N
N

N

HAL

open science

Preference Learning on the Execution of Collaborative
Human-Robot Tasks

Thibaut Munzer, Marc Toussaint, Manuel Lopes

» To cite this version:

Thibaut Munzer, Marc Toussaint, Manuel Lopes. Preference Learning on the Execution of Collabora-
tive Human-Robot Tasks. ICRA 2017 - IEEE International Conference on Robotics and Automation,

May 2017, Singapour, Singapore. pp.1-7, 10.1109/ICRA.2017.7989108 . hal-01644014

HAL Id: hal-01644014
https://hal.science/hal-01644014

Submitted on 21 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01644014
https://hal.archives-ouvertes.fr

Preference Learning on the Execution of Collaborative Human-Robot
Tasks

Thibaut Munzer', Marc Toussaint? and Manuel Lopes?

Abstract— We present a novel method to learn human prefer-
ences during, and for, the execution of concurrent joint human-
robot tasks. We consider tasks realized by a team of a human
operator and a robot helper that should adapt to the human’s
task execution preferences. Different human operators can have
different abilities, experiences, and personal preferences, so that
a particular allocation of activities in the team is preferred over
another.

We cast the behavior of concurrent multi-agent cooperation
as a semi Markov Decision Process and show how to model
and learn human preferences over the team behavior. After
proposing two different interactive learning algorithms, we
evaluate them and show that the system can effectively learn
and adapt to human preferences.

I. INTRODUCTION

Robotic technology is improving to the level that now
we can have a close human-robot collaboration. This opens
many new cobotic applications where people and robots
work together in teams. In this context, robots can have
simple repetitive behaviors and allow the user to adapt to
them, or having reasoning capabilities that makes them true
team members. A true collaboration involves shared decision
making, mutual support, and easy ways to interact and
express preferences.

In this work we want to explore such intuitive collabora-
tions where the robot models the concurrent aspects of the
shared task, and not just executes the task jointly with the
user but also executes it in the way the user prefers. Such
preferences are learned in an intuitive interaction loop.

We take this approach because to improve comfort, effi-
ciency, acceptance, and reducing physical fatigue it should
be the robot to learn and adapt to human preferences rather
than the other way around. Such preferences are learned
during task realization to avoid periods of task programming
facilitating task switching.

Recent works have considered preference learning and
learning from imitation, but mostly in the context of single-
agent tasks. In this paper we propose different ways to
learn the preferences over the execution of a collaborative
task with concurrent actions. Our contributions include the
following: i) a formalism to model team behavior using
Relational Activity Processes (RAPs) [1]; ii) a formalism
to represent preferences with standard MDP tools and iii)
two different algorithms to learn preferences interactively.
We show results in simulation and with a real robot.

1 Thibaut Munzer is with Inria, France

2Marc Toussaint is with USTT, Germany

3Manuel Lopes is with INESC-ID, Instituto Superior Técnico, Portugal
manuel.lopes@tecnico.ulisboa.pt

nlE
@l

ol 5l[o
0 1

side_left side_right

o|[e
o|[e

Fig. 1. The toolbox domain. A box can be assembled in a easier and
efficient way if a collaborator robot helps by providing the new parts and
by holding parts in place to make screwing easier for the user.

II. RELATED WORK

Research on learning from demonstration has included: 1)
low-level learning, where the goal is to learn a mapping from
sensor output to motor command, e.g. learning motor policies
[2] or navigation [3], [4]; ii) symbolic learning, where the
goal being is to learn a policy, a mapping from a symbolic
space state to the space of actions [5] or learning rewards
[6] from demonstration.

In most of those examples, there is a clear separation
between the learning and the execution phase. This has
several drawbacks as the number of demonstrations might
be larger than needed, and might not even cover critical
aspects of the task. To address such problems interactive
scenarios where both phases are merged have been proposed.
In [2], the robot only makes queries when, in a given
state, the confidence on the actions passes a given threshold.
Alternatively, in [7], the system requests information about
relevant states to learn a good reward representing the task.
Other approaches provide a smooth transition between the
phases, a first phase of teleoperation where the policy [8], or
the preference [9], is learned and, at any time, the user can
resume teleoperating to provide corrections.

