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Shape-independent Hardness Estimation Using Deep Learning and a
GelSight Tactile Sensor
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Abstract— Hardness is among the most important attributes
of an object that humans learn about through touch. However,
approaches for robots to estimate hardness are limited, due to
the lack of information provided by current tactile sensors. In
this work, we address these limitations by introducing a novel
method for hardness estimation, based on the GelSight tactile
sensor, and the method does not require accurate control of
contact conditions or the shape of objects. A GelSight has a soft
contact interface, and provides high resolution tactile images of
contact geometry, as well as contact force and slip conditions.
In this paper, we try to use the sensor to measure hardness of
objects with multiple shapes, under a loosely controlled contact
condition. The contact is made manually or by a robot hand,
while the force and trajectory are unknown and uneven. We
analyze the data using a deep constitutional (and recurrent)
neural network. Experiments show that the neural net model
can estimate the hardness of objects with different shapes and
hardness ranging from 8 to 87 in Shore 00 scale.

I. INTRODUCTION

How can we tell the difference between a stone and
sponge? How can we learn if a tomato is ripe? We touch
them casually, and quickly learn their hardness. Humans
learn a significant amount of information about the objects
around them through touch [1], including hardness. Hardness
is defined as the resistant force of a solid matter when a
compressive force is applied, or in other words, the ratio
between the displacement created by an indentation and the
contact force. And indeed, hardness-measuring devices such
as durometers generally work by measuring the indentation
produced by a known force. Humans, however, seem to es-
timate hardness via a different procedure — one that involves
observing the deformation of a fingertip passively [2]. In
other words, they make heavy use of cutaneous sensing,
rather than kinesthetic information.

In contrast, techniques for robots to estimate object hard-
ness are limited. As the majority of tactile sensors measure
force, a typical trial for a robot to measure hardness is by
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Fig. 1. GelSight sensor and test samples. GelSight is an optical tactile
sensor that gets high resolution tactile images of contact surface topography
and approximate contact force. (b) and (c) show GelSight contacting a
deformable silicone sample: either a human tester presses the sensor on
the object, or a robot gripper squeezes the object with the sensor. The
right two pictures in the bottom shows the images captured by GelSight
when contacting a soft cylinder and a hard cylinder: the color indicates the
surface normal on the contact surface, the black dots are markers on the
sensor surface, and their displacement is related to contact force.

measuring the force changes when contacting a sample with
strictly controlled movement. The method is limited in that
it requires strict control on both object geometry and robot
manipulation.

Taking inspiration from human tactile sensing, we apply a
soft tactile sensor called GelSight[3][4]. A GelSight sensor
uses a thin piece of soft elastomer to contact external objects.
An embedded camera takes pictures of the elastomer surface,
which performs shading that varies with geometry under
the specially designed optical system. The image shows the
contact geometry with high-resolution, as well as general
contact force. The sensor is similar to cutaneous sensing on
human fingertips, in that it infers touch information from the
deformation of the soft tissue.

When the sensor is pressed against an object, they both
deform according to the hardness, which results in the
difference in the surface curvature and contact force. We
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Fig. 2. The comparison of GelSight contacting a soft and a hard samples
with the same shape. During the contact, soft object deforms more, with
the ridges flattened, producing a smoother surface; hard sample deforms
less, and ridges remain sharp. GelSight measures the 3D geometry of the
surface, where larger height gradient causes bright color in the image, and
the arrow field of black markers indicates contact force. We take a sequence
of images during the contact procedure as our input signal.

showed in our previous work [5] that these physical changes
could be measured using simple image cues: namely, changes
in intensity and motion of the black markers embedded in
the gel. Figure [2] shows an example.

While there is a strong physical motivation for these
features, they make restrictive assumptions about the objects’
geometry — namely, they assume that the objects are spher-
ical. We’d like to use this sensor with a wider variety of
object types. This, however, requires us to develop features
that are applicable in more general settings. To address this
problem, we take inspiration from recent work in computer
vision that learns these image features in lieu of hand-crafted
features. These methods, starting with the seminal work of
Krizhevsky et al. [6], have recently achieved state-of-the-art
performance on many recognition tasks. Here we apply these
ideas to the domain of tactile perception by training a deep
neural network to directly regress hardness directly from a
raw GelSight video. To do this, we represent frames of the
GelSight video using a convolutional neural network [7], and
we use a recurrent neural network [8] to model changes in
the gel deformation over time.

