Abstract:
In this paper we present a low-cost and easy to fabricate 3-axis tactile sensor based on magnetic technology. The sensor consists in a small magnet immersed in a silicone...Show MoreMetadata
Abstract:
In this paper we present a low-cost and easy to fabricate 3-axis tactile sensor based on magnetic technology. The sensor consists in a small magnet immersed in a silicone body with an Hall-effect sensor placed below to detect changes in the magnetic field caused by displacements of the magnet, generated by an external force applied to the silicone body. The use of a 3-axis Hall-effect sensor allows to detect the three components of the force vector, and the proposed design assures high sensitivity, low hysteresis and good repeatability of the measurement: notably, the minimum sensed force is about 0.007N. All components are cheap and easy to retrieve and to assemble; the fabrication process is described in detail and it can be easily replicated by other researchers. Sensors with different geometries have been fabricated, calibrated and successfully integrated in the hand of the human-friendly robot Vizzy. In addition to the sensor characterization and validation, real world experiments of object manipulation are reported, showing proper detection of both normal and shear forces.
Date of Conference: 29 May 2017 - 03 June 2017
Date Added to IEEE Xplore: 24 July 2017
ISBN Information: