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Abstract— Traditional methods to achieve high localization
accuracy with tactile sensors usually use a matrix of minia-
turized individual sensors distributed on the area of interest.
This approach usually comes at a price of increased complexity
in fabrication and circuitry, and can be hard to adapt for non
planar geometries. We propose to use low cost optic components
mounted on the edges of the sensing area to measure how light
traveling through an elastomer is affected by touch. Multiple
light emitters and receivers provide us with a rich signal set
that contains the necessary information to pinpoint both the
location and depth of an indentation with high accuracy. We
demonstrate sub-millimeter accuracy on location and depth on
a 20mm by 20mm active sensing area. Our sensor provides high
depth sensitivity as a result of two different modalities in how
light is guided through our elastomer. This method results in a
low cost, easy to manufacture sensor. We believe this approach
can be adapted to cover non-planar surfaces, simplifying future
integration in robot skin applications.

I. INTRODUCTION

Tactile sensors for robot manipulators can be analyzed
and quantified based on multiple performance criteria. From
an operational perspective, these include high accuracy in
establishing both the location of a contact and the magnitude
of the applied force. In particular, good signal-to-noise ratio
is desirable for both the contact forces that characterize
incipient contact and the larger forces encountered during
manipulation. From a manufacturing perspective, achieving
coverage of potentially irregular, non-flat surfaces is also
important for application to robotic fingers and palms.

One way to achieve accuracy and good coverage is by
using individual taxels distributed over the surface that
must be sensorized; however, this imposes miniaturization
constraints on each taxel. Matrix addressing for taxel arrays
reduces the complexity of the circuit and allows part of it
to be implemented on a printed circuit board, but imposes
2D structure on the sensor. As recent reviews point out,
achieving multiple such performance metrics traditionally
leads to manufacturing difficulties and system constraints
that prohibit large-scale deployment [1], [2].

Our approach is to build a tactile sensor as a continuous
volume of a transparent polymer, with light emitters and
receivers embedded along the perimeter (Fig. 1). Indentation
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Fig. 1: Sensor consists of a square mold where LEDs and
photodiodes are edge-mounted and the cavity is filled with an
elastomer. We measure light transport through the elastomer
to learn the location and the depth of an indentation.

of the sensor area affects how light from the emitters is
transported through this medium, producing a signal that is
measured by the receivers. Throughout this study, we use
indentation depth as a proxy for contact force, based on
a known stiffness curve for the constituent material. This
method natively lends itself to covering large areas with
simple-to-manufacture, low-cost sensors.

In order to achieve the performance goals stated above,
namely high accuracy in both localization and indentation
depth prediction, we rely on two key ideas, which are also
the main contributions of this paper:

• Leverage multiple modes of interaction between an
indenting probe and a light-transporting medium in
order to increase depth prediction accuracy throughout
the operating range. As we will detail in the paper, in-
dentation of the medium affects light transport in at least
two ways. First, during initial contact, the probe alters
the geometry of the surface and changes the refraction
of the light rays. Second, as indentation becomes deeper,
the probe blocks direct paths between emitters and
receivers. We design our sensor to use both modes
in continuous fashion, resulting in a good sensitivity
throughout a wide range of indentation depths.

• Use data-driven methods to directly learn the mapping
between a rich signal set extracted from the sensor and
our variables of interest. For our sensor, such data set
can be obtained by measuring the signal between every
emitter and every receiver. In the past, we have used
an all-pairs approach on a piezoresistance-based sensor
and showed it can lead to high localization accuracy [3].
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The result of using these methods is a tactile pad that
exhibits desirable performance characteristics in accuracy
and sensitivity, while using a simple manufacturing method
and low-cost components. While not explicitly tested here,
we believe that both the fabrication technique and the data-
driven signal processing approach also lend themselves to
constructing pads of irregular three-dimensional geometry.
Furthermore, mapping the signal between every emitter and
receiver produces a rich signal set with relatively few wires.
Both of these characteristics could enable easier integration
into robotic fingers and palms, which is our directional goal.

