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Abstract— Autonomous Mobility On Demand (MOD) systems
can utilize fleet management strategies in order to provide
a high customer quality of service (QoS). Previous works
on autonomous MOD systems have developed methods for
rebalancing single capacity vehicles, where QoS is maintained
through large fleet sizing. This work focuses on MOD systems
utilizing a small number of vehicles, such as those found on
a campus, where additional vehicles cannot be introduced as
demand for rides increases. A predictive positioning method
is presented for improving customer QoS by identifying key
locations to position the fleet in order to minimize expected
customer wait time. Ridesharing is introduced as a means for
improving customer QoS as arrival rates increase. However,
with ridesharing perceived QoS is dependent on an often
unknown customer preference. To address this challenge, a
customer ratings model, which learns customer preference
from a 5-star rating, is developed and incorporated directly
into a ridesharing algorithm. The predictive positioning and
ridesharing methods are applied to simulation of a real-world
campus MOD system. A combined predictive positioning and
ridesharing approach is shown to reduce customer service times
by up to 29%. and the customer ratings model is shown to
provide the best overall MOD fleet management performance
over a range of customer preferences.

I. INTRODUCTION

Mobility On Demand (MOD) systems have the potential
to revolutionize transportation systems in urban settings by
providing commuters access to vehicles without requiring
private ownership. In such systems, a fleet of shared vehicles
continually services multiple customers by transporting them
from their requested on demand pickup location to their
desired destination. It is estimated that by 2030, as much
as 26% of all global miles traveled will be from customers
using shared vehicles [1]. A fundamental challenge for MOD
systems is providing a high customer quality of service (QoS)
in order to minimize any drawbacks that customers may
experience by relying on the shared resources.

There are many factors that can affect a customer’s QoS
such as cost, comfort, safety and convenience [2], many
of which can be improved through the use of autonomous
MOD systems composed of self-driving vehicles [3]. Several
autonomous MOD fleet management strategies have been
introduced as a means of improving QoS. These approaches
attempt to find a “rebalancing” policy that redistributes
vehicles within the system based on customer demand using
either a fluid model approach [4], a Markov transition model
approach [5], a queueing-theoretical model approach [6], or
a model predictive control approach [7]. The approaches
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(a) MIT MOD fleet (b) Rating app

Fig. 1: (a) A fleet of three electric shuttles operate as MOD vehicles
on MIT campus. (b) MIT MOD customers have the ability to provide
app-based feedback in the form of a 5-star rating.

were developed to operate on city-wide scales and assume
that an appropriately large fleet of autonomous vehicles is
available, an assumption that does not yet reflect the current
state of real-world autonomous MOD systems. In practice,
autonomous MOD systems are being deployed with limited
sized fleets [8]–[10]. This work is further motivated by
our own MOD system operating on MIT campus, where
autonomous fleet management strategies are applied to a fleet
of only three human-driven vehicles, shown in Figure 1a.
Previous rebalancing methods do not scale well when applied
to such small fleets. For example, the policies are designed to
redistribute multiple excess vehicles to relatively few network
arrival locations. The methods breakdown when the reverse
is true and fleet sizes are relatively small compared to the
number of network locations such that there generally aren’t
enough vehicles to cover all arrival locations. This work seeks
to address this challenge by instead identifying key locations
in the MOD system which minimize expected customer wait
times regardless of fleet size.

Additionally, those previous works only consider the use of
single capacity vehicles and do not address the benefits and
challenges of utilizing ridesharing. In ridesharing, multiple
customers may share a ride in an MOD vehicle at the same
time. Newly arrived passengers can be picked up before
onboard passengers have been dropped off, allowing for more
customers to be serviced with fewer vehicles. However, the
reduced wait time for requested passengers comes at the
expense of increased ride time of onboard passengers. With
ridesharing, perceived QoS becomes dependent on customer
preference (i.e. how much customers prefer one service
metric over another). A large body of work has studied
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a form of ridesharing known as the Dial-A-Ride Problem
(DARP), which is a specialization of the Vehicle Routing
Problem formulated specifically for the transportation of
customers. DARP problem formulations typically take either
the form of an integer program or a scheduling problem.
Integer program formulations encode each customer QoS
metric as a decision variable and use heuristic methods
such as genetic algorithms [11], simulated annealing [12],
and tabu search [13] to minimize an objective, such as a
cost function composed of a weighted sum of the metrics.
Scheduling problem formulations enumerate the possible ways
of inserting new passengers into vehicle schedules, and encode
customer QoS metrics as feasibility constraints [14]–[16]. The
main challenge with all of these approaches is that the weights
or constraint thresholds that define customer preference may
be chosen incorrectly and even the structure that encodes
the QoS metrics could be wrong. In general determining
customer preference can be difficult. However, many MOD
systems such as Uber, Lyft, and the MIT MOD system are
able to query passengers for feedback in the form of a 5-star
rating using a ride request app, as shown in Figure 1b. This
work takes advantage of this available information through
a ridesharing algorithm which does not encode customer
preference directly, but rather utilizes a learned customer
ratings model when solving the DARP scheduling problem.

