1609.05243v2 [cs.RO] 27 Feb 2017

arxXiv

Fast Second-order Cone Programming for
Safe Mission Planning

Kai Zhong!, Prateek Jain?, Ashish Kapoor?

Abstract— This paper considers the problem of safe mission
planning of dynamic systems operating under uncertain envi-
ronments. Much of the prior work on achieving robust and safe
control requires solving second-order cone programs (SOCP).
Unfortunately, existing general purpose SOCP methods are
often infeasible for real-time robotic tasks due to high memory
and computational requirements imposed by existing general
optimization methods. The key contribution of this paper is a
fast and memory-efficient algorithm for SOCP that would en-
able robust and safe mission planning on-board robots in real-
time. Our algorithm does not have any external dependency,
can efficiently utilize warm start provided in safe planning
settings, and in fact leads to significant speed up over standard
optimization packages (like SDPT3) for even standard SOCP
problems. For example, for a standard quadrotor problem, our
method leads to speedup of 1000x over SDPT3 without any
deterioration in the solution quality.

Our method is based on two insights: a) SOCPs can be
interpreted as optimizing a function over a polytope with
infinite sides, b) a linear function can be efficiently optimized
over this polytope. We combine the above observations with
a novel utilization of Wolfe’s algorithm [1] to obtain an
efficient optimization method that can be easily implemented on
small embedded devices. In addition to the above mentioned
algorithm, we also design a two-level sensing method based
on Gaussian Process for complex obstacles with non-linear
boundaries such as a cylinder.

I. INTRODUCTION

Safe control of dynamics system is critical for robotics
and cyber-physical systems. The uncertainty arising in real
situations, due to disturbance, sensor noise and modeling
errors, makes it a challenging problem. A popular approach
is to model the uncertainty using probabilistic approaches.
Most popular probabilistic approaches for achieving safe
and robust control include controller synthesis via chance
constraints, [2], [3], [4], [5], [6]. Chance constraints are
useful in handling the uncertainty by requiring that the
probability of failure of any state violation is always below a
prescribed value. Recently, [7], [8] introduced a Probabilistic
Signal Temporal Logic (PrSTL) framework which also mod-
els uncertainty in a probabilistic manner with focus on uncer-
tainty in model. This framework invariably leads to second-
order cone constraints for modeling the probabilistic safety
invariants. Such constraints together with an appropriate cost
function form a second-order cone programming (SOCP)
which can be solved using general purpose optimization

1Kai Zhong (zhongkai@ices.utexas.edu) is with University
of Texas at Austin. This work was done while interning at Microsoft
Research (MSR).

2Prateek Jain (prajain@microsoft.com), Ashish Kapoor
(akapoor@microsoft.com) are with MSR.

packages, such as GUROBI [9] and SDPT3 [10] that mostly
use interior point methods.

However, these off-the-shelf methods tend to place high
demand on computation and memory resources and pose
significant challenges in implementing them on embedded
chip-sets that reside on robots, quadrotors etc, especially
because at least one SOCP problem needs to be solved at
each time step. For example, consider quadrotors or small
mobile robots operating in an uncertain world, which are
often constrained both in their ability to carry payload and
available power. Under such constraints implementing the
above methods for achieving safe and robust control is a
non-trivial task.

In this paper, we focus on designing fast and memory-
efficient optimization routines that enable fast, safe and
robust mission planning for robots operating in uncertain
environments. In particular, we show how to efficiently solve
SOCPs based on two key observations: a) SOCP’s dual
is a significantly simpler problem and can be written as
minimizing an objective function constrained to a “’simple”
polytope albeit with infinite sides, b) linear optimization over
the polytope is efficient. We use the above two observations
along with a classic algorithm named Wolfe’s algorithm.

Wolfe’s algorithm was first proposed by Wolfe [1] in
1976 and there are many appealing properties of the Wolfe’s
algorithm which makes it particularly suitable for robotic
tasks. First, it can be viewed as a variant of the Frank-
Wolfe Algorithm [11], [12], which is particularly suitable
for polytope constrained problems due to the fast linear
minimization step. Such polytope constraints arise naturally
in the setting of chance constraints as well as PrSTL.
Moreover, Wolfe’s algorithm is guaranteed to converge to the
optimum linearly for strongly convex or 4-strongly convex
objectives [11]. Our experiments show that Wolfe’s algorithm
is much faster than traditional methods and requires only a
little memory. To the best of our knowledge, this is the first
time that Wolfe’s algorithm is applied to solving SOCPs.

As a case study, we focus on the path planing problem
with unknown obstacles for Micro Aerial Vehicles (MAVs,
quadrotors) which have several applications ranging from
package delivery to monitoring farms etc. These missions
require that the robots operate in a partially observed en-
vironment and achieve the goals while avoiding obstacles,
such as trees, buildings, hills and other aerial vehicles.
Several previous works [13], [14], [15], [3], [16] on planning
obstacle-free trajectories have assumed the environments are
known or can be instantaneous detected accurately. However,
in real situations, the obstacles are typically unknown a prior

and the real time detection is non-trivial. Also there have
been many approaches for obstacle avoidance in partially
observed environments[17], [18], [19], [20], [16], [21].

Our work is especially inspired by recent research in
safe controller synthesis using Probabilistic Signal Temporal
Logic (PrSTL) [7]. The PrSTL framework was designed
for safe controller synthesis in a hybrid dynamic system,
where the safety invariants are defined via a distribution of
logical expressions that operate on real-valued, dense-time
signals. These signals could be functions of the robot state,
environment and other safety parameters. The safe controller
synthesis then is reduced to constraint optimization problems
[8], a sequence of SOCP constraints generated from the
PrSTL specifications. We seek to solve such sequences of op-
timization problems in an efficient manner, thereby enabling
implementation of such strategies on real-time systems.

