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Abstract— Humanoid robots are designed with dozens of
actuated joints to suit a variety of tasks, but walking controllers
rarely make the best use of all of this freedom. We present a
framework for maximizing the use of the full humanoid body
for the purpose of stable dynamic locomotion, which requires no
restriction to a planning template (e.g. LIPM). Using a hybrid
zero dynamics (HZD) framework, this approach optimizes a set
of outputs which provides requirements for the motion for all
actuated links, including arms. These output equations are then
rapidly solved by a whole-body inverse-kinematic (IK) solver,
providing a set of joint trajectories to the robot. We apply this
procedure to a simulation of the humanoid robot, DRC-HUBO,
which has over 27 actuators. As a consequence, the resulting
gaits swing their arms, not by a user defining swinging motions
a priori or superimposing them on gaits post hoc, but as an
emergent behavior from optimizing the dynamic gait. We also
present preliminary dynamic walking experiments with DRC-
HUBO in hardware, thereby building a case that hybrid zero
dynamics as augmented by inverse kinematics (HZD+IK) is
becoming a viable approach for controlling the full complexity
of humanoid locomotion.

I. INTRODUCTION

Achieving dynamic walking on humanoids is hard; their
dynamics are inherently nonlinear and their numerous ac-
tuators render their computational search spaces very high-
dimensional. As such, it’s often simplest to just ignore their
arms when generating their locomotion patterns. This can
be a missed opportunity. Beyond the obvious manipulation
tasks, arms can be helpful for improving the balance [26]
and economy [7] of locomotion by swinging them as part of
a dynamic gait. As such, we seek a method of optimizing
stable humanoid control that can leverage all of the robot’s
joints during locomotion tasks.

Researchers who develop humanoid control have achieved
varied combinations of full-body freedom and certifications
of stability. Since the origin of humanoid control [34], Zero
Moment Point (ZMP) approaches have certified balance by
ensuring that the center of pressure always rests within the
support polygon of its feet [33]. Ensuring this condition has
typically required making and/or enforcing linear inverted
pendulum model (LIPM) assumptions about the robot dy-
namics [17], [25], [27], [31]. More recently, robots have
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Fig. 1: DRC-HUBO, a humanoid robotic platform with 27
actuated degrees of freedom from its feet to its wrists.
This work presents an framework that can generate dynamic
locomotion that reasons about the multibody dynamics of
all these degrees of freedom, including its swinging arms,
without restricting motions to a planning template.

begun planning center-of-mass trajectories and contact forces
that can reason more general motion for the lumped CoM
[9], [10], [19], [20]. In such methods, upper body motions
are often generated sequentially, significantly decoupling
them from locomotion generation and potentially divorcing
the robot from its prior formal stability guarantees. Recent
experimental methods have emerged that can plan full-body
humanoid motions in an integrated fashion, as a result they
can better recognize the merits of dynamic arm motions [8],
[11], [15], [18], [22]. We seek a method that can not only
plan these motions, but also produce a controller that certifies
its dynamic stability.

The methodology presented in this paper takes a hybrid
zero dynamics (HZD) approach to locomotion control [4],
[12], [36] in an effort to optimize control and certify stability
for the full humanoid dynamics. Zero dynamics offers a
natural basis for ensuring stability conditions for controlled
nonlinear dynamics, which operates by defining a set of out-
puts and driving those outputs to zero via feedback control.
In practice, HZD methods have suffered from scalability
issues. When robots have more degrees of freedom (e.g.
arms), it becomes difficult to optimize these outputs, and



nontrivial to solve nonlinear outputs in real-time.
In this paper, we present a novel framework for humanoid

control with supporting simulations and preliminary experi-
mental results for the humanoid robot, DRC-HUBO, walking
with dynamic arm swing. This framework employs a large-
scale optimization approach to generating stable HZD, and
realizes the outputs with whole-body inverse kinematics (IK)
methods. This allows us to generate and control a set of
output equations that yield a dynamic and stable gait for a
whole humanoid model with 27 actuators. Importantly, the
humanoid swings its arms as a consequence of optimizing
the dynamic gait for energy-efficient locomotion subject to
no-net-moment constraints, not by a priori specification.

