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Abstract— The problem of optimal motion planing and
control is fundamental in robotics. However, this problem is
intractable for continuous-time stochastic systems in general
and the solution is difficult to approximate if non-instantaneous
nonlinear performance indices are present. In this work, we
provide an efficient algorithm, PIPC (Probabilistic Inference
for Planning and Control), that yields approximately optimal
policies with arbitrary higher-order nonlinear performance
indices. Using probabilistic inference and a Gaussian process
representation of trajectories, PIPC exploits the underlying
sparsity of the problem such that its complexity scales linearly
in the number of nonlinear factors. We demonstrate the
capabilities of our algorithm in a receding horizon setting with
multiple systems in simulation.

I. INTRODUCTION

A fundamental goal in robotics is to efficiently compute
trajectories of actions that drive a robot to achieve some
desired behavior. We seek a control policy in a multi-stage
decision problem [1] that can maximize performance indices
that describe, for example, the smoothness of motion, energy
consumption, or the likelihood of avoiding an obstacle.

Hierarchical planning and control has been used to solve
this problem in practice [2]. The idea is to first generate a
desired state sequence [3]–[9] without considering full sys-
tem dynamics, and then design a robust low-level controller
for tracking. Because the dynamic constraints are relaxed, it
becomes possible for an algorithm to plan a trajectory that
satisfies complicated, higher-order performance indices [8]–
[10], offering greater flexibility in system design. Sampling-
based planning techniques can even provide formal guar-
antees such as probabilistically complete solutions [3], [4].
However, recent work has started to challenge this classical
viewpoint by incorporating more dynamic constraints within
trajectory planning in search of solutions with improved
optimality [11], [12].

A theoretically elegant approach would be to address
both the planning and control problems within a stochastic
optimal control framework. Unfortunately, since the states
and actions are coupled through system dynamics, exact
solutions become intractable with the exception of simple
cases known as linearly solvable problems [13].1

These challenges have motivated researchers to find ap-
proximate solutions rather than directly approximating the
original problems with hierarchical approaches. One simple
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1Affine systems with quadratic instantaneous control cost, or fully con-
trollable discrete-time systems.

Robot View

2D Environment

(a)

(b) (c)

Fig. 1: PIPC used on (a) a 2D holonomic robot (blue) to
reach goal (red) in a 2D environment with dynamic obstacles,
where executed trajectory is in green and current planned
horizon is in black, (b) a 7-DOF WAM arm, and (c) a
PR2’s right arm where the semitransparent arm is the goal
configuration and dotted blue end effector trajectory is the
current planned horizon.

approach is direct policy search [14], [15], which uses
first-order information to find a locally optimal policy. To
improve the convergence rate, differential dynamic program-
ming (DDP) has been widely adopted as the foundation
of locally optimal algorithms [16]–[18], which solve lo-
cal linear-quadratic Gaussian (LQG) subproblems and iter-
atively improve these suboptimal solutions. However, for
continuous-time systems, these algorithms would require
inefficient high-frequency sampling to construct the LQG
subproblems, even when the given problem is close to a LQG
(e.g. a performance index with only a small set of nonlinear
factors, or dynamics with a small amount of nonlinearity).
Compared with the hierarchical approach, these algorithms
impose a strict structural assumption: they are only applica-
ble to problems that measure performance as an integral of
instantaneous functions.

In this paper, we propose a novel approximately optimal
approach to continuous-time motion planning and control
that can handle costs expressed as arbitrary higher-order
nonlinear factors and exploit a problem’s underlying sparse
structure. Specifically, we consider problems with a perfor-
mance index expressed as the product of an exponential-
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quadratic factor for instantaneous costs and a finite number
of possibly higher-order nonlinear factors, and provide an al-
gorithm that has linear complexity in the number of nonlinear
factors. Moreover, we show the approximately optimal policy
can be computed by posterior inference on a probabilistic
graphical model, which is a dual to the performance index.

We convert these theoretical results into a practical algo-
rithm called Probabilistic Inference for Planning and Control
(PIPC) that recursively updates the approximately optimal
policy as more information is encountered. To evaluate our
approach, we employ PIPC on both Markov decision pro-
cesses (MDPs) and partially-observable MDPs (POMDPs)
in dynamic environments with multiple simulated systems
(see Fig. 1).

A. Related Work

Our algorithm contributes to a growing set of research that
seeks to reframe planning and control problems as probabilis-
tic inference [19]. Work in this area has formed a new class
of approximately optimal algorithms that leverage tools from
approximate probabilistic inference, including expectation
propagation [20] and expectation maximization [21], [22].
A common framework based on KL-minimization [23], [24]
summarizes the above algorithms as well as approaches like
path-integral control [13].

We contribute to this field in the following ways. First,
we extend the performance index for control algorithms
to incorporate nonlinear factors with arbitrary higher-order
connections in time. In contrast to our approach, the methods
mentioned above generally assume that the performance in-
dices factor into instantaneous terms, and thus require dense
sampling to solve continuous-time problems. Second, we
provide a new approach to derive a Gaussian approximation
based on Laplace approximation and Gaussian processes.
Third, we define a new class of optimal control problems,
called gLEQG (generalized Linear-Exponential-Quadratic-
Gaussian), that are solvable after being transformed into their
dual probabilistic representation. In particular, we show that
gLEQG admits a solution given by posterior inference. This
theoretical result, discussed in Section III-C, closes the gap
in the duality between optimal control and inference.

