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Optic-Flow Based Car-Like Robot Operating in a
5-Decade Light Level Range*

Stefano Mafrica,1,2 Alain Servel2 and Franck Ruffier1

Abstract— In this paper, we present (i) a novel bio-inspired
1-D OF sensor which is robust to high-dynamic-range lighting
conditions and independent of the visual patterns encountered,
and (ii) a low-cost car-like robot called BioCarBot, which
estimates its velocity and steering angle by means of an
Extended Kalman Filer (EKF) using only the OF measurements
delivered by two downward-facing sensors of this kind. Indoor
experiments were carried out, in which the robot was driven
in the closed-loop mode, using a proportional integral (PI)
controller based on the velocity and steering angle estimates.
The results presented here show that our novel OF sensor can
deliver a wide range of high-frequency (333Hz) OF measure-
ments (from 1 to 10 rad

s
) with a relatively high resolution (up

to 0.05 rad
s

) in a 5-decade high-dynamic range of light levels.
Neither the refresh rate nor the resolution of the OF sensors
presented here depended on either the visual patterns or the
lighting conditions, and could be theoretically set at whatever
value required.

I. INTRODUCTION

The sensing techniques traditionally used for motion esti-
mation in the fields of mobile robotics and automobile, such
as wheel odometry, inertial measurement units (IMUs) and
global navigation satellite systems (GNSSs), such as standard
or differential GPSs, often suffer from drift, low resolution,
high noise levels and limited applicability [1], [2].

Several approaches based on visual odometry have there-
fore been recently developed, using standard cameras [3], [4]
and optical-mouse sensors [5], [6] as well as custom-made
optic flow (OF) sensors [7], [8]. In particular, applications
using downward-facing visual sensors have been widely used
to estimate the velocity and the distance traveled, since the
visual patterns and light conditions encountered are more
uniform, and they make it possible to use visual sensors such
as optical mice.

On the one hand, most of the solutions based on standard
cameras, such as those presented in [3], [4], have disadvan-
tages such as failing to cope with high-dynamic-range light-
ing conditions and their low-frequency, high computational-
cost image processing, which means that only a small range
of low velocity measurements can often be obtained. These
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two issues can be improved by using high-dynamic-range
(HDR), high-frequency cameras, but these solutions would
require even larger computational resources and would be
too expensive for most robotic and automotive applications.

On the other hand, solutions based on optical mice, such as
those presented in [5], [6], are very cheap and deliver high-
frequency measurements but have the main disadvantage of
having to operate very close to the ground to be able to
work properly, and are therefore unsuitable for uneven-terrain
applications. In addition, these sensors are usually highly
sensitive to the lighting conditions and like standard cameras,
deliver measurements in a rather small velocity range.

Solutions based on custom laser or LED-lighted OF sen-
sors, such as those presented in [7], [8], have been developed
in order to reduce the sensitivity to height and improve the
performances while traveling over terrains of various kinds,
but no tests were run by these authors under various lighting
conditions and under the robot’s normal driving conditions.

Several versions of Local Motion Sensors (LMSs) pro-
viding alternative solutions to standard visual sensors have
been developed at our laboratory [9]–[12] to obtain 1-D
OF measurements in various velocity and luminosity ranges,
using methods based on findings obtained on the fly’s visual
system [13].

In this paper, we present (i) a novel bio-inspired OF sensor
giving measurements which are robust to high-dynamic-
range lighting conditions and do not depend on the visual
patterns encountered, and (ii) a low-cost car-like robot called
BioCarBot, which estimates its velocity and steering angle
by means of an Extended Kalman Filer (EKF) using only the
OF measurements delivered by two downward-facing sensors
of this kind (see Fig. 1). To test the performances of the
OF sensors and the method presented here for estimating
the velocity and the steering angle, some indoor experiments
were carried out, which consisted in driving the robot on cir-
cular trajectory in the closed-loop mode using a proportional
integral (PI) controller based on the velocity and steering
angle estimates obtained.

The results presented here show that our novel OF sensor
is robust to high-dynamic-range lighting conditions (in a 5-
decade range with sharp changes of up to 2 decades within
0.5 s), delivering a wide range of high-frequency (333Hz)
OF measurements (from 1 to 10 rad

s , i.e. 50 to 550
o

s ) with
a relatively high resolution (up to 0.05 rad

s ). It is also worth
noting that (i) the refresh frequency of the LMS was constant
and did not depend on either the band-pass filter or the
visual patterns encountered, and (ii) the resolution was nearly
constant and could be theoretically set at any value.