In this project, we use GelSight to contact objects in a
loosely controlled condition, and measure the object hardness
through the sequence of tactile images from GelSight. The
sensor is either manually pressed on the samples, or mounted
on a robot gripper which squeezes the samples. We train
a neural network based on the sequences of tactile images
during the presses on samples of known hardness, and predict
the hardness of samples with unknown shapes. The test
samples are made of silicone, with hardness that ranges from
8 to 87 in the Shore 00 scale, which is generally the hardness
of gummy bears and pencil erasers. The samples are either
of basic shapes including hemispheres and cylinders of 10
different radii, flat surface, edges and corners; or complicated
shapes like everyday objects. We also test the model on a
set of natural objects like tomatoes, candies, rubber tubes.
Experimental results show that the model can well predict
the silicone samples of basic shapes, regardless of the radii of

the hemispheres or cylinders. For natural objects, the model
can estimate different hardness levels.

II. RELATED WORK
A. Optical Tactile Sensors and GelSight

Over the past decades, researchers have proposed many
techniques for tactile sensing [9] in robotic applications.
Among these, piezoresistive, peizoelectric, and capacitive
sensors that measure the local force distribution have
emerged as the dominant approaches. While tactile sensors
based on these techniques have been used successfully in
many applications, they often result in sensors that are dif-
ficult to fabricate, and which have limited spatial resolution
or area. Optical-based tactile sensors [10], [11], [12], on
the other hand, overcome many of these limitations. Most
of those optical tactile sensors use a piece of deformable
material as contact medium, and add some visually trackable
patterns or markers to the medium. The sensors then infer
the deformation of the contact medium by observing the
deformation of the patterns, thereby measuring the contact
force.

In this work, we consider the GelSight touch sensor —
an optical tactile sensor that is designed to measure high-
resolution shape of the contact interface. It consists of a clear
elastomeric slab with a reflective membrane on the surface,
with an embedded camera and illumination system [3], [4].
When the membrane is in contact with an object, one
can obtain a highly accurate height map (accurate within
microns in [4]) of its deformation via photometric stereo.
This sensor has been used to measure physical properties
in many applications. Jia, et al. [13], for instance, showed
that it was more accurate than human subjects in detecting
hard lumps in soft tissues, and Li [14] proposed a fingertip
GelSight device, which is small enough to be mounted on
a robot fingertip. Yuan et al. [15] added markers to the
GelSight surface and provided a method for tracking their
movement, thus enhancing its ability to infer the approximate
contact force on the sensor.

B. Hardness Measurement

Robotics researchers have long been interested in estimat-
ing object properties through active touch. Drimus et al. [16]
and Chu et al. [17], for example, recorded a sequence of
contact force signals and then inferred object properties from
change in force. These methods often implicitly include hard-
ness in the signal. However, research on directly estimating
hardness from a tactile sensor has been more limited.

For a robot, the most straightforward way to measure ob-
ject hardness is by applying controlled force and measuring
deformation, or vice versa [18]. Su et al. [19] measured
the hardness of flat rubber samples using a BioTac touch
sensor, which measures multiple tactile signals including
the pressure on fixed points. In the work, the sensor was
installed on a robot fingertip, and it is pressed onto flat
silicone samples in a strictly controlled motion. Changes in
the force re then used to discriminate between 6 samples
with different hardness values ranging from 30 Shore00



rubber to rigid aluminum. For this method to be applicable,
however, the sensor movement and object geometry must be
strictly controlled. In contrast, our input is more general;
we directly estimate hardness (rather than distinguishing
between samples); and we use more diverse geometries and
hardness.