This rest of the paper is structured as follows. We begin
in Section II by defining the objective function in joint
planning and control problems. Then, in Section III, we
present our main results in approximately optimal motion
planning and control. In Section IV, these theoretical results
are summarized into an online algorithm PIPC that can
perform simultaneous planning and control for partially ob-
servable stochastic linear systems in dynamic environments.
To validate our algorithm, we present the implementation
details and experimental results in Section V and Section
VI. Finally, Section VII concludes the paper.

II. THE PROBLEM OF MOTION PLANNING AND CONTROL

We begin by introducing some notation. Let xt, ut, and
zt be the state, action, and observation of a continuous-
time partially-observable system at time t, and let ht =

{z0, u0, zδt, · · · , zt} be the history of observations and ac-
tions until time t.2 As shorthand, we use boldface to denote
the time trajectory of a variable, and π(u|h) to denote
the collection of time-varying causal (stochastic) policies
πt(ut|ht) for all t.

We formulate the motion planning and control problem as
a finite-horizon stochastic optimization problem over π. Let
pπ be the distribution of x and u under the stochastic policy
π and system dynamics, and S be a finite set of time indices.
Here the goal is to find an optimal policy π to maximize the
performance index

max
π

J(x0) = max
π

Epπ

[
ψ(x,u)

∏
S∈S

φS(xS , uS)

]
. (1)

The objective function in (1) is defined as the expectation of
the product of two types of factors: a Gaussian process factor
ψ(·) and a higher-order nonlinear factor φS(·). These two
factors, described below, cover many interesting behaviors
that are often desired in planning and control problems.

A. Higher-order Nonlinear Factors φS(·)
We define factors of the form

φS(·) = exp(−‖fS(·)‖2), (2)

to model nonlinear, higher-order couplings frequently used
in planing problems, where fS(·) is a differentiable nonlinear
function defined on a finite number of time indices S ∈ S.
The structure of φS(·) can model many performance indices
in planning: for example, a simple nonlinear cost function
at a single time instance, a penalty based on the difference
between the initial and the terminal states/actions, a penalty
to enforce consistency across landmarks in time, or the cost
of a robot-obstacle collision. As each factor φS(·) depends
only on a finite number of states or actions, we refer to the
corresponding states xS and actions uS as support states or
support actions.

B. Gaussian Process Factors ψ(·)
The Gaussian process factor ψ(·) is a generalization of the

exponential-of-integral cost function in the optimal control
literature [25]. To illustrate, here we consider a special case
ψ(·) = ψ(u). A joint factor between x and u as in (1) can
be defined similarly.

Let GPu(ut|mu
t ,Kut,t′) be a Gaussian process [26], where

∀t, t′ ∈ R, E[ut] = mu
t and C[ut, ut′ ] = Kut,t′ . Let Put,t′ be

the (positive definite) Green’s function of Kut,t′ satisfying,
∀t, t′ ∈ R, δt,t′ =

∫
Kut,sPus,t′ds, where δ is the Dirac

delta distribution and the integral is over the length of the
trajectory. We define the Gaussian process factor ψ(u) as

ψ(u) = exp

(
−
∫∫

(us −mu
s )

TPu
s,s′(us′ −mu

s′)dsds
′
)
. (3)

Loosely speaking, we call (3) the probability of a tra-
jectory u from GPu(ut|mu

t ,Kut,t′). Note that this notation

2Here we assume the measurements zt are taken in discrete time at time
t with sampling interval δt, and ut is a constant continuous-time trajectory
in time [t, t+ δt).



does not necessarily imply that u is a sample path of
GPu(ut|mu

t ,Kut,t′); rather, we use (3) as a metric between
u and mu. Intuitively, the maximization in (1) encourages
u to be close to mu in terms of the distance weighted by
Put,t′ .

Solving a stochastic optimization problem with (3) in the
objective function is intractable in general, because Put,t′ is
only implicitly defined. However, here we show that when
GPu is the sum of a Gaussian white noise process and a lin-
early transformed Gauss-Markov process, the problem is not
only tractable but can also extend the classical exponential-
of-integral cost to model higher-order behaviors.

This is realized by defining GPu(ut|mu
t ,Kut,t′) through

a linear stochastic differential equation (SDE). Let yt
be the hidden state of ut (e.g. its higher-order deriva-
tives) and p(y0) = N (y0|my

0,Ky0) be its prior. We set
GPu(ut|mu

t ,Kut,t′) as the solution to

dyt = (Dyt + η)dt+Gdω

ut = Hyt + rt + νt
(4)

in which D, η, G, H are (time-varying) system matrices,
rt is control bias, dω is a Wiener process, and νt is
a Gaussian white noise process GPν(0, Qνδt,t′). In other
words, the Gaussian process GPu(ut|mu

t ,Kut,t′) has mean
and covariance functions:

mu
t = rt +Hmy

t (5)

Kut,t′ = Qνδt,t′ +HKyt,t′HT (6)

in which GPy(my
t ,Kyt,t′) is another Gaussian process with

my
t = Φy(t, t0)my

0 +

∫ t

t0

Φy(t, s)ηsds (7)

Kyt,t′ = Φy(t, t0)Ky0Φy(t′, t0)T+∫ min(t,t′)

t0

Φy(t, s)GsG
T
s Φy(t′, s)T ds (8)

and Φy(t, s) is the state transition matrix from s to t with
respect to D. For derivations, please refer to [27] and therein.

The definitions (5) and (6) contain the exponential-of-
integral cost [25]

ψ(u) = exp

(
−
∫

(us − rs)TQ−1ν (us − rs)ds
)

as a special case, which can be obtained by setting H = 0
(i.e. Put,t′ = Q−1ν ). In general, it assigns the action ψ(u)
to be close to r, even in terms of higher-order derivatives
(or their hidden states). This leads to a preference toward
smooth control signals. By extension, a joint factor between
x and u would also encourage smooth state trajectories (i.e.
smaller higher-order derivatives of the state).

