

Delft University of Technology

Rope Caging and Grasping

Kwok, T.H.; Wan, W.; Pan, J.; Wang, Charlie; Yuan, J.; Harada, K; Chen, Y.

DOI
10.1109/ICRA.2016.7487345
Publication date
2016
Document Version
Accepted author manuscript
Published in
2016 IEEE International Conference on Robotics and Automation

Citation (APA)
Kwok, T. H., Wan, W., Pan, J., Wang, C., Yuan, J., Harada, K., & Chen, Y. (2016). Rope Caging and
Grasping. In 2016 IEEE International Conference on Robotics and Automation (pp. 1980-1986). IEEE
Society. https://doi.org/10.1109/ICRA.2016.7487345

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICRA.2016.7487345
https://doi.org/10.1109/ICRA.2016.7487345

Rope Caging and Grasping

Tsz-Ho Kwok1, Weiwei Wan2, Jia Pan3, Charlie C.L. Wang4†, Jianjun Yuan5,

Kensuke Harada2 and Yong Chen1

Abstract— We present a novel method for caging grasps in
this paper by stretching ropes on the surface of a 3D object.
Both topology and shape of a model to be grasped has been
considered in our approach. Our algorithm can guarantee
generating local minimal rings on every topological branches
of a given model with the help of a Reeb graph. Cages and
grasps can then be computed from these rings, and physical
experimental tests have been conducted to verify the robustness
of our approach.

I. INTRODUCTION

Caging, as compared to grasping, is non-dynamic, topo-

logical, and therefore robust to uncertainty. Given the noisy

point clouds or the noisy results of model-based estimation,

caging can find finger positions or configurations that con-

strain the target. The target may move inside the cage formed

by the fingers, but it will never escape from the cage. To cage

an object, we do not need to know its physical properties like

mass and inertia matrix.

Despite the advantages, caging has a major disadvantage

that the caged target is not immobilized and its exact position

and orientation are unknown. Caging can be used to catch

and constrain something, but it is difficult to be used to

assemble components or operate tools.

A. Motivation

The solution to overcome these disadvantages is grasping

by caging. For example, the workers in Fig.1 are picking and

placing wine port using caging. In the first step, they drop a

circular rope and wrap it around the thinner part of the port.

The port is caged by the rope after the actions of dropping

and wrapping. In the second step, they stretch the circular

rope by lifting it up and make the rope firmly in contact

with the port’s surface. While the first step only cages the

port and the port is not immobilized, the second step grasps

the object and enables the worker to place the port down to

an expected position.

Motivated by this example, in this paper we propose a

grasping by caging approach based on ropes. The seminal

work of grasping by caging was done by Rodriguez [1]

and Wan [2]. Rodriguez extended the idea of caging and

The authors thank Zhongfeng Qian and Zheng Wang from the University
of Hong Kong, and Hao Zhang from Dorabot Inc. for assistance with the
design and fabrication of the soft gripper used in the experiment.

1T. Kwok and Y. Chen are with the Epstein Department of Industrial
and Systems Engineering, University of Southern California. 2W. Wan and
K. Harada are with National Inst. of AIST. 3J. Pan is with the Department
of Computer Science, University of Hong Kong. 4C. Wang is with the
Department of Design Engineering, Delft University of Technology; 5J.
Yuan is with the Robotics Institute, Shanghai Jiaotong University

†Corresponding Author; Email: c.c.wang@tudelft.nl.

proposed F-caging. Given a finger formation, Wan, on the

other hand, recovered its configuration space and computed

the optimized configuration that could cage an object and

at the same time could shrink to grasping. Both papers pro-

posed interesting ideas but neither demonstrated successful

applications. Rodriguez’s work was more theoretical than

practical, and is more about a concept than some rigid-

form solutions. Wan’s work is applicable to 2D objects and

was demonstrated with 2D pick-and-place and multi-robot

transportation.

