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Abstract— This work presents methods for the determination
of a humanoid robot’s joint velocities and accelerations directly
from link-mounted Inertial Measurement Units (IMUs) each
containing a three-axis gyroscope and a three-axis accelerom-
eter. No information about the global pose of the floating base
or its links is required and precise knowledge of the link IMU
poses is not necessary due to presented calibration routines.
Additionally, a filter is introduced to fuse gyroscope angular
velocities with joint position measurements and compensate the
computed joint velocities for time-varying gyroscope biases. The
resulting joint velocities are subject to less noise and delay than
filtered velocities computed from numerical differentiation of
joint potentiometer signals, leading to superior performance
in joint feedback control as demonstrated in experiments
performed on a SARCOS hydraulic humanoid.

I. INTRODUCTION

Feedback control for robots relies on accurate estimates of
the joint state. Traditionally, the position of each joint is
measured using an angular sensor from which joint velocity
and acceleration are computed via numerical differentia-
tion. This produces quantities subject to considerable noise,
requiring low-pass filtering for use in control. However,
filtering introduces a potentially-destabilizing time delay,
preventing the use of feedback gains high enough to achieve
satisfactory stiffness and damping. Rather than differenti-
ating joint positions, we develop methods for computing
joint velocity and acceleration from sensors which measure
quantities of the same order. These estimates - derived from
gyroscopes and accelerometers - can be used for control
directly or through fusion with position sensing in an optimal
filtering framework.

While compact and affordable inertial sensors are fairly
new, various types of accelerometers have been used in
sensor fusion for decades. Schuler et al. [1] were among
the first to compute rigid body angular velocity from ac-
celerometers. Padgaonkar et al. [2] introduced methods for
computing angular acceleration, with Liu [3] demonstrating
that nine axes are needed for stable solutions. Zappa et al.
[4] proved that 12 accelerometer axes are actually required
to avoid angular velocity singularities.
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Fig. 1: Inertial Measurement Units (IMUs) attached to the
thigh, shank and foot of a SARCOS hydraulic humanoid.

Human joint angle estimation has been researched exten-
sively in the biomechanics community. Williamson et al.
[5] attached IMUs to a subject and integrated gyroscope
signals to obtain knee joint angles. El-Gohary [6] developed
a human arm model used to derive relations between limb
IMU measurements and joint state for use in a Kalman Filter.
Seel et al. [7] determined joint axes and locations from limb
IMUs using knowledge of human kinematic constraints.

Research on robot joint state estimation, however, has been
limited. For base state estimation, Lin et al. [8] developed
a 12-axis accelerometer suite for their robot, later adding
a three-axis gyroscope to avoid singularities. They also
proved a three-axis gyroscope plus six accelerometer axes
are sufficient to compute angular acceleration if distributed
among three distinct locations [9]. For joint angle estimation,
Cheng et al. [10] surveyed methods for robots lacking
angular sensors. Santaera et al. [11] sensorized manipulator
links and used integrated orientation and kinematics to
determine joint angles. Vihonen et al. [12] developed an
estimator for robots lacking sensors which relied on tilt
from accelerometers compensated for inertial effects using
gyroscope-based joint velocities, also compensating biases
through complementary filtering. In [13], numerical joint
accelerations were replaced with estimates from accelerome-
ters and then used to estimate velocities in a complementary
filter [14]. Honkakorpi et al. [15] demonstrated that feedback
using IMU-based estimates yields similar performance to
using encoder measurements. Xinjilefu [16] recently fused
predicted joint accelerations, angular velocities from link-
mounted gyroscopes and joint states measured by encoders.
An orientation calibration routine similar to that presented
here is detailed, but accelerometers and joint accelerations
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are not considered [17]. Unlike previous work, the theory
presented here applies to floating base robots with three
degree of freedom joints, does not rely on global link ori-
entations, introduces filters for gyroscope bias compensation
and considers the use of accelerometers and their role in joint
state estimation. Additionally, we present results on feedback
control of individual joints which demonstrate the ability to
increase both stiffness and damping when using gyroscope-
based joint velocities. We begin by considering the theory
necessary for computing joint velocities and accelerations
from IMU sensor measurements.

II. SENSOR FRAMEWORK

Assume we have a multibody system composed of N links
L1, . . . , LN in series, the first of which is a floating base.
These are connected by N joints J0, . . . , JN−1 where J0 is
the floating base orientation in a minimal set of coordinates.
We fix an IMU containing a three-axis gyroscope and a three-
axis accelerometer to each link at a known position in the
link frame and with the same orientation as the link frame
(IMU pose calibration is detailed in Sec. V-A and V-B).