Fig. 1. (a) Picture of the BioCarBot robot. (b) Picture of one of the 2 OF sensors used on the robot. (c) Picture of the indoor testing environment equipped
with a Vicon motion-capture system.

In Sec. II, we will first introduce the principles underlying
an elementary LMS before describing the method and the
hardware used to construct our novel OF sensor. In Sec.
III, we will present the BioCarBot robot, the mathematical
modeling used to estimate the robot’s velocity and steering
angle, and the estimation and control scheme implemented
on the robot. In Sec. IV, we will present and discuss the
results obtained in the indoor experiments performed. Some
conclusions will be reached in the last section.

II. NEW IMPLEMENTATION OF THE LOCAL MOTION
SENSOR

A. Principles Underlying a LMS

A defocused lens placed in front of 2 photoreceptors deter-
mines the interreceptor angle ∆ϕ between the 2 photorecep-
tors’ axes and gives them a Gaussian angular sensitivity with
an acceptance angle ∆ρ (Fig. 2(a)), on similar lines to what
occurs in many insects’ eyes [13]. A visual contrast moving
in front of the LMS will induce a time lag τ between the
photoreceptors’ output signals (Fig. 2(b)). After measuring
this time lag, the optic flow can be computed as follows [9]:

ω(t) = ±∆ϕ

τ(t)
, (1)

where the sign depends on the sensor’s axis orientation and
on which of the two signals is delayed.

The acceptance angle ∆ρ, namely the full width at half-
height of the Gaussian curve, determines the cut-off fre-
quency of the low-pass spatial filter.

B. New Method for Computing the OF

To compute the OF measurement ω, the time lag τ
between 2 neighboring-pixels’ output signals was estimated
using a cross-correlation method inspired by the Reichardt-
Hassenstein model [14]. First the 2 pixels’ output sig-
nals (VPh1 , VPh2) were sampled and band-pass filtered
(V ′Ph1

, V ′Ph2
), and the following pseudo-algorithm was then

applied (Fig. 2(c),(d)):
1) delay one of the 2 filtered signals by the time τi;
2) compute the Pearson correlation coefficients between

the delayed (e.g. V ′Ph1
(t− τi)) and non-delayed signal

(e.g. V ′Ph2
(t)) in a fixed time window wPh;

3) repeat step 1 and 2 for every τi (i = 1, . . . , n) in a
fixed time window wτ ;

4) set τ at a value equal to the time lag τk giving the
maximum cross-correlation coefficient, as long as this
maximum is greater than a fixed value ρthr;

5) compute ω using the equation (1) (or set it at NaN if
the maximum cross-correlation coefficient is less then
ρthr).

The threshold value of the cross-correlation coefficients
(%thr) directly determines the reliability and the robustness
of the OF measurements: the higher %thr is, the more reliable
and robust the measurements will be, but in the presence of
noise, the lower the refresh rate will be.

The time window of the signals (wPh) determines the
bandwidth of the OF measurements, as the time lag τ must
be nearly constant during this time in order to obtain a
strong correlation, whereas the number of samples (n) in
the time window determines the reliability of the correlation
coefficients: the smaller wPh is, the larger the bandwidth will
be, and the higher n is, the higher the reliability will be.

The time window of the time lags (wτ ) determines the
range of the OF measurements (ωmin = ∆ϕ

τm
, ωmax = ∆ϕ

τ0
),

whereas the difference between two consecutive time lags
(∆τ = τi+1 − τi) determines the resolution of the OF
measurements (∆ω = ωi+1 − ωi). In order to obtain a
constant resolution ∆ω, the time lags were chosen as follows:

τi =
∆ϕ

|ω∗i |
,

where ω∗i are the desired OF measurements, which are lin-
early separated by the required resolution ∆ω∗. The signals
can then be delayed by a time τi elapsing between two
sampling steps, by linearly interpolating the signals sampled.

C. Hardware Implementation

In this study, we used the auto-adaptive silicon retina
presented in [15] soldered onto a tiny printed circuit board
(PCB) with an optical lens casing mounted onto it (Fig. 3).