Unlike these works, our approach concentrates on ropes

and studies using rope to cage and grasp 3D objects with

slim waists or with topological holes. We employ reeb

graph to extract the position of slim waists or the holes

of object models, initialized some caging rings using the

extracted mesh segments, and estimate the stable grasps by

stretching the initial rings like a tapeline. We ensures caging

by requiring a finger ring be larger than a stretched caging

ring, and estimates the object’s position and orientation by

assuming that the grasping from this caging will converge

to the stretched caging ring. Our work can be used to plan

the grasps of rope or rope-like end-effectors. We demonstrate

the performance of our method with both a rope and a soft

gripper in the experimental tests.

B. Related Work

Grasping research in literature can be classified into two

major groups: force-closure and caging. Earlier works are

mainly based on the force-closure methods (e.g., state-of-the-

art simulators such as GraspIT and OpenGRASP). Recently,

approaches to realize stable grasping by a caging grasp

become more and more popular (ref. [1], [2]).

An interesting work is to use caging grasp to manip-

ulate articulated objects with handles [3]. With the help

of computing a topological loop on a given surface [4],

Stork et al. [5] can plan motions for clasping on objects

with handles. Our approach presented in this paper is more

general – an object to be grasped by our rope caging is not

Fig. 1. With the help of ropes, objects can be stably caged in real world.
Our work is motivated by this caging method with a long history.

necessary to have a handle (e.g., the Venus model shown

in Fig.6 and the spray container model shown in Fig.9(a)).

Recently, more and more researches in robotics start to

employ the geometric information of a 3D object. Curvature-

based feature has been used by Calli et al. [6] to identify most

proper place for grasping. They used concave points of a 2D

elliptic Fourier descriptor of an object. Gaussian curvature

is employed in [7] to conduct the segmentation of object for

the grasping analysis. Tsuji et al. [8] modeled objects with

multiple quadric surfaces and generated grasping posture by

selecting the constricted parts. Zarubin et al. [9] proposed

an idea of using geodesic balls on the object’s surface in

order to approximate the maximal contact surface between

a grasp and an object. Two types of caging grasps are

developed: circle caging and sphere caging, where circle

caging is similar to our rope caging. However, unlike our

approach, their method does not provide the capability of

capturing either the topological extremity such as handle or

the geometric extremity like bottle-neck shape.

Reeb graph is a topological analysis tool that was pre-

viously employed to conduct a variety of applications in

computer vision and graphics, including model decompo-

sition [10], [11], parameterization [12] and shape match-

ing [13]. In our approach, its concept is borrowed to analyze

whether a topological branch on the given object is missed

when constructing rings by uniformly sampling a scalar

field. An algorithm is developed to ensure every branch has

one ring. Note that, we do not need to construct the graph

representation but only identify the critical points on a Reeb

graph in our approach. Details can be found in Section III-A

and III-B.

C. Contribution

The technical contribution of our work presented in this

paper can be summarized as follows.

• We introduce the idea of stretching ropes on the surface

of a 3D object to analyze the possibility of caging the

model using a ring. Both topology and shape of a model

to be grasped have been considered.

• A novel algorithm has been developed to generate

minimal rings on every branches of the given model,

which is guaranteed by the topology analysis with the

help of a Reeb graph.

• Our approach has been evaluated in both simulation and

physical experimental tests, where a rope and a soft

gripper are employed in experimental tests.

Although the topology analysis based on a topological loop

has been conducted in prior work (e.g., [5]) for grasping,

to the best of our knowledge, this is the first approach that

considers the minimal rings on all handles and branches.

Not only the topology but also the geometry information

have been considered in our approach. As a result, the rope

caging technique developed in this paper can be applied to

models with very simple topology (e.g., genus zero models)

if a local shape extremity can be touched by the elastic rope,

which is similar to the real situation as shown in Fig.1. Cages

and grasps can be computed from the rings generated by

Fig. 2. Reeb graph of a given 3D model can be obtained by tracking
the evolution of the level sets of a real-valued function on its surface. The
green node is a source point (with minimal function value), the yellow nodes
are terminal points (with local maximal function value), and the red points
are called critical points with the topology change of iso-curves – splitting

or merging. The portion between these points are classified into different
branches (see the light-blue segments in the right picture). Our algorithm
for generating initial ropes can ensure missing no branch on the Reeb graph.
Cross-sectional rings are generated for each branch in our algorithm (see
the blue rings in dashed line in the middle picture).

our algorithm (Section IV). Physical experimental tests have

been taken to verify the validity of this approach on models

with different shape and topology (Section V).