A new trend of interactive learning systems is to rely on
weak feedback to handle situations where optimal feedback
is impossible or costly to produce by the human teacher.
In particular, [10], [4] relies on local improvements of the
current policy while [11] asks for ranking between two or
more policies.

Another line of research considers not just learning in-
dividual tasks but also how to learn collaborative tasks. In
[12], the robot learn by demonstration how to collaborate
with a human at a trajectory level. Several works have shown
that learning the preferences of the human teammate has a
positive impact on both cooperation and engagement of the
user [13], [14].

If the preferences of the user are known then planning

on(1,2) Aon(2, f) Aon(3, f)
Aclear(1) A clear(3) A
red(1) Ared(2) A blue(3)

move(l, S) \@
B—=—

State : s,

move(A, B) :
on(A,C) A clear(A) A clear(B)
— on(A, B) A clear(A) A clear(C)

on(1,3) A on(2, f) A on(3, f)
A clear(1) A clear(2) A
red(1) A red(2) A blue(3)

Action ay Next state : 5,41

Fig. 2. Sketch of a Relational MDP representation of a blocksworld
domain. The state is defined as a set of predicates, upon performing a
relational action, the state, i.e. the true predicates change.

methods can be used to anticipate the needs of the user
[15]. [16] show how to learn different profiles of user’s
preferences by clustering trajectories containing multiple
types of execution. The preferences of the user are modeled
as a hidden state of a POMDP allowing to adjust to the
particular type of user in real time.

The concept of cross-training is explored in [17] where
robot and the user simultaneously adapt to each other by
switching roles. The robot learns directly a policy that better
adapts to the user preferences. This improves team efficiency
and acceptance metrics.

Our work is different from the previous research because
we consider: i) how to learn interactively preferences in a
collaborative setting; and ii) we learn preferences in a high-
level relational formalism with concurrent actions.

III. TEAM BEHAVIOR MODELING WITH RAPS

In this section we present the underlying formalism to
model team behavior. We rely on a recently introduced gen-
eral formalism for relational MDPs with concurrent actions
[1], and show how to apply it to team behavior.

A. Relational MDPs

Markov Decision Processes (MDPs) are widely used to
represent the decision process of an agent that can act in
an environment. An MDP is a quadruplet (S, A, R, T) with
S the space of states, A the set of actions, R some reward
function that the agent aims to maximize, and 7" the transition
probability function that describes the dynamics of the world.

Relational MDPs generalize MDPs for high-level rep-
resentations [18]. Solutions to the planning and learning
problems can be found in the literature [19], [20]. Under
this representation, the state of the environment is defined as
the set of predicates (logical formulas) that are true. Actions,
and the transition function, are represented as a set of rules
that contain 3 parts, i) the action and its argument (action are
predicates); ii) the states where such action can be applied,
aka the context; and iii) the outcome or the final state.

Fig. 2 depicts how a Relational MDP may represent a
domain where one can move blocks over each other.

B. Relational Activity Processes

For most formalisms for MDPs, only one action can be
chosen at a given time. But in most cooperative tasks two
agents perform actions at the same time. Other formalisms

allow such flexibility but are not Markovian and so all the
already known algorithms for task learning cannot be used.

A Relational Activity Processes (RAP), introduced in [1],
is a way to model concurrent cooperation of multiple agents
while being at the same time a Markovian process. Roughly,
RAPs define a sequential MDP where decisions are about
the initiation or termination of activities, and activities run
concurrently with random durations.

Under the RAP formalism we consider a relational domain
with a set of predicates. For a given set of objects or agents,
the state is the conjunction of all true grounded predicates.
Under RAP we augment the state with some predicates
representing running activities. These predicates include a
special real argument which parameterizes the expected time-
to-go of the activity. The decision set contains the initiations
of all activities that can be started in the current state and
a special Wair decision after which the real time advances
until the next activity ends and applies its termination effects
change the state. In contrast, for the initiation and termination
of activities real time does not advance.