The M2APix pixel, which stands for Michaelis-Menten
Auto-Adaptive Pixel, can auto-adapt in a 7-decade range and
responds appropriately to small contrasts, such as ±2%, as
well as large changes in light, such as ±3 decades [15].



Fig. 2. (a),(c) Principles underlying a 2-pixel LMS. The optic flow produced by a contrast moving in front of the LMS can be computed taking
ω(t) = ∆ϕ

τ(t)
, where ∆ϕ is the interreceptor angle and τ is the time lag between the two photoreceptors’ output signals [9]. (b),(d) Block diagram of

the novel OF algorithm inspired by the Reichardt-Hassenstein model [14]. After band-pass filtering the photoreceptors’ outputs, one of the two signals is
delayed by a time τi in a fixed time window and the Pearson cross-correlation coefficient %i between the delayed and non-delayed signals is computed.
The OF is then computed taking ω = ±∆ϕ

τk
, where τk is the time lag giving the maximum cross-correlation, as long as this maximum is greater than

%thr (which is usually set at 0.99). The sign of ω depends on the sensor’s axis orientation and on which signal is delayed.

Fig. 3. Picture of the auto-adaptive silicon retina comprising the 12
M2APix pixels [15] soldered onto a tiny PCB and the optical lens casing
mounted onto it.

In the chip used here, the analog low-pass filter had a cut-
off frequency of 100Hz (instead of 300Hz used in [15]),
giving a minimum sampling frequency of 200Hz in order
to prevent the occurrence of aliasing.

The optical lens used here was taken from a Raspberry-
Pi camera (focal length: 2mm), while the lens casing was
custom made using a 3D printer to precisely adjust the
distance between the plane of the lens and that of the pixels
during the calibration phase. The interreceptor angle ∆ϕ and
the acceptance angle ∆ρ were measured at ∆ϕ ≈ ∆ρ ≈
3.6o, as occurs in some diurnal insects [16], using a similar
method to that presented in [10].

III. BIOCARBOT: A BIO-INSPIRED VISUALLY-GUIDED
CAR-LIKE ROBOT

A. The Robot

Figure 1 shows a picture of: the BioCarBot robot, one
of the 2 LMSs used and the indoor testing environment
equipped with a Vicon motion-capture system.

The main structure of the BioCarBot robot was based
on the low-cost 2WD Racecar Kit provided by Minds-I
Robotics. The kit was composed of a 1/10th-scale car body
(419 × 203 × 114mm), one Hitec HS-311 standard servo

coupled to a steering hub, one 5000-rpm DC motor con-
nected to a 300-A electronic speed controller (ESC), one 7.2-
Volt 3000-mAh Ni-Cd rechargable battery, one mechanical
slip differential and four 90mm-diameter crawler wheels.
We replaced the 23500-rpm DC motor and the four 66mm-
diameter wheels included in the original kit in order to
provide the robot with a higher control resolution at low
velocity and the ability to drive over uneven terrains.

The embedded electronics include one Nanowii board
(Flyduino) featuring a ATmega32u4 16-MHz CPU micro-
controller (Atmel) and a MPU-6050 inertial measurement
unit (IMU) comprising a 3-axis gyroscope and a 3-axis
accelerometer (InvenSense) and one Overo IronSTORM
computer-on-module (COM) (Gumstix) featuring a 1-GHz
CPU DM3730 processor (Texas Instruments) comprising
an ARM Cortex-A8 architecture and a C64x digital signal
processor (DSP).

Thanks to the modularity of the robot’s structure, 2 iden-
tical LMSs (Fig. 3(b)) were attached to the robot’s frame
on both sides of its body, aligned with the rear wheel axis
(Fig. 1(a)). To facilitate the sensors’ installation, we used the
same testing board which was used in the study presented in
[15] to connect the LMSs to the Nanowii board (Fig. 1(b)).
An OSRAM BPX65 photodiode connected to an analog
amplifier circuit was also included on the testing board next
to the LMS in order to measure the effective illuminace of
the scene scanned by the sensor.

To obtain the ground-truth values, the 3-D robot’s pose
([X Y Z αβ γ]T ) was measured by means of a Vicon
motion-capture system [17] which detected the position of
the infrared markers attached to the robot’s frame (see Fig.
1(a),(c)).