Another specific way is to design a touch sensor that
has special mechanisms for explicitly measuring both the
local force and the depth of the press. For example, Shimizu
et al. [20] designed a piezo-resistant cell with a gas-filled
chamber, which was used to measure the indentation of the
mesa on its top surface. The cell thus measures the material’s
hardness from the force measured by pressure change in
the chamber and the indentation depth measured by piezo-
resistance. The sensor makes measurement easier, under
the condition that the surface geometry is certain. These
limitations constrain the use of the sensor for more general
touch tasks. There are also sensors designed specifically for
measuring hardness for medical uses, such as [21][22], or
with ultrasonic signals instead of force signals [23]. However,
these sensors are not designed for measuring hardness of
general objects, and are not well suited to other tactile tasks.

In our previous work [5], we showed that GelSight can
accurately estimate the hardness of a set of hemispherical
silicone samples under loosely controlled contact conditions.
As in this work, we asked a human tester and an open-loop
robot to press on samples, and developed a model to predict
the hardness according to both the changing brightness
in the GelSight image and the displacement field of the
surface markers. While the model successfully predicted the
hardness, it was limited to hemispherical samples, and it
required that the radii be provided as input.

C. Learning for tactile sensing

Recently, researchers have proposed several learning-
based methods that estimate tactile properties from touch
sensors. Gao et al. [24], for example, used a neural network
to infer haptic adjectives (i.e., qualitative properties such as
“bumpy” or “squishy’”) from a Biotac sensor. While their
technical approach also uses a recurrent neural network,
specifically a 1D convolutional network and recurrent net-
work, the output of the sensor— an assortment of 32 time-
varying physical measurements, such as fluid pressure and
temperature — is substantially more limited. In contrast, our
method starts with an input that is significantly lower level —
namely, images of a deforming gel. From this rich signal, we
infer metric hardness measurements, rather than qualitative
properties.

III. ESTIMATING HARDNESS FROM GELSIGHT VIDEOS

Figure 2] shows the examples of videos recorded by a
GelSight sensor. Here, the differences between hard and soft
objects are readily apparent: a hard object deforms little
during the contact, while a softer object may deform largely
and makes a flatter surface under relatively smaller force.
These subtle deformations in shape and force, in turn, are
visible in the videos recorded by GelSight. As in [5], the
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Fig. 3. We use a recurrent neural network to map a video recorded

by the GelSight sensor to a hardness value. The network resembles [25]:
images are represented using CNN features fc7 from a VGG16 net, and feed
into an LSTM net. The net input I; is a sequence of GelSight image after
subtracting the initial frame. In particular, we choose 5 frames evenly from
a pressing sequence, and each frame is of one pressing stage. We only use
the RNN output of the last 3 frames, i.e. y3,y4,y5 to estimate the sample
hardness.

GelSight video shows the surface normal of the contact
surface through the inner surface’s reflection change under
the colored and directional light sources, which results in
different color intensity. Furthermore, the black markers
embedded on the surface help convey the contact force
through their motion.

A. Neural network design

We ask in this work whether we can use these cues to
predict an arbitrary object’s hardness. To do this, we use
a neural network that maps an image sequence to a scalar
hardness value (measured on the Shore 00 scale). The design
of the network is similar to recurrent networks considered
in action recognition [25], and is shown in Figure 3] We
represent each GelSight image I; with convolutional network
features ¢(I;). For these, we use the penultimate layer (fc7)
of the VGG architecture[7]. We then use a recurrent neural
network with long short-term memory units (LSTM) [8] to
model temporal information.

At each timestep, we regress its output hardness value via
an affine transformation of the current LSTM’s hidden state
hti

Why +b
L(hi—1,9(1t)), (1

where W and b define an affine transformation of the hidden
state h;, and L updates h; based on the previous state h;_1
using the current image [; (here we omit the LSTM’s hidden
cell state for simplicity).

The prediction y; is the hardness estimate for the current
timestep. We estimate a hardness value for the object as a
whole by averaging the predictions from the final 3 frames.

Yyt =
hy =



We perform the regression on a per-frame basis to add
robustness to videos in which the pressing motion differs
significantly from those of the training set. During training,
we minimize a loss that penalizes the difference between the
predicted and ground-truth hardness values, using a Huber
loss.