II. RELATED WORK

The use of optics for tactile sensing is not new, and has
a long history of integration in robotic fingers and hands.
Early work by Begej demonstrated the use of CCD sensors
recording light patterns through a robotic tip affected by
deformation [4]. More recently Lepora and Ward-Cherrier [5]
showed how to achieve super-resolution and hyperacuity
with a CCD-based touch sensors integrated into a fingertip.
Johnson and Adelson used color-coded 3D geometry recon-
struction to retrieve minute surface details with an optics-
based sensor [6]. These studies share a common concept
of a CCD array imaging a deformed fingertip from the
inside, requiring that the array be positioned far enough from
the surface in order to image the entire touch area. In our
approach, the sensing elements are fully distributed, allowing
for coverage of large areas and potentially irregular geometry.
Work by Polygerinos et al. [7] use the deformation of an
optic fiber to create a force transducer. This approach has
the advantage that the sensing electronics do no have to be
located close to the contact area.

In our work, we take advantage of multiple modes of light
transport through an elastomer to increase the sensitivity of
the sensor. In recent work, Patel and Correll took advantage
of reflection and refraction to build an IR touch sensor that
also functions as a proximity sensor [8]. Their work however
does not provide means to also localize contact.

We perform contact localization by combining signals
from multiple emitter-receiver pairs, a technique which we
previously used in the context of a piezoresistive sensor [3].
Other sensors also use a small number of underlying trans-
ducers to recover richer information about the contact. For
example, work in the ROBOSKIN project showed how to
calibrate multiple piezocapacitive transducers [9], used them
to recover a complete contact profile [10] using an analytic
model of deformation, and finally used such information for
manipulation learning tasks [11]. Our localization method is
entirely data driven and makes no assumptions about the
underlying properties of the medium, which could allow
coverage of more complex geometric surfaces.

Our localization approach shares some of the same
goals of techniques such as super-resolution and electric
impedance tomography. Van den Heever et al. [12] used
a similar algorithm to super-resolution imaging, combining
several measurements of a 5 by 5 force sensitive resistors
array into an overall higher resolution measurement. Lepora

and Ward-Cherrier [5] and Lepora et al. [13] used a Bayesian
perception method to obtain a 35-fold improvement of lo-
calization acuity (0.12mm) over a sensor resolution of 4mm.
Electric impedance tomography (EIT) is used to estimate the
internal conductivity of an electrically conductive body by
virtue of measurements taken with electrodes placed on the
boundary of said body. While originally used for medical ap-
plications, EIT techniques have been applied successfully for
manufacturing artificial sensitive skin for robotics [14]–[16],
although with lower spatial resolution than other methods.

We rely on data-driven methods to learn the behavior of
our sensors; along these lines, we note that machine learning
for manipulation based on tactile data is not new. Ponce
Wong et al. [17] learned to discriminate between different
types of geometric features based on the signals provided by
a previously developed [18] multimodal touch sensor. Cur-
rent work by Wan et al. [19] relates tactile signal variability
and predictability to grasp stability using recently developed
MEMS-based sensors [20]. With traditional tactile arrays,
Dang and Allen [21] successfully used an SVM classifier
to distinguish stable from unstable grasps in the context
of robotic manipulation using a Barrett Hand. Bekiroglu et
al. [22] also studied how grasp stability can be assessed based
on tactile sensory data using machine-learning techniques.
In similar fashion, both Saal et al. [23] and Tanaka et
al. [24] used probabilistic models on tactile data to estimate
object dynamics and perform object recognition respectively.
However, most of this work is based on arrays built on
rigid substrates and thus unable to provide full coverage of
complex geometry. In contrast, we apply our methods to the
design of the sensor itself, and believe that developing the
sensor simultaneously with the learning techniques that make
use of the data can bring us closer to achieving complete
tactile systems.

III. TACTILE SENSING METHOD

The fundamental sensing unit of our approach is com-
prised of a light emitting diode (LED) and a photodiode
receiver, edge-mounted around a sensing area which is filled
with polydimethylsiloxane (PDMS) (Fig. 2a). While we
ultimately use sensors with multiple emitters and receivers,
in this section we focus on a single emitter-receiver pair in
order to discuss the underlying transduction mechanism; we
will return to complete sensor design in the next section.