II. BACKGROUND

We assume each object to be caged has a corresponding

3D model represented by a polygonal mesh in the computer

system. Following the notation in [14], a polygonal mesh

M is defined as a pair (K,V) where K is a complex

specifying the connectivity of vertices, edges and faces (i.e.,

the topological graph of M) and V = {v1, · · · ,vn} is the

set of vertices defining the shape of polyhedral surface in

ℜ3. To simplify the implementation, every polygonal face

in M is subdivided into triangles. From K, it is very easy

for our algorithm to get the adjacent vertices, edges and

faces of a vertex in constant time; the same, the left/right

faces of an edge and the three nodes/edges of a triangle

can also be obtained by constant time cost. The geometric

coverage of our method is confined to the domain of two-

manifold polyhedral surface. Specifically, for every point on

the surface of a two-manifold, there exists a sufficiently

small neighborhood that is topologically the same as an

open disk in ℜ2. Such representation of a real object can

be obtained via 3D reconstruction (e.g., KinectFusion [15]).

In our approach, elastic ropes will be constructed and then

actively moved (i.e., shrunk) on a mesh model M. Each

rope is stored as an ordered list of surface points as L =
{a1, · · · ,am}, where a surface point could be located on an

edge or inside a face of M. They are stored as attribute

curves attached on M. Details can be found in [16]. This

type of data structure can prevent pulling/pushing an elastic

rope during the process of ‘stretching’ (i.e., L ⊂ M is

ensured). The time-consuming step of collision detection can

be avoided.

A Reeb graph [17] is a fundamental structure that encodes

Fig. 3. An overview of computing local minimal rings for caging and grasping. (a) The input 3D model. (b) A scalar field for topology analysis is
computed based on geodesic distances, and the distribution of field values is illustrated by a color map with blue and red denoting minimal and maximal
values respectively. Isocurves are also displayed, which can be used as initial rings (Section III-B). (c) Topology analysis is conducted by the scalar field
and the critical points can be found by tracking merging/splitting faces (Section III-A). (d) Surface of the given model can be subdivided by the critical
points into a few topological branches (displayed in different colors). (e) The initial rings are stretched on the surface and the candidates for caging/grasping
can be obtained – see the blue rings (Section III-C).

the topology of a shape, which can be obtained by tracking

the evolution of the level sets of a real-valued function f

on a manifold. Given a 3D model M, its topology can be

represented by a Reeb graph with nodes denoting the change

of topology and all surface regions on the same branch

sharing the same topology (see Fig.2 for an illustration).

Every node on the Reeb graph corresponds to the critical

level sets f−1(c). The pattern in which a branch meets a

critical point reflects the change in topology of the level set

f−1(t) as t passes through the critical value c. By tracing all

the critical points on a Reeb graph, all branches of a given

model can be trimmed out by the level sets according to the

critical values. The basic idea of our rope caging/grasping

approach is to generate a few elastic ropes on each branch

(see the blue cross-sectional rings in Fig.2) and stretch them

into the minimal length. The resultant rings on the surface

of a given model will be employed to supervise the caging

and thereafter grasping. The analysis based on Reeb graph

can help us ensure no topological branch is missed when

constructing the initial rings.

III. METHODOLOGY

This section presents the methodology of computing local

minimal rings for rope caging and grasping. The topology

analysis that guarantees not missing any branch of a given

model M is taken with the help of a geodesic distance field

GM. Critical points are found by a flooding algorithm. With

the help of critical points, initial rings are constructed for

each branch and thereafter stretched into local minimal rings.