Using a whole body approach to inverse kinematics, we
are also able to solve nonlinear outputs at real-time speeds,
allowing us to define outputs that are “task-relevant.” As
a result, the inverse-kinematics solvers can both render the
dynamic gait while accommodating any intuitive adjustments
requested by a user (e.g. adjust foot placement). We demon-
strate these combined methods (HZD+IK) with simulations
of stable and dynamic humanoid walking and preliminary
experiments with the humanoid robot, DRC-HUBO (Fig. 1).

This paper is structured as follows. Section II presents
some preliminaries on the HZD control framework and its
application to legged locomotion. Section III discusses our
large-scale optimization approach for designing dynamic
gaits and the outputs that define them. Section IV explains
our methods for solving whole-body kinematics, which
solves our output equations at real-time speeds. Section V
describes the application of the method to DRC-HUBO,
a humanoid robot, presenting simulation and preliminary
experimental validation of the framework. We conclude
our work in Section VI, summarizing the capabilities of
the HZD+IK framework for enabling dynamic humanoid
locomotion that really works the arms.

II. HYBRID ZERO DYNAMICS

The approach presented generates stable humanoid con-
trollers by building upon a hybrid zero dynamics based theo-
retical foundation. More precisely, the plastic impacts present
in our humanoid model drove us to use a partial hybrid zero
dynamics formulation [3], which allows for reasonable joint
acceleration demands while maintaining stability assurances.
We model the locomotion of a bipedal robot as a hybrid
system model (see [2], [36] for a formal definition). Given a
robot’s generalized coordinates, q ∈ Q ⊂ Rn, the continuous
dynamics of the system is determined by both the Lagrangian
of the robot and holonomic constraints η(q), and can be given
by the Euler-Lagrange equations [23]:

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu+ JT (q)F, (1)

where F is a vector of constraint wrenches, which can
be obtained by enforcing the holonomic constraints of the
system to be constant. In other words, the second-order
derivatives of η(q) should be zero:

J(q)q̈ + J̇(q, q̇)q̇ = 0, (2)

where J(q) is the Jacobian matrix of η(q), i.e., J(q) =
∂η
∂q . The domain of continuous dynamics is determined by
the admissible constraints on the robot configuration and
constraint wrenches, whereas the discrete event is triggered
when the guard condition, H(q), crosses zero. In the specific
context of humanoid locomotion, this guard condition will
ultimately be used to define ground contact. Formally, we
define the switching surface, S, that defines the guard as

S = {(q, q̇) ∈ TQ | H(q, q̇) = 0, Ḣ(q, q̇) < 0}. (3)

For legged systems, discrete events, such as the impacts of
rigid legs colliding with the ground, are assumed to be plastic
impacts. Following the presentation in [13], configurations
of the system are invariant through an impact, i.e., given
pre-impact states (q−, q̇−), post-impact configuration yields
q+ = q−, but post-impact velocities, q̇+, need to satisfy the
plastic impact equation:[

D(q−) −JT (q−)
J(q−) 0

] [
q̇+

δF

]
=

[
D(q−)q̇−

0

]
, (4)

where δF are impulsive contact wrenches. This defines the
reset map of the system, (q+, q̇+) = ∆(q−, q̇−).

To design a walking pattern, one can define a set of
outputs, y1 and y2, which modulate the behavior of a system
in order to achieve certain desired trajectories [2]:

y1(q, q̇) = ẏa1 (q, q̇)− yd1(α), (5)

y2(q) = ya2 (q)− yd2(τ(q), α), (6)

where y1 is a velocity-modulating output and y2 is a position-
modulating output, and are relative degree 1 and (vector)
relative degree 2 respectively by definition (see [29] for the
definition of relative degree). Further, ya1 and ya2 are the
actual outputs and yd1 and yd2 are the desired outputs for
relative degrees 1 and 2 respectively. If a feedback control
law drives these outputs to zero, i.e., y = (y1, y2) → 0,
it renders the zero dynamics submanifold invariant across
all continuous domains. In this paper, we apply the feedback
controllers introduced in [2], which yield a set of stable linear
output dynamics of the form:

ẏ1 = −εy1, (7)

ÿ2 = −2εẏ2 − ε2y2, (8)

with ε > 0. However, due to the presence of rigid impacts,
realizing invariance at impact of all outputs would be very
difficult. Therefore, if there exists a set of parameters α such
that the invariance of relative degree 2 outputs is guaranteed,
then we call the resulting submanifold a partial hybrid zero
dynamics (PHZD) surface (see [3]) as given by

PZα = {(q, q̇) ∈ TQ | y2(q) = 0, ẏ2(q, q̇) = 0}. (9)

The goal is to ensure that the partial hybrid zero dynamics
surface, PZα, is invariant through impact, as represented by
the partial hybrid zero dynamics condition:

∆(S ∩ PZα) ⊂ PZα (PHZD)

or, in other words, ∆(q, q̇) ∈ PZα for all (q, q̇) ∈ S∩PZα.



Given PHZD conditions, we can ensure dynamic stability
of a fully actuated bipedal gait provided we can find an
appropriate set of outputs. Put more relevantly, PHZD con-
ditions are sufficient to establish stability when a system is
fully actuated (see Theorem 2 of [2]), as is the case for DRC-
HUBO. Finding the parameters, α, that shape these outputs,
however, is computationally tricky. For this, we employ a
sparse PHZD optimization formulation and large-scale NLP
solvers.

III. OPTIMIZATION

In this section, we briefly present the general form of our
large-scale optimization approach to defining outputs, specif-
ically the parameters α that shape them. For computational
simplicity, we formulate our desired position-modulating
output trajectories1 using Bézier polynomials of degree M ,
determined by M + 1 coefficients:

yd2(τ, α[k]) :=

M∑
k=0

α[k]
M !

k!(M − k)!
τk(1− τ)M−k, (10)

where α[k] is a vector of Bézier polynomial coefficients of
each output, and τ is the state-based parameterization of
time [3]. These α[k] are each assigned a design variable in
a nonlinear optimization seeking to satisfy PHZD conditions
and any other task-related constraints and objectives. While
we are ultimately interested in only these coefficients, opti-
mization is typically more reliable with formulations that add
far more collocated design variables. Particularly, we use a
direct collocation formulation [32] of the PHZD optimization
problem.

We begin by defining a sequence of N + 1 discrete nodes
along the time span of the trajectory:

0 = t0 < t1 < t2 < · · · < tN = TI , (11)

which forms the basis of our discrete representation of the
continuous domains.

Direct collocation formulation methods operate by approx-
imating the evolution of all continuous dynamics. In this
case, we use a piecewise Hermite interpolation polynomial
[28]. The slope of each polynomial is evaluated at the center
point, i.e. a collocation point, and compared to the closed-
form first order dynamics. By driving this difference, or
defect, to zero we implicitly enforce the dynamics of the
system as equality constraints [6], [14]. Let x = (q, q̇) be
the system states, these constraints can be stated as:

xi − 1

2
(xi+1 + xi−1)− 1

8
∆ti(ẋ

i−1 − ẋi+1) = 0, (C1)

xi+1 − xi−1 − 1

6
∆ti(ẋi−1 + 4ẋi + ẋi+1) = 0, (C2)

with ∆ti = ti+1 − ti−1, for i ∈ {1, 3, 5, . . . , N − 1}. This
form of dynamic defect constraint is applied to all of ordinary
differential equation relations between derivatives of design
variables (e.g. q and q̇). We now define a vector of design
variables, zi = (T iI , q

i, q̇i, q̈i, ui, F i, αi), at each node i ∈

1yd1(α) is typically a constant, often defining a steady forward velocity.

{0, 1, 2, . . . , N}, which will ultimately be designed by an
optimizer.

To accommodate our continuous domains, we impose
defect constraints for the Euler-Lagrange equations and as-
sociated holonomic constraints:

D(qi)q̈i + C(qi, q̇i)q̇i +G(qi)

−Bui − JT (qi)F i = 0, (C3)

J(qi)q̈i + J̇(qi, q̇i)q̇i = 0, (C4)

for i ∈ {0, 1, 2, . . . , N}. In addition to dynamics constraints,
we formulate admissible continuous domain constraints in
terms of a vector, A(q, F ), and enforce at each node2:

A(qi, F i) ≥ 0. (C5)

Similarly, we enforce discrete dynamics via guard conditions,
H(q), at the last node of each continuous domain:

H(qN ) = 0, (C6)

Ḣ(qN , q̇N ) < 0. (C7)

To tie the optimization problem to the output parameters
α, we constrain the generalized coordinates to the output
dynamics as per (7)-(8) via:

ẏ1(qi, q̇i, q̈i, αi) + εy1(qi, q̇i, αi) = 0, (C8)

ÿ2(qi, q̇i, q̈i, αi) + 2εẏ2(qi, q̇i, αi)

+ε2y2(qi, αi) = 0, (C9)

with associated initial conditions

y2(q0, α0) = 0, (C10)

ẏ2(q0, q̇0, α0) = 0, (C11)

constrained to zero, so that the optimized parameters sat-
isfy the partial hybrid zero dynamics (PHZD) condition.
Moreover, to obtain a periodic gait, an equality boundary
constraint is enforced in terms of system states at the first
and the last node via the plastic impact equation:

Rq0 − qN = 0, (C12)

J(qN )Rq̇0 = 0, (C13)

D(qN )(Rq̇0 − q̇N )− JT (qN )δFN = 0, (C14)

where R is the relabeling matrix [4].
Finally, we demand that the constant parameters be con-

sistent in all nodes:

αi − αi+1 = 0, (C15)

T iI − T i+1
I = 0, (C16)

With these basic direct collocation constraints defined,
we define a nonlinear program where we let z =

2These constraints encompass various practical constraints described in
Section V-B, such enforcing no net moment about the foot, and ensuring
non-negative ground reaction forces.



{zi}i∈{0,1,2,...,N} be a vector of all optimization variables,
and state the optimization problem as,

argmin
z∗

J (z) (12)

s.t zmin ≤ z ≤ zmax, (13)
cmin ≤ c(z)≤ cmax, (14)

where J (z) is the scalar objective function, c(z) is a vector
of functions defined in (C1)-(C16) organized in the order of
nodes, zmin, cmin and zmax, cmax are the vectors containing
the minimum and maximum values of optimization variables
and constraints, respectively. We solve this NLP using IPOPT
[35], which is well-suited for the large and highly sparse
problems generated by this formulation. For DRC-HUBO,
the NLP typically contains over 10,000 design variables and
constraints. A more detailed accounting of all the above
constraints can be found in [16].

While we have now effectively defined our desired outputs
yd2 , our actual outputs ya2 can still take on any number of
forms. Typically, these output forms have been linear in
q to make online solving trivial. However, with modern
inverse kinematics methods, we can potentially solve for
very nonlinear outputs that are more task-relevant (e.g. foot
position) at real-time speeds.

IV. WHOLE BODY KINEMATICS

Whole body inverse kinematics is the process of finding
at least one joint configuration that satisfies a set of simul-
taneous kinematic constraints for a body that has one or
more limbs. This will often include multiple simultaneous
end effector constraints, such as having two feet on the
ground while grasping an object. In [30], this is approached
as a control problem where each constraint is a task with
a certain priority level. They use iterative methods which
leverage the robot’s Jacobian and the Jacobian’s nullspace
so that low priority constraints can be solved within the
nullspace of higher priority constraints. The method solves
for joint torques at each moment in time rather than explicitly
computing reference joint positions. Conversely, in [21] they
introduce a “floating base” configuration to the kinematics
of the robot, allowing them to use iterative Jacobian methods
to explicitly compute reference joint positions for all the
joints in the robot. Since the DRC-HUBO is a stiff position-
controlled robot, we prefer the latter approach for our appli-
cation.