A. Light transport and interaction modes

The core transduction mechanism relies on the fact that
as a probe indents the surface of the sensor, light transport
between the emitter and the receiver is altered, changing the
signal reported by the receiver. Consider the multiple ways in
which light from the LED can reach the opposite photodiode:
through a direct path or through a reflection. Of particular
interest to us are reflections off the surface of the sensor:
based on Snell’s law, due to different refractive indices of
the elastomer and air, light rays hitting the surface below the
critical angle are reflected back into the elastomer.



a) Sensor Undisturbed

b) First mode of detection

c) Second mode of detection

Fig. 2: The first mode of detection (b) is the result of light
scattering and surface deformation. The second mode (c) is
the result of the indenter tip physically blocking the direct
path of light.

As the probe makes initial contact with the sensor sur-
face, the elastomer-air interface is removed from the area
of contact; furthermore, surface normals are immediately
disturbed. This changes the amount of light that can reach
the diode via surface reflection (Fig. 2b). This is the first
mode of interaction that our transduction method captures.
It is highly sensitive to initial contact, and requires very little
penetration depth to produce a strong output signal.

As the depth of indentation increases, the object penetra-
tion into the PDMS also starts to block the light rays that
were reaching the photodiode through a direct, line-of-sight
path (Fig. 2c). This is our second mode of interaction. To
produce a strong signal, the probe must reach deep enough
under the surface where it blocks a significant part of the
diode’s surface from the LED’s vantage point.

We note that other light paths are also possible between
the emitter and receiver. The interface between the clear
elastomer and the holding structure (the bottom and side
walls of the cavity) can also give rise to reflections. In
practice, we have found that the elastomer and the holding
plastic exhibit bonding/unbonding effects at a time scale of
5-10s when indented, creating unwanted hysteresis.

To eliminate such effects, we coat the bottom of the
sensor with a 1mm layer of elastomer saturated with carbon
black particles (shown in Fig. 2 by a thick black line). This
eliminates bottom surface reflections, and exhibits no adverse
effects, as the clear elastomer permanently bonds with the
carbon black-filled layer. There are still possible reflections
off the walls of the sensor; while we do not explicitly
consider their effects, they can still produce meaningful
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Fig. 3: The first mode of detection happens upon light contact
and manifests as a sudden drop in the signal. The second
mode is activated with a heavier contact, in this particular
case after a depth of approximately 2mm

signals that are used by data-driven mapping algorithm.

B. Effective operating range and prototype construction

We would like our sensor to take advantage of both
operating modes described above, noting that one is highly
sensitive to small indentations while the other provides a
strong response to deeper probes. We thus aim to design
our sensor such that these two modes are contiguous as
the indentation depth increases. The goal is to obtain high
sensitivity throughout the operating range of the sensor. The
key geometric factor affecting this behavior is the height of
the elastomer layer, which we determine experimentally.

We constructed multiple 3D printed (black ABS material)
molds with LEDs (SunLED model XSCWD23MB) placed
20mm away from the photodiode (Osram SFH 206K) on
opposing sides of a square mold. These sensors have 3 LEDs
on one side of the mold, and 3 corresponding photodiodes
directly in front of the LEDs. The mold was filled with a
transparent elastomer (PDMS, Sylgard 184, Dow Corning).
PDMS and air have approximate refractive indexes of 1.4 and
1.0 [25] respectively, leading to a critical angle of 45 degrees.
This means that if light hits the boundary between PDMS
and air at an angle greater than 45 degrees with respect to
the surface normal, the ray is reflected back into the PDMS
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Fig. 4: Load vs indentation depth for a 1:20 ratio of curing
agent to PDMS. Measurements were taken by advancing or
retracting the probe in 1mm steps separated by 10s pauses

where it can be detected by the photodiode.
Prototypes with PDMS layers over 10mm showed the

presence of a deadband: after a certain threshold depth the
photodiode signal does not change as we indent further down
until you indent deep enough to activate the second mode.
To make these two modes continuous we build a set of
sensors where we vary the thickness of the PDMS layer.
Results can be visualized in Fig. 3. Based on these results,
while the 7mm layer provides the best continuity between
our two modes, the 8mm layer gives good continuity while
also producing a slightly stronger signal when indented. We
build our subsequent sensor to have an 8mm PDMS layer.