We demonstrate our fast optimization routine on the
problem of a real-time trajectory planning under uncertainty.
Inline with the PrSTL framework, the two key components
of such a system is a sensing module that makes infer-
ences about the environment, and a procedure that uses
our fast algorithm to determine safe control inputs given
the inferences and the safety invariants. The experiments
show that the proposed method is much more faster than
traditional methods, which include projected gradient descent
and SDPT3. We simulate the quadrotor flight with different
types of obstacles and show that our method can efficiently
find near-optimal trajectories while avoiding the obstacles.

Paper Organization. In Sec. we first describe and
define a general SOCP problem in the context of safe mission
planning under uncertainty. Following that in Sec[ll] we
show how to solve the dual form of this problem via Wolfe’s
algorithm. In Sec. we demonstrate our methods to the
optimal and safe path planning for the quadrotors in uncertain
environments. In Sec.[V] we present empirical comparison of
the proposed method with existing approaches and highlight
the advantages.

Notations. Plain small letters denote scalars. Bold small
letters denote vectors. Capital letters denote matrices. We use
I to denote a d x d identity matrix. We use some notations in
Matlab, such as [a; b] for the vertical conjunction of vectors
a and b, a;.; for the entries among i-th entry and the j-th
entry of a, and A;.; . for the rows of A from i-th row to j-th
row. [L] denotes 1,--- , L and [L] —1 denotes 0,--- ,L — 1.

II. PROBLEM STATEMENT

We start with describing the primal and the dual problem
that arise in SOCP. Recall that the safe mission planning un-
der uncertainty can be formulated as minimizing a quadratic
cost function over future controls constrained in second-order
cones [7], [8]. Hence, we focus on the SOCP problem of the
following form:

min |4+ /2|
“ (D

st. |Bia+bil| <cla+d;,Vi=1,2,-- L,
where 4 € R” can be viewed as some linear transformation
of the controls. p € R, B; € R™*™ b, € R™ c € R",d; €

R are constants that are given by the control equation as well

as the uncertainty distribution. Sec. [[V] presents a mapping of

the safe path planning problem for quadrotors to Problem (TJ).
Now, note that:

0, sl <t

00, o0.w.,

max v! s — A\t = max \(||s|| — t) = {
loll<A A20

Using the above fact we can rewrite Lagrangian of as:

min ma

L
i v | <A la+p/2]° + Z[”?(Blﬁ +bi) — \i(e] @+ di)]
e i=1
By exchanging min and max, we obtain the following dual
problem to (I):

min ||Uz|]? + p” 2,
(2
S~t-||'UiH <\, Vi=1,2,--- L,

where z = [v1;A\1;v2; Mo; -+ v Ap] € RPHDE g the
vector of dual variables. Also,

1
U= i[B?)_ClaB;7_027"' 7Bg7_CL]a
p=U"p—[b1; —di;by; —da; - - ;br;—dy].

Given dual optimal z, the primal optimal to can be
obtained using:

W=—(p/2+Uz). 3)
III. WOLFE’S ALGORITHM

In this section, we present a method to solve @]) and
equivalently (T). Our method is based on Wolfe’s algorithm
which is a popular algorithm for submodular optimization
[12]. Here, we exploit the two key properties of Wolfe’s
algorithm: a) it can be used to optimize a convex smooth
function over a prototype, b) it requires optimizing a linear
function over the polytope.

Note that the constraint set in () is a polytope albeit with
infinite many sides. Moreover, linear function optimization
over the polytope can be performed efficiently (see Sec-
tion [[1I-B).

Let the objective function in () be denoted by: g(z) =
|Uz||> + pTz. Wolfe’s algorithm proceeds with an outer
iteration and an inner iteration. In the outer iteration, the
main task is to optimize a linear function over the constraint
polytope given in (Z). In the inner iteration, we need to
solve an affine minimization problem which can be solved
efficiently using standard techniques. Algorithm [1| provides
a detailed pseudo-code of the Wolfe’s algorithm adapted for
our problem and the functions in the algorithm are explained
in the following subsections. Note that the Wolfe’s algorithm
requires the constraint set is closed. Therefore, we add one
more constraint, which is \; < A4, for all 4. It turns out
that a large A4, doesn’t affect the speed of the algorithm
in practice.

Algorithm 1 [Fail,z*]=DualSOCP(U, p, L, Aaz, T, d0, 20):

Wolfe’s algorithm for SOCP.

Input: Objective function g(z) = ||[Uz||? +p” z. Constraint
set, P = U{||lvi|l < M\i < Mnax}- Maximum number of
iterations T". The stopping precision dg. A warm start z.

Output: Fail, z*

1: Initialize the active set A = {z}. a,, = 1. Fail=true
2: for t =0,1,2,--- ,T do
3 s=LMOp(Vg(z®))

4 A=AUs, as=0

5: while True do

6: B = AffineMinimize(U, p, A).

