 grid.

C. Control of the quadcopter UAV

Once a path has been planned, each UAV has to follow the
path and stabilize in the location of the event. Commercially
available quadcopters have built-in PID attitude control and,
therefore, this section describes only the position control,
path following and collision avoidance.

1) Position control: The position controller is imple-
mented as a PID controller [19], [20]. If a high gain attitude
control is considered and small angles are assumed for the
roll and pitch, the set-points for the roll and pitch can be
linearized and be used as the velocity set-points.

2) Path following: The path following method is similar
to the ones described in [21], [22]. The position error that
needs to be minimized is defined in the normal direction
to the line that goes from the previous waypoint to the next
waypoint, while the desired velocity is defined in the tangent
direction of the path. This allows to move the UAV through
a set of waypoints without stopping or converging to each
of them, which happens if position control is used for the

1233

waypoints. The path is defined as a sequence of waypoints
xi ∈ R3. Let vi be the desired velocity along the path
segment connecting waypoint i to i+1, and x(t) the current
position. The cross-track ect error is given by

ect = ‖xi − x(t)‖ñ (6)

where ñ is the unitary vector, normal to the path segment
between xi−1 and xi. The position control is designed to
minimize the cross-track error. The transition to the next path
segment occurs when the UAV is cerror = ‖xi − x(t)‖b̃ far
from the next path segment, where b̃ is the unitary vector,
parallel to the path segment between xi−1 and xi. The path
following is schematically depicted in Figure 7.

�v
ect

cerror

xi

xi

xi

xt

Fig. 7. Path following method.

The position controller requires a desired velocity. To get
this velocity we propose to make the velocity dependent on
the curvature of the path. The more curved the path is, the
slower the desired velocity is. That means that vmax would
be a straight line and vmin a 90◦ turn. To get the curvature for
the waypoints we approximate it by using a circle, computed
with three consecutive waypoints to find a unique radius that
can represent the curvature. A large radius would indicate an
almost straight line, while a small radius would indicate a
sharp turn. The circle of three points can be determined by
solving the following determinant

det

∣∣∣∣∣∣∣∣
x2 + y2 x y 1
x2

1 + y2
1 x1 y1 1

x2
2 + y2

2 x2 y2 1
x2

3 + y2
3 x3 y3 1

∣∣∣∣∣∣∣∣ = 0 (7)

where (x, y) is the set of points of the circumcircle and
(xi, yi) the i-th point. The determinant is (x− x0)2 + (y −
y0)2 = r2, resulting in a radius r from the three points.

The radius r is ∞ when all the points are on a straight
line. The desired velocity is based on the inverse of the radius
and is given by vdes(r) = f(r) + vmin, where

f(r) =

{
(vmax − vmin)− c 1

r if (vmax − vmin)− 1
r > 0

0 if (vmax − vmin)− 1
r ≤ 0

and c ∈ R is a constant.
3) Collision avoidance: To ensure that no collision occur

among the UAVs, a collision avoidance algorithm is included
in the overall controller,where a circle of a radius that sets
a safety margin is considered around each UAV.

IV. SIMULATIONS

Simulations are used to validate the proposed control
architecture for optimal event handling by multiple UAVs.

The type of UAV that has been used is the quadcopter
Crazyflie 2.0 (Bitcraze AB, Sweden), which has a built-in
attitude control and whose parameters have been reported
in [23]. The dynamic simulations of the system and of the
overall control architecture have been made using the Robot
Operating System (ROS, www.ros.org), the robot sim-
ulator Gazebo (http://gazebosim.org) and Matlab.
ROS and Gazebo allow for an easy transfer from simulation
code to experimental code: the model for the quadcopter
is derived from [24]. Matlab has been used for the group
system and the Matlab ROS I/O add-on has been used for
the communication between Matlab and ROS.

A. Simulation results of the group system

The implementation of the group system of three UAVs
has been realized in Matlab and is shown in Figure 8.

y
(m

)

-3 -2 0 1 2 3
-3

-1

0

1

2

3

-1

-2

2

3

1

(a)

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

1

2
3

(b)

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

1

32

(c)

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

1

3

2

(d)

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

1

3

2

(e)

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

1

3
2

(f)

x (m)

Fig. 8. Example of the group system showing the UAVs and their paths.

The desired position in which an event appears is decided
by the user and the optimal distributions of the three UAVs
are calculated using the results of the optimal coverage
problem. In the figure, the background shows the regions
of each UAV. In Figure 8(a) the system is enabled, from the

1234

current positions of the UAVs a path is generated towards
the optimal location of the UAVs according to the optimal
coverage for three UAVs and the desired positions are
achieved, as shown in Figure 8(b). In Figure 8(c), two points
in the area are selected, towards which paths are generated
for the two closest UAVs and the available UAV 3 is sent to
the optimal coverage position, i.e., the centre. In Figure 8(d)
UAV 1 reaches the desired position, and the system sends it
back to the optimal coverage for two UAVs, which requires
both available UAVs in the middle. When UAV 2 reaches its
desired position in Figure 8(e), three UAVs are available, for
which the systems generates paths to move the UAVs, the
final positioning is then achieved Figure 8(f), which is similar
to Figure 8(b). Figure 9 shows the simulated environment in
Gazebo, in which the quadcopter has been implemented as
in [24].