It is important to note that the iterative Jacobian methods
have several weaknesses which make them unappealing.
Particularly, they get stuck in local minima, are sensitive
to solver parameters (e.g. step size and tolerance), and may
require a large number of iterations before finding a solution.
For an arbitrary humanoid kinematic model, the iterative
Jacobian approach might be unavoidable. However, some
humanoid robots, such as the DRC-HUBO, are specifically
designed so that each limb offers a six degree-of-freedom
closed-form solution for its inverse kinematics. The solutions
for HUBO’s limbs can be found in [1] and [24]. In our

Fig. 2: (a) A dependency diagram of constraint types being
solved by the whole-body inverse-kinematics solver. (b) The
most efficient sequence for solving the constraints.

application, we can take advantage of these closed-form
solutions to make the solving process fast and precise.

The kinematic constraints that we use take three forms.
In the first constraint form, ed − Eθ = 0, θ is a vector of
the joint positions, ed is a vector function of time which is
determined by the optimization routine discussed in Section
III, and E is a coefficient matrix with fewer rows than
columns. As a consequence, this is an underdetermined
linear system of equations at each moment in time, and it
can be solved for explicitly at each time step.

The second type of kinematic constraint is the holonomic
stance foot constraint, Tstance(θ) = Td. which simply
expresses that the homogeneous transform of the stance foot
must remain at its desired location. We achieve this by
computing the forward kinematics of the stance foot given its
current configuration, then computing the “error transform”
of its current configuration. We then adjust the floating base
components of the robot’s configuration to compensate for
the error transform, thereby placing the stance foot where it
belongs.

The final constraint is a swing foot pose constraint, xdj −
xj = 0. In this case, xj is a component of the swing foot’s
pose relative to the stance foot–represented as a translation
vector and a set of Euler angles–and xdj is the desired value
for xj . We formulate these constraints in terms of a standard
Task Space Region [5], and we solve the Task Space Region
constraint using the closed-form inverse kinematics solution
for the six joints in the swing foot’s leg. This allows us to
solve the constraint directly and without any risk of getting
caught in a local minimum.

The combination of the underdetermined linear system and
swing-foot pose constraint fully determine the joint angles of
the robot, while the stance-foot constraint fully determines
the six degrees of freedom of the floating base. Even though
the linear system of equations which can be solved explicitly,
swing and stance constraints cannot be expressed as linear
equations with respect to the joint positions, so the three
constraint types cannot be merged into a single linear system
of equations. However, all three constraint types have closed-
form solutions which can each be solved explicitly. This
allows us to solve each constraint type sequentially in order
to find a solution that satisfies all three.

It is important to note that there is overlap between which



Fig. 3: Kinematic diagram of the DRC-HUBO platform.

components of the joint configuration are affected by each
constraint type. This means that if you take the output of
one constraint type’s solution and pass it into a solver for the
next constraint type, the new output might no longer satisfy
the previous constraint. Therefore, when deciding on which
order to use when solving the constraints, it is important
to consider which components of the joint configuration
will be affected by each constraint type. A diagram of
these dependencies can be seen in Fig. 2a. The sequence
that best takes advantage of the inter-dependencies between
constraints is shown in Fig. 2b. Solving the constraints in
this order usually allows the whole set of constraints to be
satisfied within 2 - 7 cycles through the sequence. This allows
us to generate trajectory waypoints at an average rate that
exceeds 5 kHz, making this method suitable for real time
control.

V. APPLICATION TO DRC-HUBO

As a demonstration of our HZD+IK approach, we apply
our method to the humanoid robotic platform, DRC-HUBO.
We present simulations of two different stable full-body-
optimized walking gaits (including arm motions) on a DRC-
HUBO model in the DART simulation environment3. This
includes an optimized startup motion to accelerate from rest
to the steady periodic gait. We also present a preliminary
implementation of one of these walking gaits on the DRC-
HUBO robot using open-loop position control.

A. DRC-HUBO Model

The DRC-HUBO model used in this paper has 27 actuated
degrees of freedom from its wrists to its feet [25]4, which are
depicted in Fig. 3. We constrain our continuous domains to
only allow flat-footed contact with the ground as to minimize

3The DART simulation environment is available at
https://github.com/dartsim/dart.