7 if 3 = 0 then

8 a <+ (3; break

9 else

10: V" = argmin, o 481 (1—y)az0 ¥
11: a=76+(1—-v"a

12: A<+ {a € Alag > 0}, a + {agla € A}
13: end if

14: end while

15: if the sub-optimality § < Jp then

16: Fail=false, 2* =) , aqa, return
17: end if

18: end for

A. Sub-optimality

Given a dual variable z, the primal objective can be
computed as f, = |[Uz||3 according to Eq. (3). The duality
gap is dgop = 2||Uz||3 + pTz. The primal infeasibility
of each constraint can be calculated as [,(i) = ||B;u +
b;|| — (¢l +d;). The dual infeasibility of each constraint is
I4(2) = ||vs]| — \i- Now we use the following sub-optimality,

5 max dgap max{I,} max{Iq}
|fp|+1" max{|c]a + d;|+1} max{|\;|+1}
as the stopping criterion, which is also called precision in
the remaining of this paper.
B. Linear Minimization Oracle (LMO)

The LMO step in Algorithm |I| minimizes the linear ap-
proximation of objective function subject to the constraints.
It can be formulated as follows: given a gradient g,

min zTg
z
S.t.”’Ul'” S)\1 S)‘mam, VZ = 1727 e 7L

where z = [v1;A1;v2; 25+ ;0r;A;]. Denote g =:
[w1;v1; we;Ye; - -+ ;wr;yr]. Then this problem can be de-
composed into L small independent problems,

“4)

min v} w; + Ay
Vi,)]
S.t.||'l)7;|| <A £ Aaz-

Given)\;, to achieve the minimal objective, the optimal v; =
—/\lwl/||wl|| SO,

{vi:O,)\i:(), if [|lw;| — v <0

v; = _)\mawwi/”wina /\z =)\maw7 0.W.

C. Affine Minimization

The affine minimization function AffineMinimize() min-
imizes the objective subject to the affine space spanned by
A, which can be formulated as the following problem,

min ||Us||* 4+ s'p
s,8

s.t.s = Z Baa, Z Ba = 1. ©)

acA acA
To solve Eq. (6), we consider two cases: if there exist an all-
zero atom in A or not. Let A € R™+DLxIAl pe the matrix
stacked by the atoms in A.
Case 1: all atoms in A are non-zero vectors and we
assume ATUTU A is non-singular. This formulation is equiv-
alent to:

Htgn |UAB|? + BT ATp, st pBT1=1. (7)
A closed-form solution exists for this problem:
. 1"Q'A"p+2 Lo ay,r x)-1
v =TT g1 B :*§(Q A'p+v'QT1)

where Q = ATUTUA.

Case 2: one atom in A is a zero vector. Let A = A\0 and
A e Rm+DLx(IAI=1) be the matrix stacked by the atoms of
A. We also assume ATUTU A is non-singular. In this case,
we solve the following problem,

min [UAB|* + BT ATp (8)
B

where B are the coefficients corresponding to the non-zero
atoms. So 3* = —1(ATUTUA)~' AT p. And the coefficient
of the zero atom 3¢ = 1 — 17 3*. Hence, B8* = 3* U 5.

D. Speeding up the algorithm by utilizing the structure

In this section, we try to exploit the structure of the
Wolfe’s algorithm and reduce its computational complexity.
Calculation of the gradient Vg(z) = 2UTUz + p and
computing the AffineMinimize function are the two most
computationally intensive steps in Alg. |l While the dimen-
sion of the dual problem (m + 1)L is very large for large L
or m, typically the number of atoms in the algorithm is small
as the algorithm actively removes redundant atoms. So we
leverage this structure by maintaining vectors {Uala € A},
the values {p”ala € A} and the coefficients of the atoms
« instead of maintaining the dual variable z =} _ 4 aqa.
Note that the outer loop adds at most one more atom to
the set .4, so maintaining UA takes at most (m + 1)L
flops (floating point operations) and we can even reduce this
complexity by utilizing the sparsity of the new atom.

Now using the maintained items, the calculation of the gra-
dient, Vg(z) = 2UT (X ,c 4 @a(Ua)) + p, costs O(n(m +
1)L + n|A|) flops.

Similarly, we can compute the AffineMinimize function in
O(]AJ]? +n|.A|?) which in practice tends to be very efficient
as the number of non-zero atoms (|.4|) is small. Moreover,
the number of inner iterations also tend to be small. Hence,
the computational and memory requirement of the approach
is dominated by O(n(m + 1)L) term.

IV. CASE STUDY: PATH PLANNING FOR QUADROTORS

We consider a real-time safe trajectory planning for
quadrotors with unknown obstacles. Lets assume that © €
R'2 is a 12 dimensional representation of the state of the
quadrotor. Here the first three entries a.3 are the position,
x4.¢ are the translational velocities, x7.9 are the Euler angles,
and xi9.12 are the angular velocities. Let u € R* be the
control vector consisting of roll, pitch, yaw and vertical thrust
input respectively. We use discretized time representations
with time interval dt. If «’ x't! are the states of i-th
and ¢ + 1-th time steps respectively, then given the control
input u'*! for the transition from x’ to **!, we have the
following dynamics equation:

2 = [t ©)

The function f takes the same form as described in [7], [22].
At each discrete time step, the system first senses the nearby
obstacles, forms a belief about the feasible region, then finds
an optimal safe trajectory. The key challenge here is that the
sensing and trajectory planning steps are conducted on-board
at each time step, so they need to be fast enough to avoid too
much latency. The two components of such a system are: a)
a probabilistic framework for modeling obstacles, and b) a
procedure to determine the safe trajectory by solving a SOCP

(.
A. Probabilistic Obstacle Detection

We follow [7] to form the probabilistic safety constraints.
In the case of collision avoidance, PrSTL results in chance
constrains that impose the probability of a collision occurring
to be lower than some threshold (i.e. P[Collision] < ¢). This
prescribed threshold € is a parameter determined by our risk
appetite.