Constructing the Gaussian process factor by SDE results in
one particularly nice property: If we consider the joint Gaus-
sian process of yt and ut, then its Green’s function is sparse.
To see this, let θt = (ut, yt) and θ = {θ1, θ2, . . . , θN} and
define ψ(θ) as its Gaussian process factor similar to (3).

Then the double integral in ψ(θ) can be broken down into
the sum of smaller double integrals, or factorized as

ψ(θ) = ψ̃(θ0)

N−1∏
i=1

ψ̃(θi, θi+1) (9)

where ψ̃(·) has a similar exponential-quadratic form but over
a smaller time interval [ti, ti+δt]. In other words, if we treat
each θi as a coordinate, then the exponent of ψ(θ) can be
written as a quadratic function with a tridiagonal Hessian
matrix (please see [27] for details). This sparse property
will be the foundation of the approximation procedure and
algorithm proposed in Section III and IV.

III. APPROXIMATE OPTIMIZATION AS INFERENCE

The mixed features from both planning and control do-
mains in (1) present two major challenges: the optimiza-
tion over continuous-time trajectories and the higher-order,
nonlinear factors φS(·). The former results in an infinite-
dimensional problem, which often requires a dense dis-
cretization. The latter precludes direct use of algorithms
based on Bellman’s equation, because the factors may not
factorize into instantaneous terms.

In this work, we propose a new approach inspired by
approximate probabilistic inference. The goal here is to
derive an approximation to the problem in (1), in the form

max
π

Ep̂π

[
ψ(x,u)

∏
S∈S

φ̂S(xS , uS)

]
, (10)

where φ̂S(·) is a local exponential-quadratic approximation
of φS(·) and p̂π is a Gaussian process approximation of
pπ . We call the problem in (10) “gLEQG” as it general-
izes LEQG (Linear-Exponential-Quadratic-Gaussian) [25] to
incorporate higher-order exponentials in the form of (3).

In the rest of this section, we show how gLEQG can be
derived by using the probabilistic interpretation [20] of the
factors in (1). Further, we show this problem can be solved in
linear time O(|S|) and its solution can be written in closed-
form as posterior inference.

A. Probabilistic Interpretation of Factors

We begin by representing each factor in (1) with a prob-
ability distribution [21]. First, for φS(·), we introduce ad-
ditional fictitious observations eS such that p(eS |xS , uS) ∝
φS(xS , uS). These new variables eS can be interpreted as the
events that we wish the robot to achieve and whose likelihood
of success is reflected proportionally to φS(·). Practically,
they help us keep track of the message propagation over the
support state/action in later derivations. Second, we rewrite
the Gaussian process factor ψ(u) to include the hidden state
yt in (4), as a joint Gaussian process factor q(u,y).3 With
the introduction of yt, the joint Gaussian process q(u,y) has
the sparse property in (9) that we desired.

Now, we rewrite the stochastic optimization (1) in the
new notation. Let eS = {eS}S∈S and ξ = (x, y, u),

3This step can be carried similarly as the construction of ψ(u).



and let p(x|u) and p(z|x) be the conditional distributions
defined by the system dynamics and the observation model,
respectively. It can be shown that (1) is equivalent to

max
π

∫
q(z, ξ|eS)π(u|h)dξdz (11)

in which we define a joint distribution

q(z, ξ, eS) = q(ξ)p(z|x)
∏
S∈S

p(eS |xS , uS) (12)

with likelihoods p(z|x) and p(eS |xS , uS), and a prior on the
continuous-time trajectory ξ

q(ξ) = p(x|u)q(u,y). (13)

Before proceeding, we clarify the notation we use to simplify
writing. We use q to denote the ad hoc constructed Gaussian
process factor (e.g. in (3)) and use p to denote the probability
distribution associated with the real system. As such, q does
not always define an expectation, so the integral notation
(e.g. in (11)) denotes the expectation over p and π that are
well-defined probability distributions. But, with some abuse
of notation, we will call them both Gaussian processes, since
our results depend rather on their algebraic form.

B. Gaussian Approximation

Let ξS = {ξS}S∈S and ξ̄S = ξ\ξS . To derive the gLEQG
approximation to (1), we notice, by (12), q(z, ξ|eS) in (11)
can be factorized into

q(z, ξ|eS) = q(z, ξ̄S |ξS)q(ξS |eS) (14)

where have used the Markovian property in Section III-
A i.e. given ξS , eS is conditionally independent of other
random variables. Therefore, if q(z, ξ̄S |ξS) and q(ξS |eS)
can be reasonably approximated as Gaussians, then we can
approximate (1) with (10).

However, q(z, ξ̄S |ξS) and q(ξS |eS) have notably different
topologies. q(z, ξ̄S |ξS) is a distribution over continuous-time
trajectories, whereas q(ξS |eS) is a density function on finite
number of random variables. Therefore, to approximate (1),
we need to find a Gaussian process q̂(z, ξ̄S |ξS) and a
Gaussian density q̂(ξS |eS).

1) Gaussian Process Approximation: We derive the Gaus-
sian process approximation q̂(z, ξ) to q(z, ξ). With this
result, the desired conditional Gaussian process q̂(z, ξ̄S |ξS)
is given closed-form.