B. Choosing input sequences

We’d like to make our method invariant to the speed of
the pressing motion and to the maximum contact force. For
example, different human testers or robots may manipulate
objects with different loading speed or maximum force.
Therefore, we constrain the video sequence so that it begins
and ends at times that are consistent across manipulation
conditions. Specifically, we choose a 5-frame sequence of
images in the loading period of the press, such that the
sequence starts after the object being pressed. We determine
this starting point by finding the frame in which the mean
intensity of the GelSight image (a proxy for the force of the
press) exceeds a threshold. For the end point of the sequence,
we choose the last frame whose intensity change is the peak
of the sequence. The other 3 frames are evenly chosen in the
middle according to the intensity change.

We subtract the first frame in the sequence from the
chosen frames to account for preexisting deformations in
the elastomer. Unlike in [5], we do not explicitly model the
motion of the markers that are embedded in the gel — relying
instead on the network to learn about their motion via the
raw images (in which the motion of the marker is implicitly
visible due to subtracting the initial frame).

C. Training

The training dataset contains about 7000 videos obtained
by having human testers press GelSight on different sili-
cone samples, each video is an independent pressing se-
quence. The training dataset contains mainly the basic object
shapes(Group 1 in Figure [3), but also with a large portion
of complicated shapes or bad contact conditions(Group 2
and 4 in Figure [3). Those irregular data greatly help to
prevent overfit of the model. A single video is used for
multiple times during the training, with different end point
for sequence extract, so that the contact situations with
different maximum forces are included. In other words, when
choosing a sequence ends at the middle of the loading
process, the sequence equals to the case of pressing on the
same object in the same way, but with smaller maximum
force. We train the model using stochastic gradient descent,
initializing the CNN weights with ImageNet [6] pretraining,
jointly training the CNN and LSTM. We train the algorithm
for 10,000 iterations, a learning rate of 0.001, and a step size
of 1000.

IV. EXPERIMENTAL SETUP

The touch sensor we used is a Fingertip GelSight device
[14], with black markers on the surface to track the dis-
placement field. The elastomer on GelSight is of the dome
shape, with the area of 25mm X 25mm, and the maximum

Fig. 4. Some 3D printed molds and silicone samples in hemispherical and
cylindrical shapes. Samples are of different radii and hardness, and hardness
is controlled by changing silicone ingredient mixing ratio. The material
hardness is tested by a durometer on standardized silicone samples, as the
bottom two samples.

thickness in the center is around 2.4mm. The average interval
between the black markers is about 1.3 mm. The hardness
of the elastomer is 17 in Shore 00 scale. The camera in the
sensor takes original images of size 960 x 720 pixels over
an area of 18.4mm X 13.8mm at a speed of 30Hz.

The silicone samples that we used in our experiments have
the varied shapes of 1) hemispheres of different radii, 2)
cylinders of different radii, and 3) some arbitrary shapes.
The silicone materials were Ecoflex® 00-10, Ecoflex® 00-50
and Smooth-Sil® 945 from Smooth-On Inc. The three raw
materials are mixed by different ratio to make the samples
into 16 different hardness levels between 8§ in Shore 00 scale
to 45 in Shore A scale (equals to 87 in the Shore 00 scale).
The silicone materials are in liquid phase, and they will
solidify in several hours after Part A and Part B are mixed
and poured into the mold. The hemispherical and cylindrical
samples have 9 different radii ranging from 2.5mm to 50mm,
but they are of similar height (around 25mm). This design is
to ensure the sample thickness would have limited influence
of on the shape change during the press. We fabricate the
mold with a Form 2 3D printer from Formlabs. For the
arbitrary shapes, one group is of simple and common shapes,
that is casted from some daily vessels, like square shaped ice
box, truncated cone shaped measuring cups, small beakers;
another group are of complicated and special shaped, casted
from assorted chocolate molds. They include the shapes of
different emboss textures or complicated curvatures, like the
shape of shells. In total, we made 95 hemispherical samples,
81 cylindrical samples, 15 flat samples and 160 samples of
arbitrary shapes for experiments. We also collect a set of 20
rigid objects in the database.