We assume the on-board sensors generate a point cloud,
i.e. a mesh grid of points, around the quadrotor, where each
point has two states, in-obstacle or out-of-obstacle. Such a
point cloud can be realized by LIDAR and vision sensors
as discussed in [17]. Similar to Sadigh and Kapoor [7], we
employ a linear Gaussian process (GP) to provide the safety
constraints. In particular, each point in the point cloud can
be labeled either as —1 (out-of-obstacle) or 1 (in-obstacle).
We denote the position-label pairs as {&;,y;};=1,2,....n for
N sensing points. Applying a linear GP on these labeled
samples results in a posterior distribution of a linear predictor
n ~ N(u,X) where:

Y= (%ZTZ + 87 u=x2"y.
Here Z = [¢7,1;€3,1;--- 3 €5,1], y = [yi;y25-- 5un]
and S, = diag([1;1;1;0]). The additional 1 following &;
in Z is for the bias. Then the probability of a given new
data point £ being clear of the obstacle is P[n’€ < 0],
where £ = [£;1]. Now the safety constraint via PrSTL on
the probability of collision can be formulated as:

(10)

Pn’€ <0]>1-co p’€— 071 (c)|S/2€] <0, (11)

o/ .
— Chance ¢=0.001
=== Chance ¢=0.01
Chance ¢=0.1
—Linear SVM
® quadrotor position
—obstacle
«_sensing points

— Chance ¢=0.001
~— Chance ¢=0.01
Chance ¢=0.1
— Linear SVM
@ quadrotor position
—obstacle
«_sensing points

Fig. 1: Chance constraints with different failure probabilities
e using GP and a linear inequality constraint using SVM. The
feasible regions for the four constraints are the areas above
the corresponding lines drawn in the figure. The left figure
has 5 x 5 grid sensing points while the right has 11 x 11
points.

where @1 is the inverse of cumulative distribution function
of Gaussian distribution. Note that the above equation is a
second-order cone constraint arising due to the safety con-
straint. These constraints are non-linear in nature and both
more reliable and less conservative than a linear inequality
constraint. Fig. [T] highlights a simple example comparison
between a second-order cone generated from linear GP and
a linear boundary estimation from linear SVM. As shown
in the figure, linear SVM can’t generate reliable constraints,
i.e. those constraints have intersection with the obstacles,
especially when there are only a few number of sensing
points. In contrast, our chance constraints are more reliable
and close to the boundary when € is not too small.

While the above sensing scheme (Fig. [T) is based on the
assumption that the obstacle is linear, it can be useful even in
the case of non-linear obstacles. Note that we reason about
obstacles at every time step, consequently we can exploit
the local linearity of the object close to the quadrotor. In
particular, we propose an efficient two-level sensing method.
In the first level, we obtain the nearest point closest to
the quadrotor from a sparse but large sensing grid. For
computational efficiency in finding the nearest point, the first
level can be further decomposed to multiple sub-levels. In the
second level, we use a dense but small sensing grid around
the nearest point to estimate the boundary. We show the two-
level strategy in Fig. 2] The estimated boundary is intended to
avoid the obstacles around the nearest point. If the obstacle is
convex, then the estimated boundary will also avoid any other
parts of the obstacle. If the obstacle is non-convex, there will
exist some areas in the obstacles that have intersections with
the constrained set. However, since, in the next time step, we
will re-estimate the boundary using the new nearest point to
the quadrotor, the quadrotor will not easily hit the obstacles.

B. Transformation to the Standard SOCP Form

Assume that the current state of the system is «* and the
initial control is u’. Then we are interested in reasoning
out about future L states ', 22, -, x” and the respective
controls, u!',u?, - -, u! that are safe and will take the robot

towards the goal x*. Formally, the cost function can be

@ Level 1 sensing points
« Level 2 sensing points
——Level 1 estimated boundary
| == Level 2 estimated boundary
. @ quadrotor position
o« ® |- obstacle region
o

@ Level 1 sensing points
« Level 2 sensing points
——Level 1 estimated boundary
| —Level 2 estimated boundary
@ quadrotor position
—— obstacle region
.

Fig. 2: Two-level sensing method for estimating the non-
linear boundary. To facilitate the illustration, the experiments
here consider 2D case. The left and right figures are for
a circle obstacle and a triangle obstacle respectively. As
shown in the figure, Level 2 sensing points provide a better
estimation of the boundary (the failure probability is set as
0.01) than that of Level 1.

written as:
F(xt,x? - xl) =
L
Z 215 — 21sl” + soll 250 l1* + Aoll®hsl? + Aol io.r2]”
i=1
l (12)
where Ao, 49 are two hyper-parameters, and in our im-
plementation set as Ao = 0.2 and po = 2. The first

term in Eq. (I2) provides a potential to approach the final
destination, and the following three terms are to regularize
the velocities and angles of the quadrotor such that it is
stable. Besides the safety cone constraints Eq. (T1)), the
dynamic equations Eq. (9) should be satisfied. However, Eq.
@) is nonlinear, which is difficult to solve, so we use a linear
approximation to substitute this constraint. In particular, for
vi=0,1,2,--- ,L—1

' = 2'+ Az’ + Bu't e, (13)
where,
f (z, u) of (x,u)
A= 4~ 7 B= 72"
ox ’ ou ’

=z u=u0
c= f(x° u’) — Az® — Bu®

=z, u=u0

(14)
The optimization problem now can be written as:
mln F($17w27"'?wL)
x? ul i€[L)
st. ' =2 + Az’ + Bu' e, Vi€ [L] -1

pl 2551 — 27 ()| 223 1)) < 0,Vi (615[1;]