First we need to define the system dynamics p(x|u) and
the observation model p(z|x). For now, let us assume that
the system is governed by a linear SDE

dx = (Ax+Bu+ b)dt+ Fdw

z = Cx+ v
(15)

in which A, B, b, F , C are (time-varying) system matrices,
dw is a Wiener process, and v is Gaussian noise with
covariance Qv . When a prior is placed on x0 (similar to
Section II-B) it can be shown that the solution to (15)
p(x, z|u) = p(z|x)p(x|u) is a Gaussian process. Since

q(u,y) is also Gaussian process, we have a Gaussian process
prior on z and ξ:

q(z, ξ) = p(x, z|u)q(u,y), (16)

In this case, no approximation is made and therefore
q̂(z, ξ̄S |ξS) = q(z, ξ̄S |ξS).

In the case of nonlinear systems, one approach is to
treat (15) as its local linear approximation and derive
q̂(z, ξ) = p̂(x, z|u)q(u,y), where p̂(x, z|u) is the solution
to the linearized system. Alternatively, we can learn the
conditional distribution p̂(x, z|u) from data directly through
Gaussian process regression [26]. However, since our main
purpose here is to show the solution when p̂(x, z|u) is
available, from now on we will assume the system is linear
and given by (15).

2) Gaussian Density Approximation: Unlike q(z, ξ̄S |ξS),
the approximation to q(ξS |eS) is more straightforward. First,
because q(ξS |eS) may not be available in closed form, we
approximate q(ξS |eS) with q̃(ξS |eS)

q(ξS |eS) ∝ q(ξS)
∏
S∈S

p(eS |xS , uS)

≈ q̂(ξS)
∏
S∈S

p(eS |xS , uS) ∝ q̃(ξS |eS) (17)

where q̂(ξS) is the marginal distribution of q̂(z, ξ), found
in the previous section. Given (17), we then find a Gaussian
approximation q̂(ξS |eS) of q̃(ξS |eS) via a Laplace approx-
imation [28].

For the nonlinear factor from (2), a Laplace approximation
of q̃(ξS |eS) amounts to solving a nonlinear least-squares
optimization problem. Using the sparsity of the structured
Gaussian processes defined by SDEs, the optimization can
be completed using efficient data structures in O(|S|) [9].
For space constraints, we omit the details here; please see
Appendix A and [9] for details.

3) Summary: The above approximations allow us to ap-
proximate (12) with a Gaussian distribution

q̂(z, ξ, eS) = p̂(z,x|u)q(u,y)
∏
S∈S

p̂(eS |xS , uS). (18)

In (18), p̂(z,x|u) is the Gaussian process approxi-
mation of the system, which is exact when the sys-
tem is linear, and p̂(eS |xS , uS) is proportional to the
exponential-quadratic factor φ̂S(xS , uS) in (10). Moreover,
it can be shown that q̂(z, ξ, eS) is a Laplace approxi-
mation of p̂(z,x|u)q(u,y)

∏
S∈S p(eS |xS , uS) in terms of

continuous-time trajectory z and ξ.

C. Finding an Approximately Optimal Policy

Substituting the results in Section III-B into (11), we have
the approximated optimization problem

max
π

∫
q̂(z, ξ|eS)π(u|h)dξdz. (19)

By (18), one can show that (19) is equivalent to the problem
in (10), but expressed in probabilistic notation.



However, by writing the problem probabilistically, we can
avoid the algebraic complications arising from attempting
to solve the Bellman’s equation of (10), which, because of
higher-order factors, requires additional state expansion. This
simplicity is reflected in the optimality condition for (19):

π∗t (ut|ht) = δ(ut − u∗t (ht))

u∗t (ht) = argmax
ut

∫
q̂(z, ξ|eS)π∗(ūt|h)dxdydzdūt

= argmax
ut

q̂(ut|ht, eS) (20)

in which ūt denotes u\{ut} and δ is Dirac delta distribution.
From the last equality in (20), we see that the solution to
the maximization problem coincides with the mode of the
posterior distribution q̂(ut|ht, eS). As a result, the optimal
policies for time t can be derived forward in time, by
performing inference without solving for the future policies
first. Please see Appendix B for the proof.

We call this property the duality between gLEQG and
inference. This result seems surprising, but similar ideas can
be traced back to the duality between the optimal control and
estimation [17], [20], in which the optimal value function of
a linear quadratic problem is computed by backward message
propagation without performing maximization.

Compared with previous work, a stronger duality holds
here: gLEQG is dual to the inference problem on the
same probabilistic graphical model defined by the random
variables in Section III-A. This nice property is the result
of the use of an exponential performance index, and enables
us to handle higher-order factors naturally without referring
to ad hoc derivations based on dynamic programming on
extended states.

Our posterior representation of the policy can also be
found in [20], [29], or can be interpreted as one step of
posterior iteration [24]. In [20], this results from the approx-
imation of the optimal value function, but its relationship to
the overall stochastic optimization is unclear. In [29], the
posterior representation is reasoned from the notion of a
predictive policy representation without further justification
of its effects on the whole decision process. Here we derive
the policy based on the assumption that the associated
distribution of (1) can be approximated by a Gaussian
(18). Therefore, the condition on which the approximate
policy remains valid can be more easily understood or even
enforced, as discussed later in Section IV-B.

IV. PROBABILISTIC MOTION PLANNING AND CONTROL

In Section III, we show that if q(z, ξ|e) can be ap-
proximated well by a Gaussian distribution, the stochastic
optimization in (1) can be approximately solved as posterior
inference (20). This representation suggests that the approx-
imately optimal policy can be updated recursively through
Kalman filtering.