Figure 3 shows an overview of steps in our algorithm.

A. Scalar Field Based Topology Analysis

Topology analysis is taken on the surface of a given model

M to avoid missing any topological branch when generating

initial rings. The concept of Reeb graph is employed in our

analysis; however, we do not really construct a Reeb graph

but only find out its critical points on M.

First of all, a scalar field GM is constructed on M. One

simple option as used in [13] is the height field of a model.

However, it can easily miss the handles that are nearly

orthogonal to the z-axis. Instead, Approximate Geodesic Dis-

tance (AGD) field is employed in our approach. Assuming

M has been properly oriented, all mesh vertices that are

Fig. 4. Two types of critical faces: (left) a splitting face in green and (right)
a merging face in blue, where the flooded region is displayed in gray.

on the ground are located and assigned as sources of AGD.

GM(p) (∀p ∈ M) is then computed according to these

sources. In our implementation, a Dijkstra’s algorithm with

virtual paths is employed (ref. [18]). More precise methods

such as [19], [20] can also be used here; however, GM in

our approach is not necessary to be precise as it is only for

the purpose of topology analysis.

After computing GM, we conduct a flooding algorithm

akin to [10] to find out the critical points on M. The GM
score of a face is defined as the maximal value of GM on

its three vertices. A flooded region F is first initialized by

faces touched the ground. Other faces are then sorted by

their scores. Starting from the face with lowest score, faces

are added into F one by one. Every time when a new face

f is inserted, we check the topology of F’s boundary, ∂F ,

by counting the number of loops in ∂F – denoted by |∂F|.

• |∂(F
⋃
{f})| > |∂F|: f is a splitting face;

• |∂(F
⋃
{f})| < |∂F|: f is a merging face;

• |∂(F
⋃
{f})| = |∂F|: f is not critical.

Both splitting and merging faces are considered as critical

(see the illustration in Fig.4). In a critical face, the vertex with

largest field value is recorded as a critical point. When three

edges of a critical face are all on the boundary of F before

inserting it, the face is located as the tail of M. A critical

point on this type of face is called T -critical, and other type

of critical points are called C-critical as illustrated in Fig.2.

B. Computing Initial Rings

In this step, a finite set of candidate rings are generated

on the model. Each ring is constructed according to an

isovalue. Specifically, for generating rings for GM(p) =
c, the isocurve consists of line segments extracted on the

surface ofM by first searching faces with vertex scores both

smaller and greater than c and then producing a line segment

intersect two edges in each of these faces. The endpoints

of a line segment must be located on the edges with its

two endpoints greater and smaller than c. The position of

intersection is determined by the linear interpolation. Using

the local connectivity of M stored in K, the line segments

can be linked up into one or a few loops.

Given a maximal field value gmax on GM, the simplest

method to generate rings is by isocurves with uniformly

sampled k isovalues. Specifically, isocurves

GM(p) =
i

k + 1
gmax (i = 1, · · · , k) (1)

are extracted to form initial rings uniformly (as shown

in Fig.3(b)). Rings on an isocurve are generated by the

aforementioned method. However, this simple method may

miss some topological branches on a given model with

complex topology (e.g., when a handle happens in the region

between GM(p) = i
k+1

gmax and GM(p) = i+1

k+1
gmax). A

more sophisticated algorithm is developed below to avoid

such scenarios.

After constructed rings by uniformly sampled isovalues

(e.g., k = 50 is employed in all our tests), rings are inserted

on those missed branches. We build a list C by the field

values on all critical points in an ascending order. For

example, when a model has n critical points found in the

topology analysis step, the list is like

C = {0, c1, c2, · · · , cn} (∀i, ci < ci+1).

Note that both C-type and T -type critical points are included

in this list. The last critical point is a T -critical point, cn =
gmax. Defining τ = k+1

gmax

, we then check if ⌊τci⌋ = ⌊τci+1⌋.
If this happens, no ring has been constructed on the branches

between ci and ci+1 by uniform sampling. We insert a ring

at the middle of these two critical points. Specifically, initial

rings are constructed on the following isocurves

GM(p) =
1

2
(ci + ci+1) (∀i ⌊τci⌋ = ⌊τci+1⌋) (2)

These initial rings will be further stretched on the surface of

M to catch the local minimal of its shape.