Note that A, B, ¢, u, Y only depend on z°,u’, so they
are constant for the problem Eq. (I3). Thus, we can
simplify Eq. (I3). Let = [z';2% - - ;2F] and © =
[ut;u?;--- ;ul]. The first constraint in Eq. (I5) can be
formulated as follows,

Az +Au+b; =0

where A2 = I, ® B (® is the Kronecker product), b; =
[0 + f(x°,u®) — Bu®;c;c;--- ;¢] € R™2L, and

—1Iis 0 0 0

Lo+ A —Is 0 0
Ay = 0 Lo+ A —Ii9 0
0 0 Lo+ A —Ii9

Therefore, = —Afl(AQﬁ +by). Let A := —AflAg and
b:= —A7'by, then
z=Au+b (16)
The objective now can be rewritten as F(E) =
#"Dx + q'% + ¢ where ¢ is a constant, D =
I, ® diag([1,1,1, Ao, Ao, Ao, Mo, Hos Ho, Aos Ao, Ado]) and
d(j—1)%124+1:(j—1)*124+3 = —2zj 4 for j = 1,2,--- L
and O for all the other entries. We replace & by u
using Eq. (16). Thus, the objective function w.rt. @
is F(u) = aTATDAa + (2ATDb + ATq)"a. Let
V = (ATDA)'/? and assume it is non-singular. Set
4 ="Vaand p=V"1(2A7 Db+ AT q). Then the objective
w.r.t. @ is
F(a) = |la)* +p"a

Now we consider the second constraint in Eq. (T3).

Let ¥'/2 = [H, h], where H € R**3, h € R*. Let 1 =
p1.3/® 1(e) and jig = pg/®1(€). The second constraint
can be written as

||Hw?[3 + h’” < ﬂT$§_:3 +
Replacing }.; by @ , we have

where _ .
Bi = HAy(i-1)+1:12(-1)43,:V

b, = HBlz(i71)+1:12(i*1)+3 +h
c; = VﬁTA{Q(i_1)+1:12(i—1)+371ﬂ
d; = [l,Tb12(,‘_1)+1:12(’i—1)+3 + Ha

Now we have eliminated «’, and formed the new problem
w.rt. @ € R, which is exactly Eq. (I). Once we obtain
the solution z* of the dual problem Eq. (), we can obtain
the controls by u* = —V~1(p/2 + Uz*) and the states in
the horizon by Eq.(16). However, we don’t use the predicted
next position xi% in the horizon, instead we calculate the
next position 1., using the original dynamic system along
with u*! (see (©)). We present the complete procedure in
Alg.[2] The transform2Dual function transforms the problem
(T3) to the dual form (2) (see Sec.[[V-B]and Sec. [[] for more
details).

V. EXPERIMENTS

In this section, we present experimental results to demon-
strate significant speedup of the proposed control algorithm
over existing off-the-shelf methods while still successfully
avoiding unknown obstacles. First we show that our proposed
algorithm is much faster than other existing methods for

Algorithm 2 Complete Procedure for Quadrotor Flying

Input: Final destination x*, failure probability of obstacle
detection e, stopping distance &4, horizon length L, esti-
mation of maximum A, \,,,4., maximum SOCP iterations
T, the stopping precision of SOCP §.

1: Initialize z(® =0, u® =0, ¢t =0, 2! = 0.

2. while ||z} — @7.4]| > 64 do

3 [Z,y] = sense(z)) using two-level mesh grids.
4 [2® u®] = LinearGP(Z, y, ¢) by Eq. (10).

5: [U,p,V,p| = transform2Dual(x®, u® %O 1 ®)),

6 [Fail, 2] = DualSOCP(U, p, L, Anaz, T, 9o, 2°).

7 if Fail then

8 Print “infeasible or T is too small” and exit.

9

: end if
10: altt=-v-1i(p/2+ Uzt
1wt =gttt

12 a0 =z 4 f@® 40)at
13: t=t+1
14: end while

general second-order cone problems. Then, we show that
when applied to quadrotor problem, our algorithm again
provides significant speedup over existing methods. In par-
ticular, we compare our Wolfe’s algorithm with interior point
method (SDPT3), projected gradient descent (PGD), cutting
plane methods (CPM) and Fast Alternating Minimization
Algorithm (FAMA) [23], [24]. We apply all the algorithms
on the dual problem Eq.). Therefore, the projection step
of PGD has a closed form and we use Amijo rule to do line
search with fine-tuned initial step size. CPM is based on the
analytic center cutting plane method as described in [25].
More details for CPM can be found in Appendix. All the
experiments are implemented in Matlab on a laptop with 2.9
GHz Intel Core i7 and MAC OS. SDPT3 is implemented in
C, is in general highly optimized, and is industry standard.

A. General SOCP on synthetic data

In this section, we consider a general SOCP, Eq. (I)). We
set B; € R™ ™ as an element-wise Gaussian matrix, ¢; and
p as element-wise Gaussian vectors, and set d; = 10 and
b; = 0 for i € [L]. As shown in Fig. [3| our Wolfe’s algorithm
is much faster than SDPT3 and PGD for different n and L
when achieving the same precision as SDPT3.

B. Quadrotor Flying with a Ceiling

We simulate the quadrotor flying from the original point
[0,0,0] to a destination [1,1,0]. We consider the similar
environment in [7] for quadrotors, i.e., we have a ceiling
on the top of the starting point and the ending point. The
goal is to achieve the ending point as fast as possible while
avoiding hitting the ceiling. Different heights of the ceiling
will lead to different trajectories. We observed the following
for different heights of the ceiling.