A. Recurrent Policy Inference as Kalman Filtering

The approximately optimal policy in (20) can be viewed
as the belief about the current action ut given the history ht

t0 ti t ti+1 ti + th tmax

Fig. 2: Time-line with PIPC, where a system that started at
t0, is currently at time t ∈ [ti, ti+1] between support points
ti and ti+1 in δt resolution. In a receding horizon setting, t+
represents the receding horizon window [ti, ti+th], and tmax
is the (infinite) final time when the algorithm terminates. In
a finite horizon setting, th = tmax − ti.

and the fictitious events eS . Here we exploit the Markovian
structure underlying q̂(z, ξ|eS) to derive a recursive algo-
rithm for updating the belief q̂(ξt|ht, eS). Given the belief,
the policy can be derived by marginalization. First, for t = 0,
we write

q̂(ξ0|h0, eS) ∝ p(z0|ξ0)q̂(ξ0|eS)

= q(z0|ξ0)

∫
q(ξ0|ξS)q̂(ξS |eS)dξS

in which q(zt|ξt) = p(zt|xt) and q(ξ0|ξS) is the conditional
distribution defined by (16). After initialization, the poste-
rior q̂(ξt|ht, eS) can be propagated through prediction and
correction, summarized together in one step as

q̂(ξt+δt|ht+δt, eS) ∝ p(zt+δt|ξt+δt)q̂(ξt+δt|eS)

= q(zt+δt|ξt+δt)
∫
q̂(ξt+δt|ξt, eS)q̂(ξt|ht, eS)dξt (21)

in which the transition is given by

q̂(ξt+δt|ξt, eS) ∝ q̂(ξk, ξt+δt|eS)

=

∫
q(ξk, ξt+δt|ξS)q̂(ξS |eS)dξS (22)

and q(ξk, ξt+δt|ξS) is given by (16) [30], [31]. Because
of the Markovian structure in (9), the integral (22) only
depends on two adjacent support states/actions of t and can
be computed in constant time. Note, in q̂(ξt|ht, eS) in (21),
the action ut is actually conditioned on the action taken
u∗t (ht). This notation is adopted to simplify the writing.

Thus, we can view (21) as Kalman filtering with transition
dynamics q̂(ξt+δt|ξt, eS) and observation process q(zt|ξt).
This formulation gives us the flexibility to switch between
open-loop and closed-loop policies. That is, before a new
observation zt+δt is available, (22) provides a continuous-
time open-loop action trajectory during the interval (t, t+δt).

This recurrent policy inference is based on the assumption
that q̂(z, ξ|eS) is accurate. Although this assumption is not
necessarily true in general, it is a practical approximation if
the belief about current state p(xt|ht) is concentrated and
the horizon within which (20) applies is short.

B. Online Motion Planning and Control

We now summarize everything into the PIPC algorithm.
Let ti ∈ S. We compensate for the local nature of (20) by re-
computing a new Laplace approximation q(zt+ , ξt+ |ht, eS)
whenever t ∈ S , and applying filtering to update the policy
by (21) for t ∈ (ti, ti+1), in which the subscript t+ denotes
the future trajectory from t (see Fig. 2). This leads to an



Algorithm 1 Receding Horizon PIPC

Input: horizon th, start time t0, initial belief q(ξt0)
Output: success/failure

1: while not STOP CRITERIA do
2: q̂(ξS |eS ,hti−δt, uti−δt) = getLaplaceApprox(ti, th, q(ξt|hti−δt, uti−δt), ENVIRONMENT)
3: for t ∈ [ti, ti+1] do
4: zt = makeObservation()
5: q̂(ξt|ht, eS) = filterPolicy(zt, q̂(ξt−δt|ht−δt, eS), q̂(ξS |eS ,hti−δt, uti−δt))
6: executePolicy(ut = u∗t (ht))
7: q(ξt+δt|ht, ut) = filterState(zt, ut, q(ξt|ht−δt, ut−δt))
8: end for
9: end while

10: return checkSuccess()

iterative framework which solves for the new approximation
with up-to-date knowledge about the system.

We can apply this scheme to MDP/POMDP problems in
both finite and receding horizon cases.4 When facing a dy-
namic environment, PIPC updates environmental information
in the new Laplace approximation in Section III-B.2.

The details of the receding horizon approach are summa-
rized in Algorithm 1 and can be derived similarly for the
finite horizon case. First, at any time step ti, PIPC computes
the Laplace approximation for the current horizon window
[ti, ti + th] with the latest information about the system and
the environment, where th ≥ ti+1 − ti is length of the
preview horizon. Second, for t ∈ (ti, ti+1), PIPC recursively
updates the policy using the most current observation with a
resolution of δt. These two steps repeat until the set criteria
are met or the execution fails (for example, the robot is in
collision).

V. IMPLEMENTATION DETAILS

We perform experiments with the receding horizon ver-
sion of PIPC in four different setups, including both MDP
and POMDP scenarios: MDP-CL and POMDP-CL execute
the receding horizon PIPC in Algorithm 1; MDP-OL and
POMDP-OL ignore the policy filtering step, but instead
recursively apply the open-loop policy given as the mode
found in the Laplace approximation. This open-loop baseline
can be viewed as the direct generalization of [9] to include
action trajectories.

The Laplace approximation is implemented using
GPMP25 and the GTSAM6 C++ library, which solves poste-
rior maximization as a nonlinear least-squared optimization
defined on a factor graph with the Levenberg-Marquardt
algorithm. Note that in implementation we consider yt = ut
(i.e. ξt = (xt, ut)) and a constant time difference ∆t between
any two support states or actions.

We evaluate our algorithms on three different systems:
a 2D holonomic robot, a 7-DOF WAM, and a PR2 arm.
The state dynamics, following (15), is defined as a double

4The receding-horizon version solves a new finite-horizon problem at
each iteration of the Laplace approximation.