C. Decentralized Team Decision Making

Using the RAP formalism we can model teams of cooper-
ating agents, where all agents are embedded in the same
semi-MDP and the decision space is the joint space of
human decisions and robot decisions, D. Given a reward
and using planning methods, for example Value Iteration, we
can compute an optimal Q-function over the next decision
d € D in a given RAP state s. It provides values for
decisions across agents. If there was a single central decision
maker, it could read out the arg max,; Q(d, s) and transmit
the decision d to the agent it concerns. However, in real
human-robot collaboration, without such a central decision
maker, the readout and interpretation of this Q-function is
non-trivial. With two decision makers, both might want to
start an activity at the same time.

At team level, we transform this concurrent decision
making into a sequential process. If both agents decide not
to start a new activity the RAP wait decision is chosen.
On the other hand, if the robot agent decides to engage an
activity this is picked and transitions are applied. Human
decisions can only be taken into account by the model when
the robot decides not to start a new activity. This might
come as a limitation but because all decisions except wait
are instantaneous (as it is equivalent to start an activity), in
practice, the human agent can engage a new activity at any
time.

In the human-robot cooperation case we assume that the
joint decision space decomposes as D = DrUDg and DrN
Dy = {wait}, with Dg the robot’s and Dy the human’s
decision space.

Given the robot has a representation of the shared task
as a Q-function, we propose the following procedure for the
robot to decide on its own activities. If maxgep, Q(d, s) <
maxgep, Q(d, s), that is robot decisions have strictly less
value than human decisions, the robot does not start an

activity and lets the human act. Otherwise, the robot samples
uniformly from the set of optimal robot decisions C Dg.

IV. INTERACTIVE PREFERENCE LEARNING

In the previous section we showed a general formalism to
describe cooperative concurrent tasks. Now we present our
interactive preference learning formalism. We show how we
can model preferences in a cooperative MDP and then how
can we learn them from a database in a batch function and
then how to learn them interactively.

For the batch process, we assume having access to a
dataset of state-action pairs D = [(state;, decision;)]Y, of
behavior from the team that reveals the human preferences.

A. Modeling Preferences

Given a task with different ways to solve it, i.e. different
optimal paths in the RAP, preferences are defined as the
preferred subset of these paths. The task can be seen as prior
knowledge whereas preference is the learned behavior. In
the extreme case where no prior knowledge is available this
problem is reduced to learning from demonstration in an
interactive setting.

More formally, under an MDP the task is defined by the
reward, R;,s;. Using Value Iteration, we can compute the
optimal quality function @;,,,. We can then represent the
behavior of the team taking into account human preferences
as another quality function Q%,,;; = Q7 +Qp, Where Qy, is
a shaping function of the task optimal quality function such
that Q%,,, maximizes task and human preference.

In the following we will present two different methods to
learn preferences.

B. Regression Based Preference Learning (RBPL)

The first method follows a typical approach of policy
matching where we learn a function that directly represents
the policy. We can see s,y as the policy because we can
directly compute a policy from a quality function either by
argmax or using some soft version like a Boltzmann policy.

With the decomposition we performed between task and
preferences we can match the observed policy using the
following process. For every state in D we want to reduce
the quality of decisions not taken by the expert human-robot
team, and increase the quality of decision taken.

For this we augment the dataset D and create a dataset
D where for every couple (state, decision) in D, for every
decision e in D we add ((state,€),0) if e = decision or
((state, e), —1) otherwise to Djy.

We have now cast the learning problem as a regression
problem. We can then rely on a relational regression tree
such as the ones presented in [21] to learn the function @,
from Dy. Such method have been shown to be successful
in the context of learning individual policies in relational
domains [6].

A relational tree follows a similar idea of typical decision
trees but each node is a logical query on a given predicate.
Several regularization methods can be used, a simple one is
to limit the depth of the tree.