B. Modeling

As the robot’s velocity was relatively low and the robot did
not have any suspension system, we focused here on the 2-D



kinematic model for a car-like robot moving on a flat surface.
Figure 4 shows the kinematic diagram of the BioCarBot with
the 2 LMSs installed on both sides, as depicted in Fig. 1(a).

Fig. 4. (a) Kinematic diagram of the robot moving on a flat surface. (b)
Kinematic diagram of one OF sensor.

Let us take the inertial frame < I > having the x and
y axes lying on the local ground plane, with the robot’s
body frame < B > placed in the middle of the rear
wheels’ axis. Two LMSs were placed at xl = [xl yl zl]

T and
xr = [xr yr zr]

T with respect to < B > (xl = xr = 0mm,
yl = −yr = 140mm, zl = zr = 125mm), respectively,
facing downwards at a height of hl, hr, respectively, from
the ground (hl = hr = h = 175mm) (Fig. 1(a),4(a)). As
the sensors’ frames < l >, < r > were taken to be parallel
to the body frame < B >, we can consider all the position
and velocity vectors projected onto < B >.

The OF produced by the visual motion of the ground with
respect to the sensor can be measured using the method
presented in section II-B based on the no-skidding hypoth-
esis, which guarantees that Vx >> Vy with any velocity
vector V = [Vx Vy 0]T located near the line passing through
the two rear wheel/ground contact points. Therefore, the OF
measured between the i− 1-th and i-th pixels of each LMS
can be written as follows:

ωi = −Vix sin2 ϕi
h

, (2)

where Vi = [Vix Viy 0]T is the velocity vector of the
intersection point xi = [xi yi zi]

T (yi ≈ 0, zi ≈ −h)
between the i-th pixel axis and the ground plane (Fig. 4(b)).

Since the two LMSs are fixed to the robot so that the
rows of pixels are aligned with the x-axis of < B > (Fig.
4(a)), all the position vectors xi of each LMS have the same
y coordinate, namely yl and yr on the left and right sides,
respectively. Therefore, according to the Ackermann steering
geometry [18], the following equations hold:

V lix = Vl = V − ylΩ
V rix = Vr = V − yrΩ
Ω = tanφ

L V

, (3)

where L(= 255mm) is the distance between the rear and
front wheel axes (Fig. 1(a)), and Ω, V, φ are the robot’s

angular velocity, longitudinal velocity and steering angle,
respectively (Fig. 4(a)).

By substituting the median value of the OF measurements
of each LMS ωlm, ω

r
m into (2) and combining equations (2)

and (3), we obtain the following equation relating the output
ζ = [ωlm ω

r
m]T to the state ξ = [V φ]T :

ζ =

[
ωlm
ωrm

]
≈

[
(L−yl tanφ)V sin2 ϕl

m

hL
(L−yr tanφ)V sin2 ϕr

m

hL

]
= h(ξ), (4)

where ϕlm, ϕ
r
m are the orientation of the pixel’s axis corre-

sponding to the median OF values ωlm, ω
r
m, respectively.

Lastly, the dynamics of V and φ, which mostly depend
on the dynamics of the DC motor and the steering servo,
respectively, were identified as two independent first-order
systems using the Vicon’s measurements:

ξ̇ ≈ Aξ +Bu = f(ξ,u). (5)

where A = diag(a1, a2), B = diag(b1, b2).
Since the identified time constant describing the dynamics

of V when it was decreasing was nearly twice as high as
when it was increasing, the values of A and B were identified
using only the slower time constants as follows: a1 = −b1 =
−2.15, a2 = −b2 = −4.87.

It is worth noting that the values of V and φ could be
computed algebraically by inverting equation (4), however
this estimation would not be accurate enough to perform a
closed-loop control on V, φ due to the noise and the quanti-
zation of the OF measurements. We therefore estimated V, φ
by means of an Extended Kalman Filter (EKF) based on
equation (5) and (4), as described in the next subsection.