C. Stretching for Local Minimal Rings

In this step of our algorithm, each initial ring is iteratively

shortened onM until reaching a local minimum. As a result,

rings generated by this method can capture the features such

as bottle necks and bumpy regions and use them to cage an

object to be grasped. These analogies learned from realistic

lead to a smart method for caging/grasping 3D objects.

For a rope L stored as a list of surface points

{a1, · · · ,am}, the method how it is constructed ensures that

1) all points are located on the edges (as the rings/ropes

are generated from isocurves);

2) the segment between two neighboring points lies on

the same triangle (i.e., there is no segment across an

edge).

Fig. 5. Two types of operators for local stretching: (a) an edge operator
and (b) a node operator, where the bold lines in red show the position of a
rope before local stretching.

Fig. 6. Local minimal rings generated on two examples: (left) the Venus
model with 6.4k vertices – 11 rings are generated, and (right) a container
model with 10k vertices — results in 19 curves.

These nice properties of a rope’s representation lead to a

simple algorithm for stretching L on M.

Points in L are moved one by one to meet an equal angle

condition [16]. As shown in Fig.5(a), the optimal position

of point ai on the edge that results in a minimal length of

‖ai−1ai‖ + ‖aiai+1‖ is a point that makes φa = φb. This

can be easily proved by flattening two triangles adjacent to

the edge onto a plane together with the points. An operator

pushing points of a rope to move on edges of M is called

edge operator.

More complicated scenario may happen after applying

edge operators for a few iterations – quite a few very short

segments crowded around a mesh vertex (see Fig.5(b)). Then,

the rope is pushed to either the left (when the left surface

angle αL is smaller than the right surface angle αR) or

the right (if αL > αR). Such an operator is called node

operator. Again, the purpose of this operator is to make L
satisfy the equal angle condition. Detail analysis and the

implementation of these two operators can be found in [16].

The edge operator and the node operator are repeatedly

applied to each rope initially constructed from isocurves. The

iteration is stopped when no point on the rope can be moved

any more. When all points on a rope have been located in

the same triangle, this rope is removed from candidate rings

as it indicates that the given model cannot be caged by this

rope. Lastly, overlapped ropes stretched from different initial

positions are merged to remove redundancy. Examples can

be found in Fig.6. The resultant ropes are the candidates to

be used in caging and grasping. Each rope is sampled into a

set of points together with their surface normals, which are

passed to the grasper controller to take further action.

Fig. 7. An illustration of computing the positions of finger-tips, f0 and f1,
for caging.

IV. COMPUTING THE GRASPS

Algorithm 1: Computing the caging grasp using the

stretched ring.

Data: a mesh model M and a local minimal ring Ls

Result: A list of triples GLs
where each element

indicates the position and configuration of the

caging gripper: (pg , Rg)

(P,N)←SampleRing(Ls);

for each (pr,nr) ∈ (P,N) do

xp ← nr;

zp ← CrossProduct(nrnext
,nr);

yp ← CrossProduct(zp,xp);

Rp ← [xp;yp; zp];
{pg , Rg , f}
←ComputeHandConf(pr, Rp, P , N);

if NOT IsColliding({pg , Rg , f},M) then

GLs
← {pg,Rg};

To determine the grasps, each local minimal ring is

sampled evenly to compute the approaching vectors and

orientations of a caging hand. Let P and N denote the

set of sampled points and their corresponding normals.

Their elements are pr and nr. A local frame [xp;yp; zp]
is constructed at each sample point to let xp and yp align

with the normal and the tangent of the ring respectively.

We use them together with pr and all other points on the

sampled ring to compute the position, the orientation, and

the finger-tip positions f of the hand. This is implemented

in the ComputeHandConf function as follows.