4Fingers are excluded from dynamic optimization in this study.

Single-support
domain

Rigid impact
and relabel

Stance leg Nonstance leg

Fig. 4: Flow of domains for single-support walking with
DRC-HUBO.

the necessary torques at the foot actuators. We thus model
the domains of DRC-HUBO as a sequence of alternating
single-support domains, Dss, as depicted in Fig. 4.

B. Optimization and Task Definitions

In addition to the base-level constraints defined in Section
III, we also enforced a number of task-specific constraints
on the PHZD optimization. For one, we ensure there is
no net moment about the foot (note: we do not explicitly
compute a zero moment point or enforce LIPM, see [13]).
We impose impact velocity constraints of the nonstance
foot, which limits potential damage to DRC-HUBO’s drive
mechanisms, as well as limits on joint rotation, velocity,
and acceleration. Further, the feet must be separated by a
minimum horizontal distance, and the nonstance foot height
must exceed a clearance function above the ground.

We hypothesized that optimizing the robotic gait for
energy economy would encourage DRC-HUBO to swing
its arms. As such, we chose an objective to minimize the
mechanical cost of transport over the course of the stride
cycle:

J (z) :=
1

mgd

(
N−1∑
i=0

(
‖P (ui, q̇i)‖ ·∆ti

T iI

))
, (15)

where mg is the robot weight and d is the total distance
traversed by the center of mass. We assume no power
regeneration, and thus the integrand P (ui, q̇i) is the total
unsigned mechanical power consumed by the actuators. The
optimization problem was formulated with 39 nodes5.

In this study, we use our PHZD optimization to generate
outputs for two types of motions: startup and periodic loco-
motion. We first optimize an efficient periodic gait subject to
all listed constraints and objectives. Secondly, we optimize
a startup motion, which requires all initial generalized coor-
dinate velocities (q̇0) be set to zero, with final positions and
velocities (qf , q̇f ) equal to our periodic gait.

We also tested this optimization method by generating two
different periodic gaits. The first was allowed more liberal
constraints on arm-joint velocities and effective foot size

5Note: this means there were effectively 20 central collocation points.



Fig. 5: A stroboscopic image of full-body-optimized stable
walking in simulation (DART environment). The robot starts
at rest, executes an optimized startup motion, and runs a pre-
scripted open-loop trajectory representing optimized PHZD
outputs for ten steps. Outputs are computed by inverse
kinematics methods, which solve at an average rate of 5kHz.

as well as slower stepping frequencies6. The result of this
optimization (Gait A) was a very natural-looking, counter-
rotating arm swing, but was less likely to be successful
on hardware. The second result (Gait B) was restricted by
tighter constraints on arm-joint velocities, smaller effective
foot size, and higher step frequencies. In addition to simula-
tion, Gait B is presented with preliminary hardware results.
Each of these gaits were solved with IPOPT (using the linear
solver ma57) in approximately 7-10 minutes on a laptop
computer (Intel Core i7-3820QM processor, 2.7 GHz, with
12 GB of RAM).

C. Simulation Results

We tested both Gait A and Gait B in the DART sim-
ulation environment. DART is a wholly different dynamics
engine than the equations of motion seen by the optimizer
to generate stable and dynamic gaits (for instance, DART
uses LCP-based contact solving, while the optimizer sees
an explicit formulation of the holonomic constraints). This
makes for a good independent check that the optimizer is in
fact generating stable walking controllers.

To test the stability of the generated controller, we enforce
the designed outputs by solving the associated IK problem,
and command the solved joint orientations via position
control. As such, there is no feedback from the overall
orientation of the robot, and the model must rely on the
dynamic stability of the IK-solved open-loop trajectory7.
After executing the optimized startup sequence, the robot was
commanded to walk ten steps, playing back the trajectory
generated by the inverse-kinematics solver.

Both Gait A and Gait B resulted in stable, dynamic
walking in the DART simulator. Fig. 5 shows a stroboscopic

6In open-loop position control, dynamic gaits tend to be more robust with
higher stepping frequencies than typical humanoid gaits.