(a) When the ceiling is very high, such as 0.35 as set in
[7], the quadrotor actually flies like in the environment
without the ceiling, which means the constraints in the

o n=10,L=5 n=10,L=10
7
—4-SDPT3 —4-SDPT3
-7 Proj. Grad. -5 -7 Proj. Grad.
-©-Wolfe -&-Wolfe
-10
10 — L4
5 Yoo o o o ¢ 515
@-15 @
8 820
&-20 s
> >-25
2 kel
-30
30 -35
35 = 40
0 05 1 15 2 25 0 0.2 04 0.6 0.8
time(s) time(s)
o n=10,L=20 o n=10,L=50
—4-SDPT3 —4-SDPT3
-5 - Proj. Grad. -5 - Proj. Grad.
--Wolfe --Wolfe
-10 -10
S5 * | 85
@ @ o
8 20 8 20
S S
525 25
o o
30 -30
35 35
40 40
0 0.2 04 06 08 0 02 04 0.6 08 1 1.2
time(s) time(s)
n=100,L=50 n=100,L=100
—4-SDPT3 —4-SDPT3
5 —#Proj. Grad. 5 -7 Proj. Grad.
-&-Wolfe -o-Wolfe
~-10 __-10
c =4
S S
@ 15 A @ -15
.
820 820
D {2
2 L2
-30 30
[SaSacas A A A=A AS S A
35 35
1 2 3 4 5 6 0 2 4 6 8 10 12 14
time(s) time(s)
n=100,L=200 s n=100,L=500
—4-SDPT3 —4-SDPT3
5 ~7Proj. Grad. oY -7 Proj. Grad.
-©-Wolfe -6-Wolfe
__-10 . s
S 510
@ -15 @
8 ¢ | S5 -
520 S
=3 520
9 S
-25
30 30
0 10 20 30 40 0 50 100 150

time(s)

Fig. 3: Comparison among SDPT3, Wolfe’s and Projected
Gradient Descent on solving a general dual problem Eq.
on synthetic random data. n: no. of variables, L: no. of
constraints in SOCP.

primal problem are not binding in the optimum. Hence
the dual problem has a trivial solution z* = 0. As
a result, Wolfe’s algorithm and PGD only need one
iteration if initialized as zero vectors, thus are much
faster than other methods.
(b) When the ceiling is very low, such as 0.01, the generated
SOCP problem will easily have infeasible constraints.
(c) When the ceiling is not too high or too low, such as 0.08,
the quadrotor can finally achieve the destination but the
trajectory is different from the case without obstacles.
We illustrate the trajectories when the heights of the
ceiling are 0.35 and 0.08 in Fig. 4| As we can see in the
figure, the trajectory is affected by a low ceiling of height
0.08 compared to a ceiling with height of 0.35.
Now we compare Wolfe’s, SDPT3, PGD, FAMA and CPM
applied on specific SOCP problems generated from some

Fig. 4: Trajectories (yellow lines) when the height of the
ceiling are 0.35 (left) and 0.08 (right). The experiments are
conducted in 3D space, and the viewpoint of the figures is
in the y direction. The circle marker is the starting point and
the star marker is the ending point. The black lines denote
the ceiling.

TABLE I: Comparing different methods on solving an easy
subproblem Eq. (Z) in terms of time (sec.) for the quadrator
problem.

precision | WOLFE | PGD FAMA | CPM SDPT3
1.00E-01 | 0.0005 0.0201 | 0.0025 | 4.8245 0.6006
1.00E-02 | 0.0007 0.0186 | 0.0027 | 9.0347 0.6012
1.00E-03 | 0.0010 0.0268 | 0.0027 | 20.4166 | 0.5953
1.00E-04 | 0.0011 0.0203 | 0.0026 | 25.0489 | 0.6430
1.00E-05 | 0.0018 0.0206 | 0.0034 | 45.9270 | 0.6628
1.00E-06 | 0.0197 0.0294 | 0.0145 | 60.0520 | 0.6660

intermediate steps during the quadrotor navigation. In the
sequence of SOCP problems along the navigation, some
SOCPs are easy, while others are difficult. So we consider
both cases.

(a) Easy Case: We define a problem (2) as an easy case
when its solution is simply a zero vector. So Wolfe’s
algorithm or PGD only need one iteration to terminate if
initialized as zero vectors. According to our observation,
the SOCP will be an easy case if the quadrotor is far
away from obstacles.

(b) Hard Case: The hard case can be considered as cases
when the solution is non-zero. So typically in hard cases,
the Wolfe’s algorithm or PGD require many iterations to
find a solution. When the ceiling is not too high or not
too low, we will find such cases in some intermediate
steps when the quadrotor is close to the obstacles.

The comparison results are shown in Table || and [lIl The
easy case and the hard case are represented respectively by
the first step and the 8-th step of the flight trajectory under
a ceiling of height 0.08. We also checked the optimization
time using the code provided by [7]. [7] uses GUROBI to
solve SOCP. We instead use SDPT3 (via YALMIP) due to
the lack of GUROBI license. The optimization time of [7]
turns out to be 3-6 seconds for each SOCP problem. It is
slower than our time for SDPT3 as shown in Table [I] and
which is probably because we are solving a highly simplified
dual problem, while [7] directly optimizes over the original
problem Eq. (13).

Next, we answer the question: How much precision is suf-
ficient for the quadrotor problem, using Wolfe’s algorithm?