Algorithm 1 RBPL
1: procedure RBPL(Q7,.;., D)
2: Dy < build_regression_dataset(D)
3 Qp + learn_regression_tree(Dy)

return Q. + Q)

Rl

C. Gradient Based Preference Learning (GBPL)

The second idea follows a gradient based approach. In this
case we do not have a set of parameters to optimize, and we
rely on relational trees to learn functions. As such, we can
not use classical gradient methods that work on parameters,
but instead rely on functional gradient boosting where the
gradient is computed on the space of functions. By defining
a smooth mapping between policies and quality functions
(we use a Boltzman mapping), it is possible to compute
the values of functional gradient of the log-likelihood of the
dataset D with respect to @}, for every data point in D.
Using relational regression tree, we can learn the functional
gradient, ();, that generalize gradient value to unseen data.
By iterating this process, as presented in Alg. 2, we can learn
the function Q%,,;; such that it maximizes the log-likelihood
of the dataset D. This algorithm is analog to using the TBRIL
algorithm [5] initialized with Q7.

Algorithm 2 GBPL
1: procedure GBPL(Q;, .., D, nb_iter)

2: Q;ull A Q:ask

3 for i € [0,...,nb_iter] do

4: D, + compute,gradient(Q}u”,D)
5 Q; < learn_regression_tree(Dy)
6 Qb — Qpun + Qi

7: return Q%

D. Interactive setting

In the interactive setting, we use a similar approach. We
initialize @, to Qp(s,d) = 0. The robot takes decisions
following the procedure describe above. So, in practice, the
robot follow @)}, during the first task realization. After
each decision taken (start human activity, start robot activity
or wait) we update D. Two cases are possible:

« The decision is correct, we add (state, decision) to the
dataset, with decision the robot decision

« the decision is incorrect, we add (state, decision) to
the dataset, with decision a correct decision (given by
the human as feedback).

Once the task is completed, we relearn @7}, by one of
the two ways above and the interactions continue to solve
the task again, starting from a new state.

Because we modify the policy it can happen that the robot
starts an activity that doesn’t respect the preferences of the
user or even that are not optimal with respect to the task. In
some contexts, it might not be possible to recover from such
error. This is the reason for another approach where we allow

starting state s

|

——> d = get_next_RAP_decision(s)

\enfk-before-act

ask_user(d)

OK/ \{10t OK

s' = transition(s, d)

ask_user(d) d*=d d* = user_best(s)
OK not OK \ /
dx=d d* = user_best(s) s' = transition(s, d*)

/

Add_to_dataset((s, d*))

|

s=s'

Fig. 3. Representation of the interactive process used by the robot to learn
the preferences of its human teammate.

the robot to ask before doing an activity. We call this setup
ask-before-act. Because this changes the MDP trajectories, it
impacts the trajectory of learning. Both scenarios are shown
in Fig. 3.

V. SIMULATIONS
A. Domains

We test our system in two domains: the blocksworld
because it allows to easily change its dimension, and a more
realistic cooperative human-robot assembling task for which
we have a real robotic setup.

1) Concurrent blocksworld: This domain extends the
standard blocksworld by allowing two activities to be ex-
ecuted at the same time. Blocks can be put on top of each
other or on a surface (called floor) by a robot and by a
human. Unless otherwise specified we use 5 blocks (2 red
and 3 blue blocks).

The domain is represented with the predicates: on/2,
clear/1, busy/l, in_hand/2, blue/l and red/l. The activities
are pick(agent, block) and put(agent, block, block), both of
them last one unit of time and both of them can be realized
by either the robot or the human.

The goal of the task is to stack all blocks in one tower.
Starting states are generated by first sampling the number of
initial towers between 4 and 5 and then uniformly select one
state that respects the total number of towers. We enforce
that no activities are active in the start state.

Even in such a simple domain we can imagine different
user preferences. For instance one user might have a prefer-
ence for a color, or for building the tower by alternating the
actions with the robot. We first consider that the user dislikes
picking blue blocks. Under such preference the task must be
solved in a way that minimizes the number of blue blocks
picked by the human while keeping an optimal policy with
respect to the task.