The sample hardness is measured by a PTC® 203 Type OO
durometer. We made a set of flat thick silicone samples(the
bottom two samples in Figure @) of each mixing portion
as the test sample from durometer test. To reduce the
measurement error, we took 5 tests and use the mean value
for each test sample . The real samples are considered as of
the same hardness of the samples being tested.
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right two are from candies.

The hardness of the elastomer on the GelSight sensor
may influence the sensitive range of the sensor. The sensor
can better estimate the objects’ hardness when it is closer
to the sensor’s hardness. In this project, we choose a soft
elastomer of 17 in Shore 00 scale, in order to get a better
discrimination of the very soft objects, but the sensor cannot
well differentiate the hardness when it is harder than 70 in
Shore 00 scale.

V. EXPERIMENTAL PROCEDURE

When we press the GelSight sensor into a sample object,
we push it in the normal direction. We conducted two sets
of experiments: human testers pressing the sensor, and a
robot gripper squeezing on the samples. In the human testing
scenario, the test object is placed on a flat hard surface,
and a tester holds the GelSight sensor and presses on the
object vertically, as shown in bottom left figure in Figure [T}
For the robot test, we used a Weiss WSG 50 gripper which
has GelSight as one finger. The robot gripper closes in a
slow and constant speed until the gripping force reaches
the threshold, making the GelSight sensor squeezing on the
object. The speed was randomly chosen between 5 to 7 mm/s,
and the gripping force threshold is a random between 5 to
9N. The procedure is shown in the bottom middle figure in
Figure [T} In both cases, the sensor is pressed into the object,
the contact force grows, and the deformation of both the
GelSight elastomer and the object increases. We record the
GelSight video during the press. In average, there are 20 to
30 frames in the pressing period.

Note that in both experimental sets, the contact con-
dition is highly varied. In the human tester experiment,
the trajectory and pressing velocity are both unknown and

uncontrolled, and small amount of shear force and torque
exists in the contact. Our goal was to model a “natural”
tactile interaction — similar to what one would do in daily
environments, or when a robot with a touch sensor contacting
an arbitrary object in a complicated environment.

The collected GelSight data are of the following geometry
types, as shown in Figure [}

1) Basic shapes. Samples of the simplest geometries,
including flat surface, spherical surface, cylindrical
surface, straight sharp edges, sharp corners. Spherical
and cylindrical shapes are of 10 levels of radii from
2.5mm to 50mm.

2) Bad basic shapes, challenging contact conditions. The
contact objects are the same as in the previous group,
but the contact condition is undesired. For example, the
sensor contacts the silicone samples in tilted angles, or
the sample is included in the contact area.

3) Simple shapes. The samples are made of silicone with
known hardness and basic shape, such as shapes of
frustum measuring cup.

4) Complicated shapes. The samples are made of silicone
but with complicated textures or shapes. They are made
from the chocolate molds.

5) Soft objects in everyday life. These are the soft objects
in the everyday life, mostly with relatively simple
shapes. Human can roughly feel whether they are
‘soft’, or ‘very soft’, or ‘hard’.

We selected some samples in Group 1, Group 2, and
Group 4 as the training set, and tested the model’s prediction
on Group 1, 3, 4 and 5. The data in the training set is
the data collected by human testers; in the test set, some
data is collected by human testers, while data is collected
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TABLE I
NETWORK PREDICTION ON BASIC SHAPES

[ | number of videos | R? [ RMSE |
Trained shape, novel hardness 1398 0.9564 5.18
Novel shapes 73 0.7868 11.05
Trained samples, robot gripper 683 0.8524 10.28

by a robot. The dataset is published at http://people.
csail.mit.edu/yuan_wz/hardnessdataset/.