Fig. 9. Example of the Gazebo simulation environment with three UAVs.

B. Simulation results of the individual system

The velocity profile has been generated with vmax =
0.065 rad, vmin = 0.015 rad and c = 0.15. For the collision
avoidance a radius of 50 cm has been used around each UAV.

Two simulations have been made. In the first simulation,
the quadcopter UAV follows a Lissajous figure in order to
test the path following controller and the velocity profile
generation. Figure 10 shows the results of the simulated
model of a Crazyflie 2.0 while tracking the Lissajous figure.
The trajectory is closely followed with a cross-track error of
about 10 cm in the corners.

In the second simulation, shown in Figure 11, two identical
quadcopters UAVs follow the same Lissajous figure by
starting with opposite positions and by moving in opposite
directions in order to test the collision avoidance. The two
UAVs, on opposite ends, are started at the same time and
meet each other in the middle: at this point, the obstacle
avoidance takes control due to the quadcopters heading into
a collision and ensures that the quadcopters do not collide.
The trajectory is closely followed with a cross-track error of
about 12 cm when the two UAVs are in close vicinity.

V. EXPERIMENTS

The proposed control architecture has been validated
thought experiments.

x (m)
-1 -0.5 0 0.5 1

y
(m

)

-1

-0.5

0

0.5

1

1.5

UAV
Desired Path

Time (seconds)
10 20 30

C
ro

ss
-tr

ac
k

er
ro

r (
m

)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Fig. 10. Simulation in ROS/Gazebo: path following of a Lissajous figure,
showing both the path and the cross-track error (10 cm at its largest).

x (m)
-1 -0.5 0 0.5 1

y
(m

)

-1

-0.5

0

0.5

1

1.5 Desired path
UAV1
UAV2

Time (seconds)
4 6 8 10

C
ro

ss
-tr

ac
k

er
ro

r (
m

)

-0.1

-0.05

0

0.05

0.1 UAV1
UAV2

Fig. 11. Simulation in ROS/Gazebo: path following of a Lissajous figure
by two quadcopter avoiding each another, showing both the path and the
cross-track error (12 cm at its largest).

The overall hardware architecture is shown in Figure 12.
The experiments have been conducted in an indoor test
area, within which the OptiTrack optical tracking system
(Naturalpoint, Inc., Corvalis, USA) has been used as external
positioning system that allows a 100 Hz position and atti-
tude tracking. The Crazyflies 2.0 have been endowed with
retroreflective markers held by carbon tubes, as is shown
in Figure 13. During the experiment Matlab has been used
for the group system and ROS/Gazebo for the individual
system.

Experiments have been performed to test both the indi-
vidual systems and the overall group system. For the group
system, the simulation results could be replicated as reported
in Figure 8. As for the individual system, the first simulated
test has been reproduced on the experimental set-up. The
results of the experiment are shown in Figure 14. The
Lissajous figure is tracked by the UAV but it shows a larger
error when compared to the simulations. The trajectory is
closely followed with a cross-track error of about 15 cm.
We believe that this small degradation of the performance is
due to the weight of the retroreflective markers, which is not
included in the dynamical model of the UAVs.

1235

Fig. 12. Overview of the experimental setup.

Fig. 13. The Crazyflie 2.0 quadcopters.

VI. CONCLUSION

A control architecture has been proposed for the optimal
handling of events by means of a fleet of UAVs. The architec-
ture comprises both a group system and an individual system.
The group system solves the optimal coverage problem,
while taking into account that events can require multiple
UAVs. For the individual system, each vehicles is steered to
the desired location according to a path planner that seeks
the shortest path while avoiding collisions.

VII. ACKNOWLEDGEMENTS

The authors thank Martijn Weijers for contributing, during
his MSc thesis, to debugging the experimental tests.

REFERENCES

[1] L. Marconi et al., “Aerial service robots: An overview of the AIRobots
activity,” in Proceedings of the IEEE International Conference on
Applied Robotics for the Power Industry, 2012, pp. 76–77.

[2] ——, “The SHERPA project: Smart collaboration between humans
and ground-aerial robots for improving rescuing activities in alpine
environments,” in Proceedings of the IEEE International Symposium
on Safety, Security, and Rescue Robotics, 2012, pp. 1–4.