2) Cooperative toolbox: The cooperative toolbox domain
is inspired by industrial tasks. In this domain, represented in

Fig. 1, a robot must support a human in the assembly of a
toolbox. The toolbox is constituted by five pieces: handle,
side_left, side_right, side_front and side_back. The toolbox
can be built in different ways, the side_left and side_right
are interchangeable as well as side_front and side_back.

At the beginning of the task, all pieces are set on a
location not accessible by the human. The robot has to
realize consecutively two activities to put them in the human
workspace : pick(piece) and give(piece). Once the human
has the pieces in his workspace he can start a positioning
activity to put them in a correct disposition for screwing.
Simultaneously, the robot should hold one of the pieces
in order to allow the human to screw them together. Hold
activity is done with the right arm of the robot whereas pick
and give are done with the left arm so the robot can do
different activities at the same time (which can be naturally
represented with the RAP formalism). Because the box have
different possible combinations, this domain has 240,000
states.

In this domain, the task is to build the toolbox. Again
we can imagine different ways to assembly the box that can
be preferred by different people. For instance positioning
everything and then screw, or positioning and screw one
piece at a time. For the simulations we consider that the
user likes to have an uncluttered workspace and so be given
new parts as late as possible.

B. Results

To evaluate the proposed methods, we use three metrics.
First, the accumulated preference reward gathered that mea-
sures if the robot found a policy that allows the users to
execute the task in their preferred way. Second we count
the number of errors: an error is made when a non optimal
activity with respect to the task and preferences is realized,
to evaluate the cost of learning the policy interactively. And
third the number of human feedback needed to learn the
preferences. We use this measure a a proxy-measure for the
cognitive cost of teaching the preferences on the task. These
metrics are divided by the number of times the task has
been solved to obtain regret-like metrics. We could evaluate
the learning offline (run a number of simulation after each
learning episodes) but as we are interested in designing an
online system we focus our efforts on online performance.
These measures allow us to study the compromise between
the number of instruction and the number of errors.

1) Comparison of RBPL and GBPL: In Fig. 4 we compare
the results of the RBPL and GBPL approaches on both
domains. We can see that both approaches perform well on
the toolbox domain. After 10 episodes the mean number
of errors is close to zero and the accumulated preferences
reward is close to the optimal. In the blocksworld domain
the GBPL approach performs better in the long term.

We explain the difference of performance on the two
domains by the complexity of the function to be learned. In
the blockworlds, the function must be more generic because
of the different possible starting states. The @), function has
to generalize in order for the agent to perform well. In that

regret nb errors

0.0 |-

0.00 -vvvememaain
-0.01f+
-0.02 - : st
-0.03 -

RBPL
GBPL

—0.04 b

—0.05 |F--

optimal

—0.06 -/

regret reward preferences

nb episodes

121
1.0+
08
061
04b

regret nb errors

02k
0.0

—0.705 |

—-0.710 -
—-0.715

RBPL
GBPL
optimal

-0.720

-0.725

regret reward preferences

=0.730
0

i
5 10 15 20
nb episodes

Fig. 4. Comparison of RBPL and GBPL on blocks domain (top) and
toolbox domain (bottom). Both methods are able to learn to fulfill the task
while respecting the user preferences. In this case, the number of feedback is
equivalent to the number of error and is not displayed. Shaded area represent
standard error of the mean.

case, the gradient approach is more adapted as it can learn
more complex model. On the toolbox domain, however, the
starting state is always the same, and only local modifications
of Qs are needed in order learn correctly the preferences.

2) Ask-before-act: Fig. 5 presents the number of feedback
needed by the system to learn the user’s preferences in the
toolbox and blocksworld domains. We can see that for both
domains ask-before-act leads to better results as the number
of feedback decrease earlier. The system makes no mistakes
and therefore the dataset D contain only states on the optimal
RAP trajectories. This makes the learning task easier as @,
must be learned for a smaller part of its input space. For
the blocksworld, as the learned function must generalize, the
impact is less significant.