Let ωW
L1
, ωW

L2
, · · · , ωW

LN
denote the angular velocities of

each link in the world (global) frame; the gyroscope on Li

thus measures

ω̄Li = RLi

W (ωW
Li

+ bω,Li + wω,Li) (1)

where RLi

W rotates a quantity in world frame into the
local frame of Li and bω,Li and wω,Li denote time-
varying bias and thermal noise vectors, respectively. Sim-
ilarly, aWL1

, aWL2
, · · · , aWLN

denote the true accelerations of
the IMU locations on each link in world frame so that the
accelerometer on Li measures

āLi = RLi

W (aWLi
+ ba,Li + wa,Li + g) (2)

where g = [0, 0,−9.81] is the gravity vector and ba,Li
and

wa,Li
again denote bias and noise vectors, respectively. For

the time being, we will not consider the effects of noise
sources; these will be addressed in Sec. VI.

III. JOINT VELOCITY COMPUTATION

Assuming in the most general case that every joint has three
Degrees of Freedom (DoFs), the vector ωi

i−1,i measuring the
angular velocity of Li relative to that of Li−1 in the Li frame
corresponds to the velocity θ̇i−1 ∈ R3 of joint Ji−1. From
this point on, we will drop the use of L and J in subscripts
for the sake of brevity. For the floating base (L1) gyroscope
we thus have

ω̄1 = R1
WωW

1 = θ̇0

where θ̇0 is the base angular velocity in the base link frame.
For L2 we have

ω̄2 = R2
WωW

2 = R2
W (ωW

1 + ωW
1,2)

where we have used the velocity composition rule. This
simplifies further to

ω̄2 = R2
1R

1
WωW

1 +R2
WωW

1,2 = R2
1θ̇0 + θ̇1

where R2
1 represents a rotation from frame L1 to L2. Solving

for the velocity of J1, we have

θ̇1 = ω̄2 −R2
1θ̇0

Similarly, for L3 we have (again using velocity and rotation
composition rules)

ω̄3 = R3
WωW

3

= R3
W (ωW

1 + ωW
1,2 + ωW

2,3)

= R3
2R

2
1R

1
WωW

1 +R3
2R

2
WωW

1,2 +R3
WωW

2,3

= R3
2R

2
1θ̇0 +R3

2θ̇1 + θ̇2

and solving for the velocity of J2 yields

θ̇2 = ω̄3 −R3
2R

2
1θ̇0 −R3

2θ̇1

Continuing in this manner, we form the linear system


I 0 0 · · · 0

R2
1 I 0

. . .
...

R3
1 R3

2

. . . . . .
...

...
...

. . . I 0
RN

1 RN
2 · · · RN

N−1 I







θ̇0
θ̇1
...

θ̇N−2

θ̇N−1




=




ω̄1

ω̄2

...
ω̄N−1

ω̄N




(3)

which we can write more compactly as T θ̇ = ω̄ where
θ̇ ∈ R3N and ω̄ ∈ R3N are the full vectors of joint velocities
and link gyroscope measurements, respectively. Note that
T is a function of θ and is composed of relative rotations
between links; unlike in other methods, there is no need for
global link poses. Additionally, since T is lower-triangular
this system always has a unique solution which can be
determined efficiently using forward substitution.
A. Computing Constrained Velocities

The above assumes that every joint has three DoFs; however,
it is often the case in for a robot that certain joints have fewer
(for example, the knee of a humanoid). In this case, more
accurate solutions may result from properly constraining
velocities using knowledge of the kinematic structure.

For the Li gyroscope we again have (neglecting noise)

ω̄i = Ri
WωW

i = Ri
WJW

i q̇ = J1
i q̇

where q̇ = [ωbase, q̇joints] is the vector of generalized joint
velocities and J1

i is the Jacobian relating the angular velocity
of Li to generalized joint velocities in the Li frame. Using
this relation for each link, we form the system



J1
1

J2
2
...
JN
N


 q̇ =




ω̄1

ω̄2

...
ω̄N


 (4)

where each Jacobian above is computed using Jacobians
relative to the base as J i

i = Ri
1J

1
i . We can write this

system as TJ q̇ = w̄ and solve a least-squares problem
for joint velocities. While forming the matrix TJ requires
knowledge of the kinematic structure, this method results in
velocities which are properly constrained and expressed in
the correct frames. We will demonstrate the effect of properly
constraining velocities in Sec. VII.