C. Estimation and Control

In order to obtain a robust continuous estimation of the
robot’s longitudinal velocity and steering angle (V, φ), an
Extended Kalman Filter (EKF) based on a discrete approxi-
mation for the model presented in (5),(4) was implemented,
taking the median value of the OF measurements (ωlm, ω

r
m)

to be actual measurements.
The first-order discrete approximation for the model pre-

sented in (5) was taken to be as follows:
ξk = f̂(ξk−1,uk−1,wk−1) =

= [f(ξk−1,uk−1) +wk−1]∆t+ ξk−1

ζk = ĥ(ξk,νk) = h(ξk) + νk

, (6)

where the index k denotes the k-th sampling period (i.e.,
t = k∆t); w,ν denote the model and the measurement
noise, respectively, and they are assumed to be independent
white noises and to have normal probability distributions,
i.e. p(w) ∼ N(0, Q) and p(ν) ∼ N(0, R), where Q =
diag(σ2

V , σ
2
φ), R = diag(σ2

l , σ
2
r) are covariance matrices.1

At each sampling period, the steps involved in the EKF
can be summarized as follows:

1The hypothesis that the components of the model and the measurement
noise had normal and uncorrelated distributions was adopted on the basis
of what was observed statistically during several experimental tests with
trajectories of various kinds (see section IV).



Fig. 5. Block diagram of the estimation and control scheme.

1) ξ̂−k = f̂(ξ̂k−1,uk−1,0)
2) P−k = FkPk−1F

T
k +WkQW

T
k

3) Kk = P−k H
T
k (HkP

−
k H

T
k + VkRV

T
k )−1

4) ξ̂k = ξ̂−k +Kk(ζk − ĥ(ξ̂−k ,0))
5) Pk = (I −KkHk)P−1

k

where F = ∂f̂
∂x = ∆tA + I , H = ∂ĥ

∂x
2, W = ∂f̂

∂w = ∆tI ,
V = ∂ĥ

∂ν = I are Jacobian matrices; P, P− are the error
covariance matrix and its “a priori” estimate, respectively;
and I is the identity matrix.

The initial estimate ξ̂0 was set at zero, while the initial
estimate P0 was set at the identity matrix.

As we have no measurements of the real motor and
steering control input u, we took it to be equal to the output
of the controller, i.e. uk−1 = ξ̄k−1 (see equation (7)).

When there were no measurements on at least one of the
robot’s sides, i.e. no ωlm or ωrm, the Kalman gain Kk was set
at zero, so that it was still possible to have an estimation of ξk
based on the “a priori” prediction ξ̂−k . In that case, a timeout
was set at 0.5 s, after which the EKF was reinitialized and
the robot was stopped.

The robot’s longitudinal velocity and steering angle (ξ =
[V, φ]T ) were controlled in closed loop using the estimated
values (ξ̂ = [V̂, φ̂]T ) by means of a proportional and integral
(PI) controller, as shown in Fig. 5.

The output from the PI controller can be written as
follows:

ξ̄ = KP (ξ∗ − ξ̂) +KI

∫
(ξ∗ − ξ̂), (7)

where KP = diag(0.5, 0.4) and KI = diag(2.5, 2).

IV. EXPERIMENTAL RESULTS

Experiments were carried out indoors using various floor
patterns and trajectories to test the performances of the
OF sensors as well as the estimation and control method
presented in the previous section.

2

H =
1

hL

[
(L− yl tanφ) sin2 ϕlm −(1 + tan2 φ)ylV sin2 ϕlm
(L− yr tanφ) sin2 ϕrm −(1 + tan2 φ)yrV sin2 ϕrm

]

In what follows, the M2APix output signals were sampled
at ∆t = 3ms by the integrated ADC (see [15] for details),
acquired by the Nanowii board via SPI communication and
transmitted to the computer-on-module (COM) via serial
communication (see section III for details). The OF al-
gorithm presented in Sec. II-B as well as the estimation
and control scheme shown in Fig. 5 were run at the same
rate on the COM. The Linux-based program running on
the COM was entirely generated in the Matlab/Simulink
environment using the RT-MaG toolbox [17], a custom-
made toolbox for real-time applications developed at our
laboratory. The host-PC program which conveys the control
set points V ∗, φ∗ to the robot (COM) and receives data
from the robot (COM) and the Vicon system was also
developed in the Matlab/Simulink environment using the RT-
MaG toolbox.