Another parameter to choose when building the sensor is
the stiffness of the PDMS. This parameter lets us directly
manipulate the mapping between indentation depth and in-
dentation force. The stiffness of PDMS is determined by the
weight ratio between the curing agent and the polymer itself.
Fig. 3 corresponds to a ratio of 1:20 curing agent to PDMS,
which we used in our sensors. Fig. 4 shows the mapping
between indentation depth up to 5mm and force for the 6mm
hemispherical tip used in our experiments.

IV. COMPLETE SENSOR DESIGN

While sensitivity to a large range of indentation depths
(and forces) is important for applications in manipulation,
it is not sufficient. The ability to localize touch accurately
on a 2D surface embedded in 3D space is also critical. To
achieve this goal, we construct our sensors with numerous
light emitters and receivers mounted around the perimeter
(Fig. 5). This gives rise to numerous emitter-receiver pairs,
each behaving as a unit described in the previous section.

The multi-pair approach gives us a very rich signal set,
with cardinality equal to the number of emitters multiplied
by the number of receivers. We make the assumption that an
indentation anywhere on the sensor will affect multiple such
signals. We then use a data-driven approach to directly learn
how these signals map to our variables of interest, such as
indentation location and depth.

We validate this concept on a sensor comprised of 8 LEDs
and 8 photodiodes arranged in an alternating pattern and
mounted in sockets along the central cavity walls. To build

45
mm

32
mm

Fig. 5: The sensor design enables several receivers to be
excited by a single emitter. This one-to-many relationship
provides a rich set of signals when switching through all of
our emitters and measuring the signals on all the receptors

the sensor we use a 3D printed square mold with exterior
dimensions of 45mm x 45mm. The cavity in the mold is
32mm x 32mm. Light travels from emitters to receivers via
multiple paths that cover the sensing area. This way any LED
is able to excite several photodiodes (Fig. 5).

To determine the location and depth of the indentation, we
will read signals from all the photodiodes as different LEDs
turn on. Having 8 LEDs gives rise to 8 signals for each
photodiode; plus an additional signal with all LEDs turned
off. This last signal allows us to measure the ambient light
captured by each diode, and leads to a total of 9 signals per
diode. One important consideration with a sensor where the
sensing units are exposed to ambient light is to incorporate
this information such that the sensor can perform consistently
in different lighting situations. To achieve this, we use the
state where all LEDs are OFF as a baseline that gets removed
from every other state at each sampling time.

An Arduino Mega 2560 handles switching between our
9 states, and taking analogue readings of each photodiode.
The photodiode signal is amplified through a standard tran-
simpedance amplifier circuit, and each LED is driven at full
power using an NPN bipolar junction transistor. The resulting
sampling frequency with this setup is 60Hz.

V. DATA COLLECTION PROTOCOL

Data collection is performed using a planar stage
(Marzhauser LStep) and a linear probe located above the
stage to indent vertically on the sensor with a 6mm hemi-
spherical tip. The linear probe is position-controlled and the
reference level is set manually such that the indenter tip
barely makes contact with the sensor surface. The linear
probe does not have force sensing capability, hence we use
indentation depth as a proxy for indentation force.

Two patterns are used to indent our sensor. The grid
indentation pattern indents the sensor on a 2mm regular
grid. Taking into account the diameter of our tip, plus a
3mm margin such that we don’t indent directly next to an
edge, this results in 121 indent locations distributed over a
20mm x 20mm area. The order of indentation within this grid
is randomized. The random indentation pattern indents the
sensor in randomly generated locations within its workspace.