• First, Rp is directly used as Rg – that is the orientation

of the hand.

• Second, the position of the hand is assigned as

pg = pr − τgxp, (3)

where τg is a threshold gap between the hand and the

sample point. Note that we assume all normal vectors

sampled from a mesh model pointing inwards.

• Lastly, the positions of finger tips, f , are computed. The

vector consists of f0 and f1, which presents positions of

the first and the second finger-tips respectively. They

can be computed by

fi = pr + τfxp + τiyp (i = 0, 1), (4)

where the threshold τf is assigned with a value smaller

than the length of the fingers to ensure caging.

τ0 = max
∀pp∈P

((pp − pr) · yr)− τtip (5)

τ1 = min
∀pp∈P

((pp − pr) · yr) + τtip (6)

τtip is a fixed value to ensure the closure. τ0 and

τ1 make the distance between two finger-tips smaller

than the diameter of Ls along the direction of yp and

therefore guarantee a successful cage.

An illustration about the positions of hand and finger-tips

with reference a local minimal ring is given in Fig.7. After

computing the configuration of a hand for grasping, we fur-

ther pass it to a collision checking function, IsColliding,

to ensure caging by the hand at this ring is collision-free.

Only the collision-free caging grasps are saved as results.

(a) Computing the caging grasps of a fertility model

(b) Computing the caging grasps of a detergent model

(c) Computing the caging grasps of a chair model

Fig. 8. We sample each stretched ring evenly to compute the approaching
vectors and orientations of a caging hand. Caging test together with collision
detection are then performed to ensure robustness of the results.

Fig.8 shows the results of three examples. The left image

of each sub-figure shows the local minimal rings, their

(a) Spray container (b) Detergent container

Fig. 9. Two objects for evaluating the performance of rope grasping on a
spray container and a detergent container. The spray container has a bottle-
neck, while the detergent container has a handle. The candidate rope caging
grasps for these two objects are marked by the green curves.

samples, and the local frames xp, yp, and zp at each sample

using red, green, and blue colors. The middle image shows

the computed caging grasps, where the green ones are the

results returned by Algorithm 1 and the red ones are collided

and deprecated candidates. The right image shows a clear

view of the caging grasps, where the collided candidates are

not plotted. During physical experiments, we use the ”top”

one or two candidates (the stretched rings that has largest

difference from its initial states) of the rings shown in the

left image to test rope caging and use the grasp candidate

shown in the right figure to test soft robotic grippers. A robot

will first approach the object with fully opened hand. Then,

it closes the hand to form the planned cage. Finally, it fully

wraps the object and immobilize it at a stable grasp.

V. PHYSICAL EXPERIMENT

In this section, we demonstrate the effectiveness of caging

grasps based on minimal rings by using both a rope and

a soft gripper. The grasps are tested on two containers as

shown in Fig.9, which are served as the representatives

for the objects with bottle-necks and for the objects with

handles, respectively. The candidate caging grasps for these

two objects computed by our approach are marked by the

green curves in Fig.9.

A. Experiments with a Rope

In the first experiment, we use a rope to cage and grasp

these two objects. As shown in Figs.10 and 11, the rope will

start from a loose cage or at an unstable grasp. But after

being stretched, it will eventually converge to a stable grasp

as computed by our algorithm. For objects with more than

one stable caging grasps, for instance the detergent container

in Fig.9(b), the stretching direction will determine the final

configuration of rope grasping.

B. Experiments with a Soft Gripper

In the second experiment, we use a soft gripper as shown

in Fig.12. The soft gripper consists of two fingers made

of silicone rubber and a driving mechanism. When the soft

finger is dragged by a cable fixed at the fingertip and goes

through the inside of the finger, it will bend the finger

(a) (b) (c)

Fig. 10. Caging to grasping process (from left to right) for the spray
container using a rope. The rope starts from a loose caging in (a), and then
eventually reach a stable grasp in (c) after gradual stretching.