IV. JOINT ACCELERATION COMPUTATION

We now use the setup detailed 1 in Sec. II to determine the
acceleration θ̈i−1 of Ji−1. The IMU accelerometer on the
preceding link measures

āi−1 = Ri−1
W (aWi−1 + g)

and the accelerometer on the link immediately following
Ji−1 measures

āi = Ri
W (aWi + g) = Ri

W (aWi−1 + aWi−1,i + g)

where aWi−1,i is the acceleration of the Li IMU with respect
to the Li−1 IMU and is given by

aWi−1,i = (ωW
i−1,i × (ωW

i−1,i × rWi−1,i)) + (αW
i−1,i × rWi−1,i)

where rWi−1,i, ω
W
i−1,i and αW

i−1,i are the position, angular
velocity and angular acceleration of the Li IMU with respect
to the Li−1 IMU in world frame. Using the notation a×b =
a×b where a× ∈ R3×3, it follows that

āi = Ri
i−1

[
Ri−1

W (aWi−1 + g)
]

+Ri
WaWi−1,i

= Ri
i−1āi−1 +Ri

W

[
((ωW

i−1,i)
×)2rWi−1,i + (αW

i−1,i)
×rWi−1,i

]

= Ri
i−1āi−1 + ((ωi

i−1,i)
×)2rii−1,i − (rii−1,i)

×αi
i−1,i

= Ri
i−1āi−1 + ((θ̇i−1)×)2rii−1,i − (rii−1,i)

×θ̈i−1

where we have used the definition of āi−1, properties of the
cross product and the definitions θ̇i−1 = ωi

i−1,i and θ̈i−1 =
αi
i−1,i. We rearrange the above equation to get

(rii−1,i)
×θ̈i−1 = Ri

i−1āi−1−āi+((θ̇i−1)×)2 ∀i = 2, . . . , N

Note that gravity does not appear in the above, making
gravity compensation unnecessary. Also, the joint velocities
θ̇i are determined from the link gyroscopes as in Sec. III.
However, we cannot solve this equation for θ̈i−1 because the
skew-symmetric matrix (rii−1,i)

× ∈ R3×3 has rank two.2 We
thus add a second IMU to Li and solve
[
(rii−1,i)

×

(r̃ii−1,i)
×

]
θ̈i−1 =

[
Ri

i−1āi−1 − āi + ((θ̇i−1)×)2

Ri
i−1āi−1 − ˜̄ai + ((θ̇i−1)×)2

]
(5)

where r̃ii−1,i and ˜̄ai denote the relative position and the
acceleration of the additional IMU. The matrix multiplying
θ̈i−1 now has rank three aside from singular cases (for exam-
ple when r̃ii−1,i = rii−1,i, implying that the IMU positions
should be as distinct as possible). Note that rather than use
two three-axis accelerometers, we could have equivalently
used three two-axis accelerometers to obtain a full-rank
matrix; these results are in agreement with [9].

1Note that we could again constrain the acceleration using the Jacobian
since α = Jθ̈ + J̇θ but we wish to avoid using the Jacobian derivative,
which must be computed numerically and is thus typically very noisy.

2Real skew-symmetric matrices have purely imaginary eigenvalues, which
must come in conjugate pairs; thus, the rank must be even.

V. IMU POSE CALIBRATION

To obtain accurate estimates of joint velocities and accelera-
tions, the IMUs must be fixed with known poses. As is often
the case for humanoids, the base IMU is rigidly fixed with a
known pose; we compute orientation and position offsets for
each link relative to this IMU using the following principle.
When rotated in the air with locked joints, the entire robot
becomes a single rigid body subject to the same angular
velocity and angular acceleration. This is the basis for the
following offline calibration methods which recover the full
pose (orientation and position) of each IMU with respect to
its local link frame.

A. Orientation Calibration

When every link has the same angular velocity, we can
equate the velocities of Li and that of the base to obtain

R̂iω̄i = Ri
1ω̄1

where R̂i is the desired rotational correction for the IMU
on Li. Transposing both sides and stacking M consecutive
measurements, we obtain




{ω̄T
i }1

{ω̄T
i }2
...