TABLE II: Comparing different methods on solving a hard
subproblem Eq. in terms of time (sec.) for the quadrator
problem.

precision | WOLFE | PGD FAMA | CPM SDPT3
1.00E-01 | 0.0006 0.0032 | 0.0040 | 3.4142 0.6388
1.00E-02 | 0.0022 0.0137 | 0.0080 | 7.1268 0.6309
1.00E-03 | 0.0031 0.0920 | 0.0151 | 14.7122 | 0.6190
1.00E-04 | 0.0085 0.9445 | 0.1017 | 30.0934 | 0.6552
1.00E-05 | 0.0095 1.3614 | 0.1834 | 60.1621 | 1.1803
1.00E-06 | 0.0342 1.9909 | 0.5534 | 60.1854 | 0.7947

TABLE III: Timing and number of steps of the complete pro-
cedure from the starting point [0, 0, 0] to a neighborhood of
radius 0.01 around the destination [1,1, 0] when SOCPs are
solved to different precisions under different ceiling heights.
We also include the sensing time and the optimization time,
which are main components of total time.

Ceiling | Prec. Total(s) | Sense(s) | Opt.(s) | Steps
1.0E-06 4.53 2.01 2.32 128
0.08 1.0E-04 4.41 2.11 2.08 129
1.0E-02 3.57 2.03 1.33 128
1.0E00 3.53 2.10 1.29 128
1.0E-06 2.85 0.92 1.75 127
0.35 1.0E-04 2.33 0.90 1.25 127
1.0E-02 2.40 0.92 1.26 127
1.0E00 2.58 0.99 1.38 127

We show the total computation time for the complete flight
when SOCP subproblems are solved to different precisions.
We consider the case of ceilings with different heights.
We set the number of future steps in receding horizon as
L = 20, the discrete time dt = 0.03, the probability of
failure € = 0.01 for the chance constraint, and \,,,, = 10%.
For the sensing part, we use two-level sensing. The second
level for estimating the boundary has a mesh grid of —0.04 :
0.01 : 0.04 in each dimension. The first level used to find
the nearest point to the quadrotor is further decomposed into
two sub-levels, which have mesh grids —0.3 : 0.06 : 0.3 and
—0.06 : 0.02 : 0.06 in each dimension respectively. Detailed
timing results can be found in Table

Table [[1]] shows that for higher ceilings (0.35), the running
time of the algorithm does not change with more precise
solutions. This is because when the ceiling is high, the SOCP
problems are easy in most steps and hence one iteration is
enough to achieve the optimal solution. In contrast, when the
ceiling is low (0.08), the total computation time increases
as the precision increases. Moreover, the quadrotor achieves
the final destination successfully for all the precisions, i.e.,
we don’t need to solve SOCPs in each step up to very high
precision. This indicates that one can use fast and cheap first
order methods (like our proposed approach) rather than more
computationally expensive interior points methods.

C. Quadrotor Flying with a Half Wall, a Hill, or a Cylinder

In this subsection, we illustrate the simulation results for
several other types of obstacles, including a half wall, a hill

Fig. 5: Trajectories (yellow lines) when avoiding different
types of obstacles. The viewpoint of the right picture for
the half wall and the cylinder is in the z direction, while the
viewpoint of the right picture of the hill is in the x direction.
The circle marker is the starting point and the star marker is
the ending point.

and a cylinder. The trajectories and the obstacles are shown
in Fig. /] The parameter settings are the same as those for
Table which is described previously. SOCPs here are all
solved to a precision 0.01. All the three cases in Fig. [5] take
about 5-6 seconds totally for computation and 150-200 steps
for the complete trajectories.

VI. CONCLUSION

In this paper, we proposed an efficient algorithm for the
second-order cone programming that arises in safe controller
synthesis for robots that operate in an uncertain environment.
Our algorithm enables on-board computation, reduces the
latency of planning, saves battery power, and can be easily
implemented on embedded chipset on the robot without any
external library dependencies. We apply our algorithm to the
safe path planning of quadrotors. We also designed a two-
level sensing method that efficiently estimates the boundary
of the obstacles from which we form the chance constraints
for the SOCP. The experiments highlight that the proposed
method is much more efficient than the traditional methods
and can be used to implement controller on the quadrotor
itself rather than an external controller.

[1]

[2

—

[3]

[4

=

[5

=

[6]

[7

—

[8]

[9

—

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

P. Wolfe, “Finding the nearest point in a polytope,” Mathematical
Programming, vol. 11, no. 1, pp. 128-149, 1976.

A. Prékopa, Stochastic programming. Springer Science & Business
Media, 2013, vol. 324.

L. Blackmore, M. Ono, and B. C. Williams, “Chance-constrained
optimal path planning with obstacles,” IEEE Transactions on Robotics,
vol. 27, no. 6, pp. 1080-1094, 2011.

L. Blackmore and M. Ono, Convex chance constrained predictive
control without sampling. Proceedings of the AIAA Guidance,
Navigation and Control Conference, 2009.

G. C. Calafiore and L. El Ghaoui, “On distributionally robust chance-
constrained linear programs,” Journal of Optimization Theory and
Applications, vol. 130, no. 1, pp. 1-22, 2006.

D. Lenz, T. Kessler, and A. Knoll, “Stochastic model predictive
controller with chance constraints for comfortable and safe driving
behavior of autonomous vehicles,” in 2015 IEEE Intelligent Vehicles
Symposium (1V). 1EEE, 2015, pp. 292-297.

D. Sadigh and A. Kapoor, “Safe control under uncertainty with
probabilistic signal temporal logic,” 2016.

D. Dey, D. Sadigh, and A. Kapoor, “Fast safe mission plans for
autonomous vehicles,” 2016.

I. Gurobi Optimization, “Gurobi optimizer reference manual,” 2015.
[Online]. Available: http://www.gurobi.com

R. Tiitiincii, K. Toh, and M. Todd, “Sdpt3a matlab software package
for semidefinite-quadratic-linear programming, version 3.0,” 2001.