To implement the OF algorithm, we set (see section II-B
for details of the parameters):
• the threshold on the cross-correlation coefficients
%thr = 0.99;

• the number of pixels signals samples n = 70, giving a
signal time window for the cross-correlation computa-
tion wPh = n∆t = 0.21 s;

• the number of time lags m = 30, because a larger
number would cause saturation of the CPU load since
the algorithm’s implementation was not optimized.

Depending on the velocity range required, the time lag
window wτ ranged from 6.3ms to 63ms in order to obtain
OF measurements ωi ranging from 1 rad

s to 10 rad
s and a

resolution ∆ω∗ required ranging from 0.1 rad
s to 0.3 rad

s .
The elements of the measurements covariance matrix (R)

and the process covariance matrix (Q) of the EKF were set
at about (∆ω∗

2 )2 and 0.012, respectively.3

The ground-truth values were computed from the Vicon
measurements ([X Y Z αβ γ]T ) as follows (see section III
for details):

• Vtruth =
√
Ẋ2 + Ẏ 2;

3The values of R were sometimes adjusted after performing some
calibration tests since the standard deviation of the LMS on the right side
was always slightly larger than on the left, probably because the pixels’
signals were more noisy.



Fig. 6. Results obtained indoors when the robot was driven on the floor shown in Fig. 1(c) on a circular trajectory, keeping a constant steering angle while
varying the velocity from 0.3 to 1.3 m

s
. (a) Measurements (dots) and ground-truth values (solid lines) of the left OF: each color corresponds to the OF

produced between 2 neighboring pixels. (b) Reference (dashed line) and ground-truth robot’s trajectory in the closed-loop (solid line) and open-loop (dotted
line) mode. (c) Difference between the measurements and the ground-truth values shown in Fig. 6(a). (d) Distribution of the errors shown in Fig. 6(c). (e)
Median values (dots) and ground-truth values (solid lines) of the OF produced on the left (dark blue) and right (light blue) sides. Some measurements were
missing on the right side between 33 and 34 s because the robot was driving along the border between the patterned and white areas (see Fig. 1(c)). (f)
Difference between the median values and the ground-truth values shown in Fig. 6(e). (g) Distribution of the errors shown in Fig. 6(f). (h) EKF estimates
(dots), ground-truth (solid lines) and reference values (dashed lines) of the robot’s longitudinal velocity (dark green) and steering angle (light green). (i)
Difference between the EKF estimates and the ground-truth values shown in Fig. 6(h). (j) Distribution of the errors shown in in Fig. 6(i).

• φtruth = arctan(L γ̇
Vtruth

);

• ωlitruth
= (ylγ̇−Vtruth) sin2 ϕi

h (same for ωritruth
using

yr).

Figure 6 shows the results obtained indoors when the robot
was driven on the floor shown in Fig. 1(c) on a circular
trajectory, keeping a constant steering angle while varying
the velocity from 0.3 to 1.3 m

s . The OF resolution ∆ω∗

required was set at 0.3 rad
s .

First it should be noted that although the error in the
OF measurements increased slightly with the velocity and
depended on whether the velocity was increasing or de-
creasing (Fig. 6(a),(c),(e),(f)), the overall error distribution
was nearly Gaussian with a quasi-zero mean (Fig. 6(d),(g)).
The average standard deviation of the errors in the OF
measurements was σ̄l = 0.18 rad

s , σ̄
r = 0.25 rad

s , giving
a standard deviation of the error in the OF median values

σlm = 0.15 rad
s , σ

r
m = 0.22 rad

s , which is about half of ∆ω∗,
as was to be expected.

Secondly, it is worth noting that the robot adopted the
required velocity and steering angle, giving the precision of
the estimates σV = 0.03 m

s , σφ = 0.02 rad (Fig. 6(h),(i),(j))
and a maximum error in the position of about 30 cm after
3 laps (solid line in Fig. 6(b)). When the robot was driven
in the open-loop mode, however, i.e. without applying the
control scheme presented in Fig. 5, it started to drift at a
very early stage, going off the carpet after 6 s (dotted line in
Fig. 6(b)).

Figure 7 gives the results obtained indoors when the robot
was driven on the floor shown in Fig. 1(c) on a circular
trajectory, keeping a constant velocity and steering angle
under dynamically changing lighting conditions. The OF
resolution ∆ω∗ required was set at 0.1 rad

s .