7The state-dependent phase variable τ is effectively replaced with time,
so the resulting trajectory is fully time-dependent.

ve
rt

ic
al

 c
en

te
r-

of
-m

as
s 

po
si

ti
on

 (
m

)

0.690

0.694

0.698

0.702

0 2 3 4 5 61
time (s)

IK Solution
DART Simulation

Fig. 6: Center-of-mass position over time for the simulated
gait, compared to the raw kinematic trajectory computed via
inverse kinematics (IK). This pendulum-like bouncing while
walking demonstrates that the resulting gait is not restricted
to a constant CoM height, as per LIPM-based techniques.

image of Gait B walking in Cartesian space, while Fig. 7
shows a tiled comparison of the optimization dynamics and
the DART simulation for both gaits. The exhibited gaits
showed a bouncing center-of-mass behavior, not restricted
to constant CoM heights as demanded by many LIPM-based
methods, as plotted in Fig. 6 for Gait B. Further, the arms
in Gait A exhibit a natural-looking counter-rotating swing.

D. Preliminary Hardware Experiments

As a test of the framework’s ability to produce stable
control, we use only DRC-HUBO’s encoders for position
control feedback, and no inertial measurement. We fed the
same open-loop IK-solved position trajectory from Gait B
to DRC-HUBO. We noticed that the robot had a significant
propensity to lean forward and fall during the beginning
static position, which we determined was likely due to
modeling errors. As such, we used the IK solver to adjust the
gait intuitively, asking it to move the feet forward by 4cm
to tune its balance. Because of the HZD-IK framework, this
adjustment was computationally trivial. With this adjustment
made, DRC-HUBO would start from rest, execute the startup
procedure, and walk nine dynamic steps, open-loop, before
falling forward. Fig. 8 shows tiled images of the experimental
gait.

This preliminary experiment aims to show that these
generated dynamic motions are reasonable to implement on
a real humanoid robot, which are subject to physical limi-
tations like motor saturation limits. Clearly, while stable in
simulation, the result is not very robust to the modeling errors
present. Gait A, which has more exaggerated arm swing,
was also implemented on DRC-HUBO but had difficulty
performing the startup maneuver without falling, despite
its stability in the independent simulator. We suspect this
failure is also likely due to inaccurate modeling of the link
inertias, which are more drastically accelerated in Gait A.
Future work will incorporate feedback control in order to
compensate for modeling errors.



(a)

(b)

Fig. 7: A walking tiles figure comparing the optimized gait as simulated by the equations of motion used by the optimizer
(top) to the open-loop walking controller simulated in DART (bottom) using optimized gaits after the startup procedure has
finished: (a) Gait A and (b) Gait B. Both gaits were stable using open-loop position control and Gait A resulted in a
solution with natural-looking counter-rotating arm swing.

VI. CONCLUSION

We presented simulation results with a model of the
bipedal robot, DRC-HUBO, showing that hybrid zero dy-
namics approaches can scale up to the complexity of hu-
manoid robots with swinging arms. With our offline large-
scale (10,000-variable) optimization formulation, we were
able to generate walking with dynamic arm swing in 7-10
minutes. One result demonstrated very natural human-like
counter-rotation. Further, this arm swing was not defined
a priori by a user, but emerged from a gait optimization
considering a full multibody model of the dynamics. Specif-
ically, the optimizer found this solution as a consequence of
1) minimizing gait energy costs and 2) maintaining no net
moment about the foot, both of which are plausible from a
biomechanical standpoint [7], [26].

Stable walking was achieved for two presented gaits using
only open-loop trajectories obtained from the solver. These
gaits were implemented online via a high-speed inverse
kinematics solver, and verified in simulation through the
independent simulator, DART. Future work will attempt
to further accelerate the offline gait optimizations to be
competitive with computation times from simplified LIPM-
based gait planners. A preliminary implementation on DRC-

HUBO, using just open-loop position trajectories, walked
nine dynamic steps before falling, indicating a future need
for feedback control.
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