{ω̄T
i }M


 R̂ =




{ω̄T
1 (Ri

1)T }1
{ω̄T

1 (Ri
1)T }2

...
{ω̄T

1 (Ri
1)T }M




where {v}m denotes the mth observation of quantity v. We
seek R̂i as the solution to the problem

R̂ = arg min
X
||AX −B||2F

subject to XTX = I where ||A||F denotes the Frobe-
nius matrix norm. This is called the orthogonal Procrustes
problem and is solved by computing the SVD of ATB =
UΣV T and setting R̂ = UV T . In order to ensure that
the solution is a proper rotation matrix we also require
det(R̂) = +1. This is known as the Kabsch algorithm
[18] and is achieved by instead setting R̂ = U Σ̂V T where
Σ̂ = diag(1, 1, sign(det(UV T ))).

B. Position Calibration

Assuming every link has the same world frame angular
acceleration αW , the linear acceleration of the IMU on Li

relative to that of the base link IMU is

aWi − aW1 = ωW × ωW × rW1,i + αW × rW1,i

However, we know that āi = Ri
W (aWi + g) and thus aWi =

RW
i āi − g so

aWi − aW1 = RW
i āi − g −RW

1 ā1 + g = RW
1 (R1

i āi − ā1)

Note that the gravity vector again cancels, making compen-
sation unnecessary. Multiplying both sides by R1

W , we have

R1
i āi − ā1 = ω1 × ω1 × r11,i + α1 × r11,i



which we can rewrite in the form
[
(ω̄×)2 + ᾱ×] r11,i =

(
R1

i āi − ā1
)

where ω̄ and ᾱ denote the angular velocity and acceleration
measured by the base link IMU. Again, stacking M consec-
utive measurements results in the linear system




{(ω̄×)2 + ᾱ×}1
{(ω̄×)2 + ᾱ×}2

...
{(ω̄×)2 + ᾱ×}M


 r

1
1,i =




{R1
i āi − ā1}1

{R1
i āi − ā1}2

...
{R1

i āi − ā1}M




Note that we compute ᾱ numerically from base gyroscope
measurements. Since this is an offline calibration routine,
we apply a zero-delay filter to the measurements. Since the
matrix multiplying IMU position is the same for every link,
we compute its SVD once and find the least-squares solution
for each IMU. After solving for the position r11,i of the ith

IMU in the base frame, we compute its local link position
from kinematics.

VI. JOINT STATE FILTERS

In this section, we introduce two Kalman Filters for the
joint state which fuse joint velocities and accelerations
computed from inertial sensors with joint position sensor
measurements. This is advantageous over directly using the
computed joint state because it ensures consistency between
the joint position and its derivatives. In theory, performing
filtering using an accurate process model also creates less
delay than simply low-pass filtering computed quantities.

Joint Position and Gyroscope Bias Filter

Assume now that each gyroscope is afflicted by a time-
varying bias and thermal noise as in the model given by
Eq. (1). From Eq. (4) we thus have

TJ(θ)θ̇ = ω̄ − b− w

where b, w ∈ R3N are the bias and noise vectors for
all gyros, respectively. Combining the joint positions and
gyroscope biases into the state vector x = [θT , bT ]T ∈ 6N ,
we can write the state dynamics as

ẋ = f(x, ω̄, w,wb)

or more specifically as

θ̇ = −TJ(θ)−1b+ TJ(θ)−1(ω̄ − w)

ḃ = wb

where we have modeled the bias dynamics as Brownian
motion (the integral of white noise process wb). Since we
have angular position sensors, we can write a measurement
of the state as

y =
[
I 0

] [θ
b

]
+ v

where v ∈ R3N is the measurement noise afflicting the joint
position sensor measurements. Since the process model is
nonlinear, we choose an Extended Kalman Filter (EKF) for
implementation.

Acceleration-Based Joint Velocity Filter

In order to filter joint velocities, we need joint accelerations
θ̈ for use in the process model. Defining the state vector x =
[θT , θ̇T ]T = [xT1 , x

T
2 ]T ∈ 6N we have the trivial dynamics

ẋ1 = x2

ẋ2 = θ̈

The joint acceleration vector θ̈ can be specified in any the
following ways, depending on sensor availability:

θ̈ =





M(θ)−1[τ̄ + J(θ)Tc F̄ − n(θ, θ̇)]

f(θ, θ̇, ā)

θ̈des

The first method uses measured joint torques τ̄ and endef-
fector wrenches F̄ along with the robot’s dynamic model to
compute the current joint accelerations. The second method
solves for accelerations using link accelerometers with Eq.
(5). Alternatively, we can simply use the desired or predicted
joint accelerations θ̈des from the current controller. Note
that use of the first two methods results in a nonlinear
process model; in this work, we consider only using desired
accelerations for simplicity.