At each location we follow the same protocol. Consider
the sensor surface to be the reference level, and positive
depth values correspond to the indenter tip going deeper into
the sensor. To discriminate touch vs. non-touch conditions,
we collect data at both negative and positive depths. For
depths between −10mm and −1mm, we collect one data
point every 1mm. The indenter then goes down to a depth
of 5.0mm taking measurements every 0.1mm. The same
procedure is mirrored with the indenter tip retracting.

Each measurement i results in a tuple of the form Φi =
(xi, yi, di, p

1
j=1, .., p

8
j=1, ..., p

1
j=9, .., p

8
j=9) where (xi, yi) is

the indentation location in sensor coordinates, di is the
depth at which the measurement was taken and (p1j , .., p

8
j )

corresponds to the readings of our 8 photodiodes at state
j ε [1, 9]. For each diode, states 1 through 8 correspond to
each one of the 8 LEDs being ON, and state 9 corresponds
to the case where all the LEDs are OFF. We thus have a total
of 75 numbers comprised in each tuple Φi. These tuples are
analyzed as described in the following section.

VI. ANALYSIS AND RESULTS

Our main objective is to learn the mapping between our
photodiode readings (p1j , .., p

8
j ) to the indentation location

and depth (xi, yi, di).
We have found that we obtain higher performance by

splitting this problem into two components. First, we use
a classifier to determine if touch is occurring; this classifier
is trained on both data points with di < 0 and di ≥ 0. We
use a linear SVM as our classifier of choice for this problem.

If the SVM classifier predicts touch is occurring, we use
a second stage regressor that outputs predicted values for
(xi, yi, di). This regressor is trained only on training data
with di ≥ 0. We use a kernelized ridge regressor with a
Laplacian kernel and use half of the training data to calibrate
the ridge regression tuning factor λ and the kernel bandwidth
γ through grid search. Results presented in this section were
obtained with λ = 2.15e−4 and γ = 5.45e−4.

To train our predictors we collected four grid pattern
datasets, each consisting of 121 indentations, and each inden-
tation containing 161 datapoints at different depths. Aiming
for robustness to changes in lighting conditions, two of these
datasets were collected with the sensor exposed to ambient
light and the other two datasets were collected in darkness.
The feature space used for training has a dimensionality of
64, since the all LEDs OFF state is first subtracted from all
other signals and not used as a stand-alone feature.

TABLE I: Touch vs. no touch classification success rate

Ground Truth Depth Value Ambient Light
test set

Dark test
set

No touch -0.4 mm 1.0 1.0
No touch -0.2 mm 0.99 1.0

Touch 0 mm 0.04 0.10
Touch 0.2 mm 0.32 0.33
Touch 0.4 mm 0.51 0.65
Touch 0.6 mm 0.76 0.90
Touch 0.8 mm 0.96 0.96
Touch 1.0 mm 0.98 0.98

The metric used to quantify the success of our regressor is
the magnitude of the error for both the localization and depth
accuracy. In case of the classifier, the metric is the percentage
of successful predictions. Each test dataset is collected on a
random indentation pattern which contains 100 indentation
events. The results presented here are those obtained by
testing our models against two different test datasets: one
collected in ambient light and another collected in the dark.

Classification results in the region of interest for the touch
vs no-touch case are summarized in Table I. Note that these
results are sliced at a certain depth, and they aggregate the
classification performance across all locations. With both
test datasets, the classifier has difficulty detecting touch
at 0mm, where the tip of the indenter is barely making
contact with the sensor. However, at 0.6mm depth the dark
test dataset already provides a 90% success rate in the
classification, while the ambient light test dataset provides
76% success rate. According to the mapping presented on
Fig. 4, a depth of 0.6mm corresponds to an indentation force
of approximately 2 Newtons. This represents the minimum
indenter force our sensor is capable of detecting.

Regression results for localization on the light dataset
are presented on Fig. 7 for a few representative depths.
At depth 0.1mm the signals are still not good enough to
provide accurate localization, but as we indent further down
localization improves well beyond sub-millimeter accuracy.