For the toolbox domain, the number of feedback is inferior
at the beginning in the ask-before-act condition whereas it is
the opposite for the blocksworld domain. In the first domain
making a mistake with respect to preferences will lead to
states where more mistakes can be made. In the second

1.0~

| — RBPL
X 0.8 -
3 Y 5 —— GBPL
Tosl v)) | — normal
ﬁ N . ‘ - | - - ask-before-act
S04
-
g
o
@ 02F
0.0 i ; ; ; .
0 10 20 30 40 50
nb episodes
12} — RBPL
g — GBPL
£ L0
=1 — normal
$ o084 L
= - - ask-before-act
2o6l - - - -
o
%J, 04L...
g
0.2k
0.0
0
nb episodes
Fig. 5. Number of feedback for blocks domain (top) and toolbox domain

(bottom). For ask-before-act the number of errors and the preference reward
is equivalent to the optimal and is not displayed. Shaded area represent
standard error of the mean.

domain, it is the opposite, if the robot picks a red block,
most of the time, no more mistakes can be made.

3) Noise robustness: We now evaluate the impact of noise
in the human feedback. We imagine that the human does not
correct the robot every time. This creates a noisy learning
scenario as wrong decisions will sometimes not be corrected
by the human. It results in a dataset D where suboptimal
decisions are present.

As Fig. 6 shows, even with noise equal to 0.4 (40% of
wrong robot decisions that are not corrected) both approaches
still manage to learn the human preferences. We observe that
the number of feedback given in noisy setup becomes higher
after only five episodes indicating that not always giving
feedback is not a good strategy if one goal is to minimize
the number of feedback given.

4) Transfer: We also evaluate the transfer capabilities of
the learn policy. In the blocks world domain, a red block is
added to the domain after 50 episodes.

Results reported in Fig. 7 indicate that when learned pref-
erences are transfered, the learning is faster than when pref-
erences are relearned from scratch. After only 10 episodes
asymptotic performances are reached. We conclude that
preferences can indeed be transfered from one domain to
another.

VI. ROBOTIC EXPERIMENT : COOPERATIVE TOOLBOX
ASSEMBLY

We now present an experiment of a joint human robot task
realized with a user and the Baxter robot. This experiment
uses the toolbox domain (Fig. 8) and consist in building
the toolbox following a specific plan. In particular the user
prefers having an uncluttered workspace while following this
order for assembly:

14 - -
12 b RBPL
L e S S GBPL
0.8 ho S\ noise = 0.0 |.
' noise = 0.2
noise = 0.4 |

061 N
04 L.
02

0.0

regret nb feedback

140

124

1.0 bW
08

06

04fF :

0.0

regret nb errors

0 5 10 15 20 25 30

|
o
~
o
vl
1

—0.710F -
—0.715 oo
=0.720 -

regret reward preferences

~0.730 i i i j i ,
0 5 10 15 20 25 30

nb episodes

Fig. 6. Impact of the noise on the feedback in learning the task in the
blocks domain. With noise up to 40% it is possible to learn the task. The
standard error of the mean is not displayed for readability reasons.

0.8] — RBPL — transfer [
07k] — GBPL - - start from scratch |..........
06l | — optimal

regret nb errors

0.00 -
—0.01 L B LITRISTRTEIERRN STPPRIPR S5 RPEs TOTUTSEPIIRLTPRRIRTI: SHNETTRRE
=0.02
-0.03
=0.04

—0.05 B

—-0.06

regret reward preferences

A block is added
—0.07 H i L)
0 20 40 60 80 100
nb episodes

Fig. 7. Evaluation of the impact of changing the number of blocks during
the task (at step 50). We can see that both approaches allow to transfer
between domain sizes and learn faster than starting from scratch. In this
case, the number of feedback is equivalent to the number of error and is
not displayed. Shaded area represent standard error of the mean.

Fig. 8.
preferences.