We measure the joint positions from angular sensors and
the joint velocities from the link IMUs as in Sec. III-A,
leading to the measurement model y = x+v where v ∈ R6N

is again the measurement noise vector.

VII. EXPERIMENTS AND RESULTS

The platform used for experiments is the lower body of a
SARCOS hydraulic humanoid robot having a total of 14
DoFs (seven per leg). An IMU containing a three-axis gyro-
scope and three-axis accelerometer was mounted to each link
- one on the base and one on the link immediately following
the hip, knee and ankle joints. We chose Microstrain 3DM-
GX3-25 IMUs for their USB interface, low-noise sensors
and maximum streaming rate of 1 kHz. Initial gyroscope
biases were removed at startup. The IMUs were fixed using
an adhesive; while an effort was made to align the IMU axes
with the link frames, using the calibration methods of Sec.
V-A and V-B allowed for imprecise sensor placement.

We first evaluated the joint velocity computation detailed
in Sec. III during a sine tracking task for every joint in
the right leg. Joint velocities were computed from mea-
sured gyroscope data in three ways: A) using Eq. (3) to
compute orientation-corrected but unconstrained velocities,
B) using Eq. (4) to compute constrained but non-calibrated
velocities and C) again using Eq. (4) to compute velocities
both orientation-corrected and constrained to the kinematics.
These were compared against velocities computed from
potentiometer measurements and filtered using a second-
order Butterworth filter with a cutoff of 25Hz. Fig. 2 shows
the effect of constraining computed joint velocities; the
constrained hip velocities more closely match the filtered
potentiometer-based velocities. Fig. 3 shows the effect of per-
forming the offline rotation calibration routine on constrained
ankle velocities; the benefit of calibration is apparent.
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Fig. 2: Comparison between filtered potentiometer-based hip
velocities and constrained versus unconstrained hip velocities
computed from link gyroscopes.
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Fig. 3: Comparison between filtered potentiometer-based
ankle velocities and rotation-corrected versus uncorrected
ankle velocities computed from link gyroscopes.

We next evaluate the IMU position calibration and
accelerometer-based joint acceleration computations detailed
in Sec. IV. Fig. 4 compares the potentiometer-based hip
accelerations (heavily filtered at a cutoff of 5Hz) with those
computed from IMUs using Eq. (5) during a sine task for
the hip. We compare the results of computing accelerations
using manually-measured IMU positions and automatically-
generated positions from the calibration routine of Sec. V-
B. Both signals estimate the acceleration well and with
much less noise than unfiltered, numerically-computed joint
accelerations (shown for reference in Fig. 5). The filtered
joint-based accelerations are clearly heavily delayed; this is
most evident in the z direction. Because we only have one
IMU per link, we compute hip joint accelerations using the
base, thigh and shank IMUs with the knee locked. This is

not ideal since these IMUs are not truly on the same link;
we expect to compute accelerations which are more accurate
and less noisy by adding a second IMU to the proper link.
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Fig. 4: Filtered potentiometer-based hip joint accelerations
versus those computed from inertial sensors with both man-
ually and automatically-generated IMU position information.

It should be noted that obtaining a good position calibra-
tion requires sufficient angular motion of the robot, which
can be difficult depending on the setup. Additionally, the
position calibration and angular acceleration computations
rely on accurate kinematics and a good IMU orientation cali-
bration, else the gravity terms will not cancel; these appear in
Eq. (5) to create configuration-dependent acceleration biases.
Unmodeled accelerometer biases will have the same effect
and should be compensated through calibration, however
were neglected here.
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Fig. 5: Raw potentiometer-based hip joint acceleration (blue)
versus that computed from inertial sensors (red).

In order to test the gyroscope bias estimator presented
in Sec. VI, we performed experiments in the SL simulation
environment by simulating gyroscopes subject to the noise
sources in Eq. (1). This was done because the IMUs on
our robot have a low bias instability; however, this is not
the case for inexpensive IMUs which are cost-effective
to use in sensorizing every link. We simulate aggressive
gyroscope biases which are initially nonzero and drift orders
of magnitude faster than those in our IMUs. Fig. 6 shows
the results for one of the simulated IMUs. Despite being run
during a full-body sine tracking task with simulated joint
sensor noise, the filter manages to track the true biases.
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Fig. 6: Simulated gyroscope bias estimation using the joint
state filter of Sec. VI.