(a) (b) (c)

Fig. 11. Caging to grasping process for the detergent container using a
rope. The rope starts at a non-stable caging in (a), and then will reach
two different stable grasps as shown in (b) and (c), according to whether
stretching the rope upwards or downwards.

Fig. 12. A soft gripper that can achieve the caging grasp in a way similar
to ropes.

inwards. When releasing the cable, the supporting board of

the finger (the back side of the finger) will serve as a spring

and resume the finger into its original position. The cable

dragging the finger first goes through a spring tube, which is

designed to guide the direction of the dragging force along

the tube. The cable is connected to a linear motor, which

can generate very large force for dragging the cable. With

the help of position feedback mechanism, this mechanism

can control the positions of fingers precisely.

The soft gripper is actually similar to a rope, though

its shape cannot be arbitrarily changed but is non-linearly

controlled by driving forces. However, we find the caging

grasps computed by our approach still provides a good

prediction about the final stable grasp for the test objects. As

shown in Figs.13 and 14, the soft gripper starts from unstable

grasps. After suitable shaking perturbation, the gripper will

end up at grasping object with a stable pose. Since the soft

gripper is not a perfect rope, the final stable grasp pose is

(a) (b) (c)

Fig. 13. Caging to grasping process (from left to right) for the spray
container using a soft gripper. The grasping starts from a place as shown
in (a) which is not stable and will slide upwards while shaking the gripper,
and then eventually get immobilized at a stable grasp as (c).

(a) (b) (c)

Fig. 14. Caging to grasping process for the detergent container using a soft
gripper. The gripper starts to grasp at a place not stable as shown in (a) and
will slide while shaking the gripper. Since the detergent has two isolated
caging grasps, the soft hand will slide upwards or downwards according to
the shaking direction, and eventually reach a stable grasp as (b) or (c).

not exactly same as the prediction provided by our algorithm,

but it is close. In addition, similar to the rope case, we can

find that for objects with more than one caging grasps, which

grasp is achieved by the gripper is determined by the shaking

direction and the pose of the object, as shown in Fig.14.

VI. CONCLUSION AND DISCUSSION

A new strategy called rope caging and grasping has been

developed in this paper. Our method starts from generating

an AGD field on the surface of a 3D model to be grasped.

Critical points of the model’s Reeb graph according to

the AGD field are extracted to segment the model into

topological branches. Initial rings are then constructed on

all branches by the isocurves of the AGD field. To capture

the local shape extremities on the given model, the initial

rings are further stretched to become shorter and shorter

in an iterative way. The resultant local minimal rings are

employed as candidates of grasping to be further verified in

the simulation. Physical experiments have been taken at the

end of this paper to verify the performance of our approach.

The current implementation using C++ takes about 62 sec.

to compute all the minimal rings for a model with 5k faces on

a PC with i7-4700MQ 2.4GHz CPU. The long computation

time is mainly caused by the unoptimized code for extracting

initial rings. One of our future works is to speedup the

computation in this step of initial ring generation. Another

planned work is to test this rope caging and grasping work

on an integrated platform with robotic arm and grippers so

that both motion planning and grasping are considered and

tested.

REFERENCES

[1] A. Rodriguez, M. T. Mason , and S. Ferry, “From caging to grasping,”
The International Journal of Robotics Research (IJRR), vol. 31, no. 7,
pp. 886–900, June 2012.

[2] W. Wan, R. Fukui, M. Shimosaka, T. Sato, and Y. Kuniyoshi, “A new
‘grasping by caging’ solution by using eigen-shapes and space map-
ping,” in IEEE International Conference on Robotics and Automation,
2013, pp. 1566–1573.

[3] R. Diankov, S. Srinivasa, D. Ferguson , and J. Kuffner, “Manipulation
planning with caging grasps,” in 2008 IEEE International Conference

on Humanoid Robots, December 2008.
[4] T. K. Dey, J. Sun, and Y. Wang, “Approximating loops in a shortest

homology basis from point data,” in Proceedings of the Twenty-sixth

Annual Symposium on Computational Geometry, 2010, pp. 166–175.
[5] J. Stork, F. Pokorny, and D. Kragic, “Integrated motion and clasp

planning with virtual linking,” in Intelligent Robots and Systems

(IROS), 2013 IEEE/RSJ International Conference on, Nov 2013, pp.
3007–3014.