The regression for depth can only be visualized for a
specific location. Fig. 6 shows the performance at three
different locations in our ambient light test dataset. Since
this regressor is trained only on contact data, it is not able
to predict negative depths which causes error to be greater
at depths close to 0mm. At 0.5mm and deeper, the depth
prediction shows an accuracy of below half a millimeter.

Accuracy in localization and depth for both of our test
datasets is presented in more detail in Tables II and III.

VII. CONCLUSIONS

In this paper, we explore the use of light transport through
a clear medium as the core transduction method for a tactile
pad. We develop touch sensors with multiple light emitter
and receivers around the perimeter of a clear elastomer
pad. By measuring light transport between each emitter-
receiver pair we collect a very rich signal set characterizing
indentation performed anywhere on the sensor surface. We
then mine this data to learn the mapping between our signals
and the variables characterizing indentation. The result is
a low-cost, easy to manufacture tactile pad that displays
many desirable characteristics: sensitivity to initial contact,
and sub-millimeter accuracy in predicting both indentation
location and depth throughout most of the operating range.

Our sensor achieves sub-millimeter accuracy over a
400mm2 workspace, while reporting indentation depth
within 0.5mm throughout most of the operating range. This
sensitivity is the result of leveraging two different modes
in which the indenter affects light transport in the PDMS:
the first mode being capable of detecting small indentations
during initial contact, and the second mode detecting larger
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(c) Location (10.9, 6.2)

Fig. 6: Regression results for depth prediction at a central location (a), an edge location close to the x-axis (b) and another
edge location close to the y-axis of the sensor(c). These are some of the random locations in our test dataset

indentations for stronger contact. We use depth here as a
proxy for indentation force, based on a known stiffness curve
for our sensor; it is also possible to adjust the PDMS layer
thickness and stiffness. A stiffer PDMS layer will require a
larger force to activate the second sensing mode.

Future work will be focused on adapting this method for
arbitrary geometries, such that any surface can be covered
with this method. There is also the possibility of learning
additional variables, such as shear forces or torsional friction.
Other important factors were also left out of this preliminary
study, such as an analysis of temporary properties, especially
regarding signal drift that might arise over long term periods.
Repeatability, hysteresis and sensitivity to environmental
factors are also important metrics that should be further
analyzed. Another improvement could be to incorporate
multi-touch capability into our detection algorithms.

We believe that ultimately the number of variables that
can be learned and how accurately we can determine those
variables depends on the raw data that can be harvested
from the sensor. Increasing the number of sensing units
or even incorporating different sensors embedded into the
elastomer can extend the sensing modalities in our sensor.
Different learning methods like deep neural networks might
also improve the performance or capability of the sensor. All
these ideas will be explored in future work.
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Fig. 7: Localization results for ambient light test dataset. Each arrow represents one indentation in our test set; the base is
at the ground truth location while the tip of the arrow shows the predicted location.

TABLE II: Localization and depth accuracy for ambient light dataset

Depth Localization Accuracy Depth Accuracy
Median Err. Mean Err. Std. Dev Median Err. Mean Err. Std. Dev

0.1 mm 2.189 2.369 1.508 0.167 0.167 0.079
0.5 mm 0.717 0.838 0.616 0.050 0.060 0.048
1.0 mm 0.641 0.744 0.530 0.048 0.065 0.051
2.0 mm 0.421 0.500 0.316 0.040 0.048 0.037
3.0 mm 0.362 0.413 0.256 0.037 0.047 0.041
5.0 mm 0.314 0.359 0.222 0.081 0.092 0.062

TABLE III: Localization and depth accuracy for dark dataset

Depth Localization Accuracy Depth Accuracy
Median Err. Mean Err. Std. Dev Median Err. Mean Err. Std. Dev

0.1 mm 3.502 3.832 2.202 0.182 0.183 0.072
0.5 mm 1.102 1.333 0.985 0.050 0.058 0.044
1.0 mm 0.779 0.840 0.535 0.056 0.064 0.047
2.0 mm 0.547 0.657 0.452 0.047 0.056 0.046
3.0 mm 0.410 0.487 0.322 0.039 0.050 0.042
5.0 mm 0.316 0.392 0.288 0.089 0.109 0.072
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