Fig. 7. Results obtained indoors when the robot was driven on the floor shown in Fig. 1(c) on a circular trajectory, keeping a constant velocity and
steering angle under dynamically changing lighting conditions. (a) Measurements (dots) and ground-truth values (solid lines) of the left OF: each color
corresponds to the OF produced between 2 neighboring pixels. (b) Difference between the measurements and the ground-truth values shown in Fig. 7(a).
(c) Distribution of the errors shown in Fig. 7(b). (d) Median values (dots) and ground-truth values (solid lines) of the OF produced on the left (dark
blue) and right (light blue) sides. (e) Difference between the median values and the ground-truth values shown in Fig. 7(d). (f) Distribution of the errors
shown in Fig. 7(e). (g) EKF estimates (dots), ground-truth (solid lines) and reference values (dashed lines) of the robot’s longitudinal velocity (dark green)
and steering angle (light green). (h) Difference between the EKF estimates and the ground-truth values shown in Fig. 7(g). (i) Distribution of the errors
shown in Fig. 7(h). (j) Photo-current responses of the photodiode placed next to the LMSs on the left side. The current values were computed taking
IPh = Idark(e8.8Vout − 1), where Idark(≈ 0.1nA) is the dark current and Vout is the amplifier’s output voltage, and the light values in Lux were
estimated using the current-to-illuminance curve given in the photodiode’s datasheet. (k) Robot’s reference (dashed line) and ground-truth (solid line)
trajectories.



First we varied the incoming sunlight by up to 2 decades,
giving a maximum luminosity of about 7000Lux (Iph ≈
7×10−5A), by slowly closing the 8 blinds (from 0 to 40 s),
and then we varied the artificial lighting by about 2 decades,
both slowly and rapidly, by varying the neon ceiling lights
and then switching them off (from 40 to 85 s). The robot
was then driven for a while with only the Vicon cameras’
LED lights switched on (from 85 to 119 s), corresponding
to a luminosity of about 0.5Lux (average Iph of about 5×
10−10A), before switching the neon lights on again (Fig.
7(j)). The light levels tested therefore covered a 5-decade
range (Iph from about 3× 10−10 to 7× 10−5A).

The OF measurements did not depend on either the
average light level or the changes in the light, except in the
case of a few very large, sudden changes (e.g. those occurring
at t ≈ 5, 85, 119 s). The overall error distribution was
nearly Gaussian with a quasi-zero mean (Fig. 7(b),(c),(e),(f)),
giving the average standard deviation of the errors in the
OF measurements σ̄l = 0.07 rad

s , σ̄
r = 0.08 rad

s and the
standard deviation of the error in the OF median values
σlm = 0.06 rad

s , σ
r
m = 0.06 rad

s , which is about half of ∆ω∗,
as was to be expected.

The robot adopted the required velocity and steering angle,
giving the estimate precision σV = 0.008 m

s , σφ = 0.013 rad
(Fig. 7(g),(h),(i)) and a maximum error in the position of
about 20 cm after 6 laps (Fig. 7(k)).

V. CONCLUSION

The low-cost car-like robot called BioCarBot presented in
this paper is able to estimate its velocity and steering angle
by means of an Extended Kalman Filer (EKF), using only the
OF measurements delivered by two novel downward-facing
LMSs. These novel LMSs have the following advantages
over those presented, for instance, in [11], [12]:
• the OF measurements are robust to high-dynamic-range

lighting conditions (in a 5-decade range with sharp
changes of up to 2 decades within 0.5 s) and do not
depend on the visual patterns encountered;

• the refresh rate of the OF measurements is constant and
relatively high (333Hz), and does not depend on the
bandwidth of the band-pass filter;

• the resolution on the OF measurements is nearly con-
stant and relatively high (up to 0.05 rad

s ), and can be
set at whatever value required;

• the OF measurement range is relatively wide (from 1
to 10 rad

s , i.e. 50 to 550
o

s ) and can also be adjusted as
required.

Although we focused here only on the information pro-
vided by the LMSs, data provided by other sensors (such
as wheel encoders, IMUs and GPSs) could be integrated in
order to achieve greater robustness and eventually obtain a
precise robot’s positioning.

Outdoor tests involving various ground and lighting con-
ditions and various trajectories are now under way.
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