We also test the joint velocity estimator of Sec. VI which
was implemented for all 14 joint DoFs. Fig. 7 compares the
joint velocity of one hip DoF for the filtered potentiometer-
based velocity, the constrained IMU-based velocity from
Eq. (4), and velocities from the estimator of Sec. VI both
without and with desired joint accelerations as process model
inputs. Both filtered velocities are smoother than the IMU-
based velocity, however the estimate from the filter which
uses desired acceleration in its process model (in black)
has tens of milliseconds less delay than the estimate from
the filter having a naive process model (in green below).
The desired acceleration-based estimator provides a filtered
signal with only a slight delay compared to the IMU-
computed velocity. Given the apparent difference between
the joint accelerations shown in Fig. 4 and the sinusoids
used to generate them, we expect velocity filter performance
to improve considerably by using either sensor-based joint
accelerations or accelerations computed using the dynamic
model. We leave this investigation to future work.
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Fig. 7: Hip joint velocity computed from filtered joint
sensors, directly from gyroscope velocities, filtered using the
estimator of Sec. VI without and with desired accelerations.

Finally, we perform sine tracking tasks for a single joint
in isolation (here the right knee) in order to determine
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Fig. 8: Knee sine tracking for the gains P = 1000 and D =
12, switched from potentiometer-based velocities to IMU-
based velocities at t = 10s.
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Fig. 9: Knee sine tracking for the gains P = 1500 and D =
12 for the IMU-based velocities only.

whether using the IMU-based joint velocities allows us to
increase controller gains and enable better tracking. A joint
proportional-derivative (PD) controller was implemented for
the knee using potentiometer-based joint position and veloc-
ity (filtered at a 25Hz cutoff) with the ability to switch to
using the raw joint position and gyroscope-based velocity.

For a 0.5Hz sine wave of amplitude 0.25rad, we were
able to increase the position gain to 1000 before the con-
troller using the potentiometer-based velocity went unstable
while we could increase the gain to 1600 before the controller
using the velocity computed from Eq. (4) showed signs of
instability. Fig. 8 shows the tracking using a position gain
of 1000 and a velocity gain of 12 for both potentiometer
and gyroscope-based joint velocities. RMS tracking error
decreases from 0.0103rad to 0.0099rad in position and
from 0.3786rad/s to 0.0902rad/s in velocity by switching
to gyroscope-based velocities. Fig. 9 shows the tracking
using a position gain of 1500 and a velocity gain of 12 for
the gyroscope-based velocities, demonstrating stable position
tracking with an RMS error of 0.0077rad.

We were also able to independently increase the knee
velocity gain from a maximum stable value of 26 using the
potentiometer-based velocities to 30 using the gyroscope-
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Fig. 10: Knee sine tracking for P = 250 and D = 26,
switched to IMU-based velocities at t = 10s.
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Fig. 11: Knee tracking a 3Hz sine, switched from
potentiometer-based velocities with P = 800 and D = 12 to
IMU-based velocities with P = 1500 at t = 10s.

based velocities. Fig. 10 shows the tracking for D = 26 using
each of these velocities. Position tracking is poor using both
since the position gain was held at 250, however it is clear
from the figure that damping is improved after the switch.

We finally demonstrate that the above results hold for
faster sine tracking by performing a 3Hz tracking task
using position gains close to the stable limit for each of
the potentiometer and gyroscope-based knee velocities. It is
evident from Fig. 11 that both position and velocity tracking
are improved after switching to the IMU-based velocities due
to the ability to use higher gains.

VIII. CONCLUSIONS

In this paper, we have presented methods for computing
joint velocities and accelerations directly from inertial sen-
sor measurements. Offline calibration procedures allow for
accurate recovery of the pose of the IMUs attached to
each link of the robot. Two filters were proposed in order
to fuse measured joint positions with IMU sensor data,
allowing for accurate estimation of gyroscopes biases and
improvements in the quality of the joint position and velocity
estimation. The presented experiments showed that with our
method we could improve the quality of the velocity and

acceleration estimates, allowing us to significantly increase
the stiffness and damping of our joint feedback controllers;
this demonstrates the utility of these methods for use in
the control of a humanoid robot. Future work will include
verification of the proposed approaches using a ground-truth
reference such as a VICON system as well as their use in
more sophisticated whole-body control loops.
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