5Available at https://github.com/gtrll/gpmp2
6Available at https://bitbucket.org/gtborg/gtsam

integrator with the state consisting of position and velocity
and

A =

[
0 I
0 0

]
, B =

[
0
I

]
, b =

[
0
0

]
, FFT =

[
0 0
0 QxI

]
and following (4) we define the Gaussian process factor by

H = 0, D = 0, η = 0, GGT = QuI

where 0 and I are d × d zero and identity matrices, where
d = 2 for the 2D holonomic robot and d = 7 for the 7-
DOF WAM arm and PR2 arm, and Qx and Qu are positive
scalars. The observation process in the POMDP is modeled
as a state observation with additive zero-mean Gaussian noise
with covariance Qv = σmI2d×2d. The state dynamics for
both the arms are assumed to be feedback linearized. On a
real system, the control would to be mapped back to real
torques using inverse dynamics.

VI. EVALUATION

We conduct benchmark experiments7 with our receding
horizon algorithm on the 2D holonomic robot in a dynamic
environment, and on the WAM arm and the PR2’s right
arm in a static environment (see Fig. 1). In each case, we
compare the closed-loop and open-loop algorithms for both
MDP and POMDP settings across different Qx (and number
of dynamic obstacles Nobs in the 2D case) with respect to
success rate, time to reach the goal, path length, and path
cost.8 Each setting is run for K times with a unique random
generator seed to account for stochasticity, which is kept
the same across all four algorithms for a fair comparison.
A trial is marked “successful” if the robot reaches the goal
within a Euclidean distance gdist, and is marked “failed” if
at any point the robot runs into collision or runs out of the
maximum allotted time tmax.

A. 2D Robot Benchmark

We simulate a 2D holonomic robot (radius = 0.5m) in a
2D environment (30m × 20m) with moving obstacles (see
Fig. 1 (a)). The robot’s sensor returns a limited view of a
5m × 5m square centered at the robot’s current position.

7A video of experiments is available at https://youtu.be/8rQcg1O-6aU
8Path cost is calculated as the negative log of the product of the factors.



TABLE I: Success rate across increasing Qx and Nobs on the 2D holonomic robot.

Qx
10 20 30 40 50

CL OL CL OL CL OL CL OL CL OL

MDP
0.01 0.975 0.975 0.85 0.85 0.7 0.675 0.4 0.375 0.25 0.325
0.04 0.95 0.975 0.85 0.8 0.55 0.525 0.525 0.375 0.325 0.325
0.07 0.95 0.85 0.875 0.575 0.725 0.475 0.45 0.2 0.225 0.125

POMDP
0.01 0.975 0.975 0.925 0.875 0.725 0.7 0.375 0.4 0.15 0.225
0.04 0.95 0.975 0.875 0.825 0.525 0.475 0.425 0.45 0.4 0.25
0.07 0.975 0.875 0.825 0.55 0.7 0.425 0.45 0.25 0.2 0.075
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Fig. 3: Results of successful runs with increasing Qx and Nobs on the 2D holonomic robot.

The moving obstacles (squares of 1m × 1m) start at ran-
dom locations and follow a 2D stochastic jump process,
where a noisy acceleration aobs is uniformly sampled within
[−2.5, 2.5]m/s2 at every time step. Their velocities vobs are
restricted within, [−1.3, 1.3]m/s. All obstacles are confined
inside the boundary during simulation.

Table I summarizes the success rates for this benchmark,9

and Fig. 3 shows the aggregate results of successful runs.
From Table I, we see that, for both MDP and POMDP cases,
the closed-loop algorithms have higher success rates than
the open-loop algorithms, especially in difficult problems
with larger stochasticity in the system (Qx) or increased
complexity in the environment (Nobs). Similar increasing
trends can also be observed in the difference of the success
rates between the closed-loop and open-loop algorithms.
The majority of failed open-loop cases arise from collision;
only a few are due to hitting the maximum run time. The
performance in POMDP cases are slightly worse than that
in the MDP cases on average. All three metrics (time, path
length, and path cost) in Fig. 3 increase in general with more
noise and obstacles. It is important that these plots should
be interpreted alongside the success rates, since the sample
size of successful trails is comparatively sparse for the harder
problems.

B. WAM and PR2 Benchmark

We demonstrate the scalability of PIPC to higher dimen-
sional systems by performing a benchmark on the WAM and

9Parameters for this benchmark are set as follows: K = 40, gdist = 0.2,
tmax = 20, ∆t = 0.2, th = 2, nip = 20, σm = 0.01, σg = 1,
σfix = 10−4, Qu = 10, σobs = 0.02, ε = 1.

TABLE II: Success rate across increasing Qx on the WAM
and the PR2 robot arms.

Qx
WAM PR2

CL OL CL OL

MDP
0.01 1 1 1 1
0.02 1 1 1 0.95
0.03 1 0.85 1 0.5

POMDP
0.01 1 1 1 1
0.02 1 0.9 1 0.8
0.03 0.9 0.75 1 0.8

the PR2 robot arms. Here the WAM and the PR2 robot arms
are set up in lab and industrial environments [6], [7], [9]
respectively, in OpenRAVE. Here the task is to drive the
robot arm from a given start to a goal configuration (see
Fig. 1 (b) and (c)). The environments are static and fully
observable at all times. We compare the algorithms with
respect to increasing Qx. Table II summarizes the success
rates for this benchmark,10 and Fig. 4 shows the aggregate
results of successful runs. Similar to the 2D robot benchmark,
the results show that the closed-loop algorithms have higher
success rate than the open-loop ones, and all three metrics
increase with noise. In particular, POMDP-CL performs even
better than MDP-OL.