[3] B. Stark, S. Rider, and Y. Chen, “Optimal pest management by
networked unmanned cropdusters in precision agriculture: A cyber-
physical system approach,” in IFAC Workshop on Research, Education
and Development of Unmanned Aerial Systems, 2013, pp. 296–302.

[4] J. Cortes, S. Martinez, and F. Bullo, “Spatially-distributed coverage
optimization and control with limited-range interactions,” ESAIM:
Control, Optimisation and Calculus of Variations, vol. 11, no. 04,
pp. 691–719, 2005.

[5] S. Bhattacharya, R. Ghrist, and V. Kumar, “Multi-robot coverage and
exploration in non-Euclidean metric spaces,” in Algorithmic Founda-
tions of Robotics X. Springer, 2013, pp. 245–262.

[6] L. Pimenta, V. Kumar, R. Mesquita, and G. Pereira, “Sensing and
coverage for a network of heterogeneous robots,” in IEEE Conference
on Decision and Control, 2008, pp. 3947–3952.

[7] J. Cortés, S. Martı́nez, T. Karatas, and F. Bullo, “Coverage control for
mobile sensing networks,” IEEE Robotics and Automation Magazine,
vol. 20, no. 2, pp. 243–255, 2004.

x (m)
-1 -0.5 0 0.5 1

y
(m

)

-1

-0.5

0

0.5

1

1.5

UAV
Desired Path

Time (seconds)
0 5 10 15 20 25 30

C
ro

ss
-tr

ac
k

er
ro

r (
m

)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Fig. 14. Experiment: path following of a Lissajous figure, showing both
the path and the cross-track error (15 cm at its largest).

[8] F. Bullo, R. Carli, and P. Frasca, “Gossip coverage control for robotic
networks: Dynamical systems on the space of partitions,” SIAM
Journal on Control and Optimization, vol. 50, no. 1, pp. 419–447,
2012.

[9] D. M. Stipanović, P. F. Hokayem, M. W. Spong, and D. D. Šiljak,
“Cooperative avoidance control for multiagent systems,” Journal of
Dynamic Systems, Measurement, and Control, vol. 129, no. 5, pp.
699–707, 2007.

[10] J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity
obstacles for real-time multi-agent navigation,” in IEEE International
Conference on Robotics and Automation, 2008, pp. 1928–1935.

[11] P. Surynek, “An optimization variant of multi-robot path planning is
intractable,” in AAAI Conference on Artificial Intelligence, 2010, pp.
1261–1263.

[12] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal
n-body collision avoidance,” in Robotics research. Springer, 2011,
pp. 3–19.

[13] F. Bullo, J. Cortés, and S. Martı́nez, Distributed Control of Robotic
Networks. Princeton University Press, 2009.

[14] J. W. Durham, R. Carli, P. Frasca, and F. Bullo, “Discrete partitioning
and coverage control for gossiping robots,” IEEE Transactions on
Robotics, vol. 28, no. 2, pp. 364–378, 2012.

[15] T. Hamel, R. Mahony, R. Lozano, and J. Ostrowski, “Dynamic
modelling and configuration stabilization for an X4-flyer,” in IFAC
World Congress, 2002, pp. 846–846.

[16] M. Elbanhawi and M. Simic, “Sampling-based robot motion planning:
A review,” IEEE Access, vol. 2, pp. 56–77, 2014.

[17] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[18] M. Sniedovich, “Dijkstra’s algorithm revisited: the dynamic program-
ming connexion,” Control and Cybernetics, vol. 35, no. 3, pp. 599–
620, 2006.

[19] M. Fumagalli, R. Naldi, A. Macchelli, R. Carloni, S. Stramigioli,
and L. Marconi, “Modeling and control of a flying robot for contact
inspection,” in Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2012, pp. 3532–3537.

[20] H. W. Wopereis, M. Fumagalli, S. Stramigioli, and R. Carloni, “Bi-
lateral human-robot control for semi-autonomous UAV navigation,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2015, pp. 5234–5240.

[21] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The GRASP
multiple micro-UAV testbed,” IEEE Robotics Automation Magazine,
vol. 17, no. 3, pp. 56–65, 2010.

[22] G. M. Hoffmann, S. L. Wasl, and C. J. Tomlin, “Quadrotor helicopter
trajectory tracking control,” in AIAA Guidance, Navigation, and Con-
trol Conference, 2008.

[23] W. Hanna, “Modelling and control of an unmanned aerial vehicle,”
Ph.D. dissertation, Charles Darwin University, 2014.

[24] J. Meyer, A. Sendobry, S. Kohlbrecher, U. Klingauf, and O. von
Stryk, “Comprehensive simulation of quadrotor UAVs using ROS and
Gazebo,” in International Conference on Simulation, Modeling and
Programming for Autonomous Robots, 2012, pp. 400–411.

1236