[6] B. Calli, M. Wisse, and P. Jonker, “Grasping of unknown objects via
curvature maximization using active vision,” in Intelligent Robots and

Systems (IROS), 2011 IEEE/RSJ International Conference on, Sept
2011, pp. 995–1001.

[7] S. El-Khoury and A. Sahbani, “A new strategy combining empirical
and analytical approaches for grasping unknown 3d objects,” Robotics

and Autonomous Systems, vol. 58, no. 5, pp. 497–507, 2010.
[8] T. Tsuji, S. Uto, K. Harada, R. Kurazume, T. Hasegawa, and K. Mo-

rooka, “Grasp planning for constricted parts of objects approximated
with quadric surfaces,” in Intelligent Robots and Systems (IROS), 2014

IEEE/RSJ International Conference on, 2014, pp. 2447–2453.
[9] D. Zarubin, F. Pokorny, M. Toussaint, and D. Kragic, “Caging complex

objects with geodesic balls,” in Intelligent Robots and Systems (IROS),

2013 IEEE/RSJ International Conference on, Nov 2013, pp. 2999–
3006.

[10] E. Zhang, K. Mischaikow, and G. Turk, “Feature-based surface param-
eterization and texture mapping,” ACM Trans. Graph., vol. 24, no. 1,
pp. 1–27, 2005.

[11] J. Lin, X. Jin, Z. Fan, and C. Wang, “Automatic polycube-maps,” in
Advances in Geometric Modeling and Processing, 2008, pp. 3–16.

[12] X. Ni, M. Garland, and J. C. Hart, “Fair morse functions for extracting
the topological structure of a surface mesh,” ACM Trans. Graph.,
vol. 23, no. 3, pp. 613–622, 2004.

[13] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii, “Topology
matching for fully automatic similarity estimation of 3d shapes,” in
Proceedings of the 28th Annual Conference on Computer Graphics

and Interactive Techniques, 2001, pp. 203–212.
[14] H. Hoppe, J. McDonald, T. Duchamp, T. DeRose, and W. Stuetzle,

“Mesh optimization,” in Proceedings of ACM SIGGRAPH 1993,
January 1993, pp. 19–26.

[15] S. Izadi, R. A. Newcombe, D. Kim, O. Hilliges, D. Molyneaux,
S. Hodges, P. Kohli, J. Shotton, A. J. Davison, and A. Fitzgibbon,
“Kinectfusion: Real-time dynamic 3D surface reconstruction and in-
teraction,” in ACM SIGGRAPH 2011 Talks. ACM, 2011, pp. 23:1–
23:1.

[16] C. C. L. Wang, “Cybertape: an interactive measurement tool on
polyhedral surface,” Computers & Graphics, vol. 28, no. 5, pp. 731–
745, 2004.

[17] G. Reeb, “Sur les points singuliers d’une forme de pfaff complètement
intégrable ou d’une fonction numérique [on the singular points of a
complete integral pfaff form or of a numerical function],” Comptes

Rendus Acad. Sciences, vol. 222, pp. 847–849, 1946.
[18] T. Kanai and H. Suzuki, “Approximate shortest path on a polyhedral

surface and its applications,” Computer-Aided Design, vol. 33, no. 11,
pp. 801–811, 2001.

[19] V. Surazhsky, T. Surazhsky, D. Kirsanov, S. J. Gortler, and H. Hoppe,
“Fast exact and approximate geodesics on meshes,” ACM Trans.

Graph., vol. 24, no. 3, pp. 553–560, 2005.
[20] Y. Liu, Z. Chen, and K. Tang, “Construction of iso-contours, bisectors,

and voronoi diagrams on triangulated surfaces,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 33, no. 8, pp. 1502–
1517, 2011.