S. Lacoste-Julien and M. Jaggi, “On the global linear convergence of
frank-wolfe optimization variants,” in Advances in Neural Information
Processing Systems, 2015, pp. 496-504.

D. Chakrabarty, P. Jain, and P. Kothari, “Provable submodular mini-
mization using wolfe’s algorithm,” in NIPS, 2014, pp. 802-809.

M. Hehn and R. D’Andrea, “Real-time trajectory generation for
interception maneuvers with quadrocopters,” in 2012 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems. IEEE,
2012, pp. 4979-4984.

C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments,” in Robotics
Research. Springer, 2016, pp. 649-666.

J. Bellingham, A. Richards, and J. P. How, “Receding horizon control
of autonomous aerial vehicles,” in Proceedings of the 2002 American
Control Conference (IEEE Cat. No. CH37301), vol. 5. 1EEE, 2002,
pp. 3741-3746.

M. Watterson and V. Kumar, “Safe receding horizon control for
aggressive mav flight with limited range sensing,” in /ROS. IEEE,
2015, pp. 3235-3240.

S. Liu, M. Watterson, S. Tang, and V. Kumar, “High speed navigation
for quadrotors with limited onboard sensing,” in ICRA. IEEE, 2016,
pp. 1484-1491.

P. Florence, J. Carter, and R. Tedrake, “Integrated perception and
control at high speed: Evaluating collision avoidance maneuvers
without maps.”

M. Pivtoraiko, D. Mellinger, and V. Kumar, “Incremental micro-uav
motion replanning for exploring unknown environments,” in /CRA.
IEEE, 2013, pp. 2452-2458.

C. Richter, W. Vega-Brown, and N. Roy, “Bayesian learning for safe
high-speed navigation in unknown environments.” Proceedings of the
International Symposium on Robotics Research, 2015.

L. Matthies, R. Brockers, Y. Kuwata, and S. Weiss, “Stereo vision-
based obstacle avoidance for micro air vehicles using disparity space,”
in ICRA. IEEE, 2014, pp. 3242-3249.

H. Huang, G. M. Hoffmann, S. L. Waslander, and C. J. Tomlin,
“Aerodynamics and control of autonomous quadrotor helicopters in
aggressive maneuvering,” in /CRA. 1EEE, 2009, pp. 3277-3282.

Y. Pu, M. N. Zeilinger, and C. N. Jones, “Fast alternating minimization
algorithm for model predictive control,” IFAC Proceedings Volumes,
vol. 47, no. 3, pp. 11980-11986, 2014.

——, “Complexity certification of the fast alternating minimization
algorithm for linear mpc,” IEEE Transactions on Automatic Control,
2016.

S. Boyd, “Analytic center cutting-plane method.” [Online]. Available:
http://web.stanford.edu/class/ee364b/lectures/accpm_slides.pdf

http://www.gurobi.com
http://web.stanford.edu/class/ee364b/lectures/accpm_slides.pdf

APPENDIX
A. Cutting Plane Method

We follow the analytic center cutting plane method in [25]
to solve Eq. (Z). We also need an upper bound estimation
for all);, ie, A\; < Apqe as the initialization planes.
The constraints A; > 0 are used as intial planes, so these
constraints will be satisfied all through the process. Therefore
we relax the constraint ||v;| < A; to vl'v; — A2 < 0. Since
A; > 0 are always satisfied, ’UZ-T v; —)\f < (are convex sets.

Algorithm 3 Cutting Plane Method for SOCP

Input: Objective function g(z) = ||Uz||? +p” z. Maximum
A Amaz, Maximum number of iterations 7'. The stopping
precision dg. A warm start zg.

Output: Fail, z*

1: Initialize with 2nL + 2L cutting planes. The first 2L
cutting planes are 0 < X\; < A4z, and the re-
maining 2nL planes are ||v;llcc < Amaz. Use P =
{(ai,b;)}i=12,.. 2nr+2r to denote the plane set, i.e.,
the feasible set formed by the planes is alz + b; < 0
fori=1,2,---,2nL + 2L.

2: Initialize z = zq. Fail=true.

3:fort=1,2,---,T do

4 Calculate w; = vlv; — N2, foralli=1,--- | L

5: Let j = argmax; w;

6: if w; >0 then

7: a0, a(mi1)j—m:(m+1)j-1 = 205, Gmi1); =
—2);.

8: b w; —plz

9: else

10: a 20T (Uz)+p

11: b+ —afz

12: end if

13: P <+ PU(a,b)

14: Use infeasible-start Newton method as described in
Slide 8 of [25] to find the new query z.

15: if No feasible z is found then

16: Fail=true, return.

17: end if

18: if the sub-optimality § < §;y then

19: Fail=false, z* = z, return.

20: end if

21: According to the irrelavance as described in Slide 10-

11 of [25], drop some planes (keep at most 5(n + 1)L
planes) and update P.
22: end for

	I Introduction
	II Problem Statement
	III Wolfe's Algorithm
	III-A Sub-optimality
	III-B Linear Minimization Oracle (LMO)
	III-C Affine Minimization
	III-D Speeding up the algorithm by utilizing the structure

	IV Case Study: Path Planning for Quadrotors
	IV-A Probabilistic Obstacle Detection
	IV-B Transformation to the Standard SOCP Form

	V Experiments
	V-A General SOCP on synthetic data
	V-B Quadrotor Flying with a Ceiling
	V-C Quadrotor Flying with a Half Wall, a Hill, or a Cylinder

	VI Conclusion
	References
	VI-A Cutting Plane Method