Execution of a joint human robot task while learning the user

1) attach handle and side_right

2) attach handle and side_left

3) attach side_right and side_front
4) attach side_left and side_front
5) attach side_left and side_back
6) attach side_right and side_back

During the first three episodes the starting state stays the
same with all the pieces not in the human workspace. For
the fourth episode the side_front starts already in the human
workspace.

The perception system relies on Optitrack cameras for
object tracking. Based on this information, we compute
the truth values of the domain predicates for any objects.
The system is also programmed to recognize the different
activities.

Using an algorithm on a real robot is always more chal-
lenging than in simulation. The list of additional difficulties
includes: an imperfect perception system and a model not
conform with the reality. The imperfect perception system
leads to predicates wrongly detected as true as well as
the other way around (for example, because of occlusion).
Having an algorithm robust to noise helps coping with that.
The mismatch of the model from the reality leads to making
decision on states that are not predicted by the model. The
presented algorithms allow learning what to do in those
cases.

In this experiment, we use a hybrid strategy mixing the
ask-before-act and the normal strategies. By applying the
learning algorithm on different subsets of the dataset we can
estimate the potential error (or confidence) of the predicted
optimal decision. If the potential error is over a threshold,
we use ask-before-act, otherwise the robot directly acts.

To compute the potential error, we learn 25 times on
random subsets composed of 75% of the dataset. For every
possible decision we compute the potential error as the mean
over every learner of the difference between the predicted
quality and the maximum predicted quality (by this learner).
The predicted decision is the one with the lower associated
potential error.

30

25

20 +

150

nb feedback

0

30 -

@ 25 F \
g : ;
£
T 20 - o - - - Tl
Es ‘ : :
& f T
B L0 e e T
3 : :
o
c 5|

0 i ; H ;

1 2 3 4
episode number

Fig. 9. Number of feedbacks (top) and number of uses of the interface

(bottom) during four consecutive assemblies of the toolbox with a real robot.
For the forth assembly, a different starting state is used. A decrease in the
number of feedbacks shows the robot correctly learned the user preferences

Based on the previous results, we use the GBPL algorithm
as it has shown better performances. The results are presented
in Fig. 9. We can see that the algorithm allows the system to
significantly reduce the number of feedback after only one
assembly. A feedback is given when the robot suggest a non
preferred activity. So, a decrease in the number of feedback
shows the robot correctly learned the user preferences. We
also observe that the system is able to generalize to the
new starting state in the forth assembly with a number of
feedback of 5 as opposed to 19 for the first assembly. The
bottom graph displays that the number of use of the interface
decrease with the number of assembly. Which means that
the robot is capable of correctly estimating its confidence.
The video of the whole learning process can be found at
https://vimeo.com/182913540. In this experiment
the decision to stop the holding activity is hardcoded based
on the screwdriver position. Because the system fail to detect
correctly the screwdriver at around 2 minutes in the video,
the robot stops holing prematurely.

VII. CONCLUSION

In this work we present an approach to learn preferences
interactively during concurrent human-robot collaboration.
In our setting the robot simultaneously executes the task
and learns how the user prefers to execute it. Our main
contribution is to consider such preference learning in an
interactive and concurrent multi-agent action setting.

Our first contribution is to show how preferences can
be efficiently encoded at the team behavior level using
concurrent relational actions processes.

We then compared two preference learning methods where
the team solves a shared task. These methods are prone to
be used either in a batch or interactive setting. We showed
results in a large dimensional domain, and a real robotic
scenario, showing that these methods are able to execute the

task while simultaneously learning which different ways of
execution is preferred by the user.

We also showed how robust our approach is for intra-
domain transfer and noise. We showed that we could change
the dimension of the problem and still reuse parts of the
information to learn fast. And, we showed that even is there
is some noise in the feedback the system is able to learn.