VI. EXPERIMENTAL RESULTS
A. Basic Shapes

In the first experiment, we wanted to test whether a model
could generalize to new hardness values. Therefore, the
objects in the test set had the same shape as those in the
training set (Group 1 in Figure [ and Section [V]]), but
with different hardness ratings. In the second experiment,
the samples are of cylindrical or spherical shapes, but are not
included in the training set; in the third group, the samples
are of the Group 1 basic shapes that have been seen, but the
experiment is conducted by the robot, which makes different
contact motion than human testers. The estimation result of
the three groups is shown in Figure [6] and Table [I]

B. Arbitrary Shapes

In this challenging experiment, we test our model on the
arbitrary silicone shapes that the algorithm has not seen
during training, as mentioned as Group 3 and Group 4 in
Section and Figure For Group 3 samples, the R?
of measurement is 0.57, and RMSE is 19.3; for Group 4
samples, the R? decreases to 0.39, and the RMSE is 18.2.
In most large-error measurement cases, the model tends to
estimate the hardness much higher than the ground truth.
In these cases, the objects mostly have some sharp surface
curvatures but not the same as as those in the training set.
Moreover, there may be multiple ridges present in a sample.
The network tends to consider the object of higher hardness
when there are sharp curvatures on the contact surface. On
the other hand, for the object shape that is included in
the training set, the neural net can well estimate the target
hardness.

Ground Truth (Shore 00)

(b) Unseen shapes

60 80 100

20
Ground Truth (Shore 00)

40 60 80 100

(c) Data collected by robot

Prediction results on samples of basic shapes, including hemispheres, cylinders, flat surface, edges, corners.

when the training set contains basic shapes, the model can
generalize to more complex shapes — albeit with decreased
performance. For the method of deep neural network, a tough
learning through all the possible data is required. To make
the network more generalized in estimating the hardness for
objects with more arbitrary shapes, a much larger training set
that contains more changes in the sample shapes is required.

C. Estimation of Natural Objects

We use GelSight to contact natural objects and use the
model to estimate the hardness of them. As it is difficult to
measure their ground-truth hardness with standard method,
we ask human subjects to rank the hardness of similar ob-
jects, and compare the readings from GelSight measurement.
We compared the estimated hardness of several plum toma-
toes and round tomatoes with different ripeness, as shown
in Figure [/| Although the tomatoes are of close hardness,
the GelSight prediction is similar to human estimation. The
GelSight measurement of different candies, elastomer tubes,
and some random daily objects are shown in Figure [§]

From the figures we can see that, for natural objects of
simple geometry and smooth surfaces, our network can well
estimate their hardness level. The estimation can be used
to differentiate ripeness levels of some fruits, like tomatoes.
Rigid objects will be estimated with a number larger than
80. However, similar to the experiments in Section the
geometry of the natural objects may also have an influence
on the measurement, in that the objects with textures, like
a ridges surface, tend to be estimated harder. The reason is
mainly due to the incompleteness of the training set for the
network.

VII. CONCLUSION

In this paper, we proposed a deep neural network model to
estimation hardness of objects with multiple shapes using a
GelSight tactile sensor. We mainly considered the commonly
seen shapes of natural objects, including spheres, cylinders,
flat surface, edges and corners. The GelSight sensor records
the objects’ deformation during the contact process in high-
resolution image sequences, which contain information about
both the shape change and contact force. The biggest chal-
lenge lies in that the different geometry of the object may
have very complicated influence on the sensor output, and is
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Measurement of some natural objects. In average, each object is pressed on for 5 times by a human tester. In each group, the object order on

X axis corresponds to human ranking of hardness. In the first group, candy 1 is a soft gummy candy, candy 2 is a hard gummy candy with rigid sugar
particles on the surface, candy 3 is a rigid candy. Hardness of candy 2 is over estimated because it has dense particles on the surface. Similarly, in the
2nd group, hardness of tube 1 and tube 3 is overestimated because they have textures, like a ridged surface.

nearly impossible to model with linear relationships. To solve
this problem, we apply a convolutional neural network and
recurrent neural network to extract the hardness information
from the GelSight video sequence. Experimental results
show that the network can well predict hardness of silicone
samples with similar shape in the dataset, regardless of the
loading conditions; for the objects with complicated shapes
or ridged surface, the model does not estimate the hardness
well, which caused by the incompleteness of the training data
set. For many natural objects with smooth surface and simple
geometries, the model can roughly measure their hardness
level, thus can be used for recognize objects with special
hardness, or choose fruits with preferable ripeness level.
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