VII. CONCLUSION

We consider the problem of motion planning and control
as probabilistic inference, and we propose an algorithm PIPC

10Parameters for this benchmark are set as follows: K = 20, gdist =
0.065, tmax = 15, ∆t = 0.1, th = 2, nip = 10, σm = 0.005, σg =
0.03, σfix = 10−4, Qu = 10, ε = 0.1, σobs = 0.008 (WAM), σobs =
0.005 (PR2).
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Fig. 4: Results of successful runs with increasing Qx on (a) the WAM and (b) the PR2 robot arms.

for solving this problem that can exploit intrinsic sparsity
in continuous-time stochastic systems. In particular, PIPC
can address performance indices given by arbitrary, higher-
order nonlinear factors and a general exponential-integral-
quadratic factor. Despite PIPC solving a continuous-time
problem, its complexity scales only linearly in the number of
nonlinear factors, thus making online simultaneous planning
and control possible in receding/finite horizon MDP/POMDP
problems.
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APPENDIX

A. Laplace Approximation with Factor Graphs

PIPC updates the Laplace approximation whenever t =
ti by efficiently solving a nonlinear least-squares problem
defined on a bipartite factor graph G = {ξS ,fS , E},

q(ξS |eS) ∝
∏
S∈S

fS(ξS). (23)

where recall that ξS is the set of support augmented states,
and fS = {fS}S denotes the set of factors, and E are edges
connected to between ξS and fS .

An example factor graph is shown in Fig. 5 for a trajectory
starting from ti with a length equal to th. The sparse set
of support augmented states ξS are uniformly ∆t apart and
are connected to their neighbours via the Gaussian process
factors, forming a Gauss-Markov chain. Note that in our
implementation ξt = (xt, ut).

1) Details of Factor Implementation:
a) Prior Factor: For each Laplace approximation, a

prior factor is placed on the first hidden state ξt, reflecting its
current belief given past history ht. In the MDP setting, the
covariance for state xt is set as a diagonal matrix σ2

fixI2d×2d,
in which σfix is a small number to indicate high confidence;
for control ut, we use the original Gaussian process factor
given by (3). Together they define Qprior. In the POMDP
setting, the belief of the hidden augmented state is obtained
via Kalman filtering, and we heuristically set the covariance
for the state, x to σ2

fixI2d×2d as mentioned previously.
b) Gaussian Process Factors: Analogous to defining

GPu for (4), we can define GPξ, which in turns define.
q(ξS) in (17). In Fig. 5, this corresponds to Gaussian process
factors with

Qgp,i =

∫ ti+1

ti

Φξ(ti+1, s)

[
F
G

] [
F
G

]T
Φξ(ti+1, s)

T ds,

where Φξ is the state transition matrix associated with [A B
0 H ]

that takes the system from ti to ti+1.
c) Obstacle and Interpolation Factors: For obstacle

avoidance, we use a hinge loss function h with safety dis-
tance ε to compute a signed distance field as in GPMP2 [9].
In effect, it defines the obstacle factors and interpolation
factors in Fig. 5, which both use Qobs = σ2

obsI. Though
abstracted as a single factor in Fig. 5, between any two
support points ti and ti+1, multiple (nip) interpolated factors
can be constructed with indexes evenly spaced in time (δt
apart) to ensure path safety. See [9] for details.

d) Goal Factor: To drive the system to a desired goal
configuration ξgoal (for example, a particular position in
configuration space with zero velocity and action), we add
a goal factor to every support point except the current state.
This encourages the optimizer to drive all states in the current
horizon window closer to the goal. Because the covariance
of this factor acts as a weighting term, we define it as
Qgoal,i = σ2

g
||ξti−ξgoal||

2

||ξstart−ξgoal||2 I such that it monotonically
decreases with the Euclidean distance to the goal.

Prior Factor:
fm = exp{− 1

2ξiQ
−1
priorξi},

Goal Factor:
fgoali = exp{− 1

2e
T
i Q−1

goal,iei},
ei = ξi − ξgoal

GP Prior Factor:
fgpi = exp{− 1

2e
T
i Q−1

gp,iei},
ei = Φξ(ti+1, ti)ξi − ξi+1

Obstacle Factor:
fobsi = exp{− 1

2e
T
i Q−1

obsei},
ei = h(ξi)

Interpoaltion Factor:
f intpi = exp{− 1

2e
T
i Q−1

obsei},
ei = h(GPinterpolate(ξi, ξi+1))

Fig. 5: A factor graph of an example Laplace approxi-
mation problem showing states (white circle) (ξi is used
as a shorthand for ξti ) and different kinds of factors: GP
Prior (black circle), obstacle and interpolation (white square),
measurement (gray square) and goal (black square).

2) Update of Laplace Approximation: The same Laplace
approximation is used to recursively update the policy for
t ∈ [ti, ti+1) with a resolution of δt, and, when t = ti+1,
the graph is updated to construct a new nonlinear least-
square optimization problem. This is done by shifting the
horizon window ahead by ∆t and update the factors to
include any environmental changes during [ti, ti+1). In the
updated graph, the prior factor on the first state is given by
an additional Kalman filter based on (15) and (4) with (x, y)
as hidden states and (z, u) as observations. For POMDP
problems, we treat the estimation of current state as perfect
knowledge without uncertainty. This extra heuristic step is
a compromise which makes the assumption accurate at the
mean of the current belief.