ACKNOWLEDGMENT

This work was supported by national funds through
Fundagdo para a Ciéncia e a Tecnologia (FCT) with refer-
ence UID/CEC/50021/2013 and by the EU FP7-ICT project
3rdHand under grant agreement no 610878

REFERENCES

[1] Marc Toussaint, Thibaut Munzer, Yoan Mollard, Li Yang Wu,
Ngo Anh Vien, and Manuel Lopes. Relational activity processes for
modeling concurrent cooperation. In ICRA, 2016.

Sonia Chernova and Manuela Veloso. Interactive policy learning

through confidence-based autonomy. Journal of Artificial Intelligence

Research, 34(1), 2009.

W Bradley Knox, Peter Stone, and Cynthia Breazeal. Training a robot

via human feedback: A case study. In /CSR, 2013.

Ashesh Jain, Brian Wojcik, Thorsten Joachims, and Ashutosh Saxena.

Learning trajectory preferences for manipulators via iterative improve-

ment. In NIPS, 2013.

Sriraam Natarajan, Saket Joshi, Prasad Tadepalli, Kristian Kersting,

and Jude Shavlik. Imitation learning in relational domains: A

functional-gradient boosting approach. In IJCAI, 2011.

Thibaut Munzer, Bilal Piot, Matthieu Geist, Olivier Pietquin, and

Manuel Lopes. Inverse reinforcement learning in relational domains.

In IJCAIL 2015.

Manuel Lopes, Francisco Melo, and Luis Montesano. Active learn-

ing for reward estimation in inverse reinforcement learning. In

ECML/PKDD, 2009.

Daniel H Grollman and Odest Chadwicke Jenkins. Dogged learning

for robots. In ICRA, 2007.

Martin Mason and Manuel Lopes. Robot self-initiative and personal-

ization by learning through repeated interactions. In HRI, 2011.

[10] Pannaga Shivaswamy and Thorsten Joachims. Online structured
prediction via coactive learning. arXiv preprint arXiv:1205.4213,
2012.

[11] Riad Akrour, Marc Schoenauer, and Michele Sebag. Preference-based
policy learning. In ECML/PKDD. Springer, 2011.

[12] Luka Peternel, Tadej Petri¢, Erhan Oztop, and Jan Babi¢. Teaching
robots to cooperate with humans in dynamic manipulation tasks based
on multi-modal human-in-the-loop approach. Autonomous robots,
36(1-2), 2014.

[13] Min Kyung Lee, Jodi Forlizzi, Sara Kiesler, Paul Rybski, John
Antanitis, and Sarun Savetsila. Personalization in hri: A longitudinal
field experiment. In HRI, 2012.

[14] Noriaki Mitsunaga, Christian Smith, Takayuki Kanda, Hiroshi Ishig-
uro, and Norihiro Hagita. Adapting robot behavior for human-robot
interaction. Transactions on Robotics, 24(4), 2008.

[15] Hema S. Koppula, Ashesh Jain, and Ashutosh Saxena. Anticipatory
planning for human-robot teams. In ISER, 2016.

[16] Stefanos Nikolaidis, Keren Gu, Ramya Ramakrishnan, and Julie Shah.
Efficient model learning for human-robot collaborative tasks. arXiv
preprint arXiv:1405.6341, 2014.

[17] Stefanos Nikolaidis and Julie Shah. Human-robot cross-training:
Computational formulation, modeling and evaluation of a human team
training strategy. In HRI, 2013.

[18] Saso Dzeroski, Luc De Raedt, and Kurt Driessens.
reinforcement learning. Machine learning, 43(1-2), 2001.

[19] Kristian Kersting, Martijn Van Otterlo, and Luc De Raedt. Bellman
goes relational. In ICML, 2004.

[20] Tobias Lang and Marc Toussaint. Planning with noisy probabilistic
relational rules. Journal of Artificial Intelligence Research, 39(1),
2010.

[21] Hendrik Blockeel and Luc De Raedt. Top-down induction of first-order
logical decision trees. Artificial intelligence, 101(1), 1998.

[2

—

[3

=

[4

=

[5

=

[6

=

[7

—

[8

[t}

[9

—

Relational