B. Proof of (20)

Here we prove that the solution (20) to the approximate
optimization problem (19)

max
π

∫
q̂(z, ξ|eS)π(u|h)dξdz

can be written as posterior inference: ∀t,

π∗t (ut|ht) = δ(ut − u∗t (ht))

u∗t (ht) = argmax
ut

∫
q̂(z, ξ|eS)π∗(ūt|h)dxdydzdūt

= argmax
ut

q̂(ut|ht, eS)

where q̂(z, ξ|eS) ∝ q(ξ)p(z|x)p̂(eS |xS ,uS) and
p̂(eS |xS ,uS) =

∏
S∈S p̂(eS |xS , uS) is found by the

exponential-quadratic approximate factor given by the
Laplace approximation.

Proof: We assume the length of the trajectory is T .
In the following, we first show that the optimal policy is
deterministic and then show that it corresponds to the mode
of the posterior distribution q̂(ut|ht, eS).



a) The Optimal Policy is Deterministic: For any t, we
can write the objective function (19) as∫

q̂(z, ξ|eS)π(u|h)dξdz

∝
∫
q(ξ)p(z|x)p̂(eS |xS ,uS)π(u|h)dξdz

=

∫
πt(ut|ht)fht(ut)dutdht

in which

fht(ut) =

∫
q(ξ)p(z|x)p̂(eS |xS ,uS)π(ūt|h̄t)dθdzt+dut+

and
π(ūt|h̄t) :=

π(u|h)

πt(ut|ht)
Therefore, equivalently, (19) can be formulated explicitly as
a variational problem of density function πt:

max
πt

∫
πt(ut|ht)fht(ut)dut (24)

s.t. ∫
π(ut|ht)dut = 1

π(ut|ht) ≥ 0, ∀ut
To deal with the inequality, let g2t (ut) = πt(ut|ht), and we
can further write (24) as

max
gt

∫
g2t (ut)fht(ut)dut (25)

s.t. ∫
g2t (ut)dut = 1

Let λ ∈ R be a Lagrangian multiplier. We can turn the (25)
into an unconstrained optimization and use calculus of vari-
ations to derive the solution:

min
λ

max
gt
L(gt, λ)

= min
λ

max
gt

∫
g2t (ut)fht(ut)dut + λ(

∫
g2t (ut)dut − 1)

Suppose g∗t (λ) is the optimum. Let gt = g∗t + εη, where
η is an arbitrary continuous function and ε → 0. Then the
optimality condition is given by

∂L(gt, λ)

∂ε
=

∫
2gt(ut)η(ut)(λ+ fht(ut))dut = 0.

Since η is arbitrary, it implies ∀ut,
gt(ut)(λ+ fht(ut)) = 0

Given that λ is a scalar and g(un) is non-zero, we can
conclude that π∗t (ut|ht) = δ(ut − u∗t (ht)) satisfying

u∗t (ht) = arg max
ut(ht)

fht(ut)

b) The Optimal Policy is the Mode of Posterior: From
the previous proof, we know that the policy corresponds to
the mode of fht(ut) for any t. Therefore, to complete the
proof, we only need to show that f∗ht(ut) ∝ q̂(ut|eS ,ht),
where f∗ht(ut) is fht(ut) when the policies are optimal.

First, let f̂ht(ut) denote fht(ut) when all policies are
deterministic, and define, for all t,

f̂ht(ut) := πt−(ut− |ht−)q̂(zt, zt− , eS ,ut− , ut) (26)

Next, we introduce a lemma:
Lemma 1: Let z = (x, y) ∈ Rn. If f(x, y) ∝

N (z|m,S), then, for all y,

max
x(y)

f(x, y) = C

∫
f(x, y)dx (27)

for some constant C independent of y, in which m and S
are the mean and covariance of a Gaussian.

Now we can show f∗ht(ut) ∝ q̂(ut|eS ,ht) by induction
in backward order. To start with, for the last policy at τ =
T − δt, we can write (26) as

fhτ (uτ ) = f̂hτ (uτ ) = πτ−(uτ− |hτ−)q̂(zτ , zτ− , eS ,uτ− , uτ )

= πτ−(uτ− |hτ−)q̂(hτ , eS , uτ )

∝ q̂(uτ |hτ , eS)

in which we purposefully omit the dependency of uτ− on
hτ− , because the exact value of uτ− is observed when
performing the optimization. Then we have u∗τ (hτ ) =
argmaxuτ f̂hτ (uτ ) = argmaxuτ q̂(uτ |hτ , eS).

Now we propagate the objective function one step back-
ward from τ to τ − δt. Given hτ−δt, the maximization at
τ − δt is given as

max
πτ−δt

max
πτ

∫
πτ (uτ |hτ )f̂hτ (uτ )duτdzτduτ−δt

= max
πτ−δt

∫
max
uτ (hτ )

f̂hτ (uτ )dzτduτ−δt

= max
πτ−δt

∫
πτ−(uτ− |hτ−) max

uτ (hτ )
q̂(hτ , eS , uτ )dzτduτ−δt

∝ max
πτ−δt

∫
πτ−(uτ− |hτ−)q̂(hτ , eS , uτ )dzτduτduτ−δt

= max
πτ−δt

∫
πτ−(uτ− |hτ−)q̂(hτ−δt, eS , uτ−δt)duτ−δt

= max
πτ−δt

∫
πτ−δt(uτ−δt|hτ−δt)f̂hτ−δt(uτ−δt)duτ−δt

The second equality is due to the policy is deterministic;
the third proportionality is given by (27); the last equal-
ity is given by the definition (26). Therefore, the back-
ward iteration maintains the policy optimization problem
maxπt

∫
πt(ut|ht)f̂ht(ut)dut in the same algebraic form as

the last step for all t. Since f̂ht(ut) ∝ q̂(ut|ht, eS), this
completes the proof.