The contributions of this work are: 1) a predictive posi-
tioning approach that minimizes expected customer wait time
in MOD networks with fewer vehicles than customer arrival
locations; 2) a customer rating model which learns from 5-
star rating feedback and serves as a customer QoS-focused
cost function; and 3) a schedule-based ridesharing framework
that accommodates customer QoS metrics without the need
for encoding customer preference constraints.

II. PROBLEM FORMULATION

1) Customer Arrival Model: An MOD network is modeled as
a directed network graph denoted by G = (N ,L), whereN =
{n1, . . . , nNn} is a set of Nn nodes, and L = {l1, . . . , lNl

}
is a set of Nl directed link edges each taking the form of an
ordered pair of neighbor nodes l = (ni, nj) ∈ N 2. A route
r(ni, nj) is defined as a sequence of directed links Lr ⊆ L
which corresponds to a unique minimum-travel-time path
between a pair of nodes (ni, nj). Customers are assumed to
arrive at nodes in the network graph according to a Poisson
process with arrival rate parameter λn. In many MOD systems,
customer arrival rates will be time-varying and may feature
large fluctuations on short-time scales. In this work, a discrete-
time approximation is used where Poisson arrival rates are
static for the operating duration, with short-term fluctuations
averaged out across the time period.
2) Ridesharing: Upon arrival, customers send ride requests
consisting of a pickup node p ∈ N and a drop off node
e ∈ N . Let C of size Nc be the set of customers who
have requested rides, let O of size No = 2Nc be the set of
requested customer pickup and drop off nodes, and let V of
size Nv be the set of vehicles in the MOD fleet. Vehicle v
will service a subset of the customers Cv ⊆ C by visiting

their pickup and drop off nodes. All customer nodes are
inserted into a schedule sv = {s1, . . . sNo}, si ∈ {∅,N},
which the vehicle traverses in order using a sequence of
routes. Let Q be the maximum capacity of each vehicle. The
ridesharing problem is that of finding both the customer to
vehicle assignments as well as the vehicle schedules such
that the cost of scheduling all customers is minimized. A
four-index ILP formulation for the DARP is proposed as an
extension of the models presented in [17], with emphasis
placed on the ordering of customers within schedules. The
decision variables xvcij ∈ {0, 1} are equal to 1 if vehicle v is
assigned customer c, with pc and ec respectively sequenced at
si and sj ; and zero otherwise. The objective of the ridesharing
problem formulation is to minimize the total customer QoS
cost, that is,

argmin
xv
cij

∑
v∈V

∑
c∈C

No∑
i=1

No∑
j=1

gvcijx
v
cij (1)

s.t.
∑
v∈V

No∑
i=1

No∑
j=1

xvcij = 1 ∀c ∈ C (2)

No∑
i=1

i∑
j=1

xvcij = 0 ∀v ∈ V, c ∈ C (3)∑
c∈C

xvcij = 1 ∀ v ∈ V, i, j ∈ {1, . . . , No} (4)

∑
c∈C

k∑
i=1

No∑
j=k+1

xvcij ≤ Q ∀v ∈ V, k ∈ {1, . . . , No}

(5)
xvcij ∈ {0, 1} ∀v ∈ V, c ∈ C, i, j ∈ {1, . . . , No},

where (2) enforces that all customers are assigned, (3)
enforces that a customer is picked up before being dropped
off, (4) enforces that only one customer can occupy a given
schedule position, and (5) enforces that the capacity of
the vehicle is not exceeded. The cost, further described in
Section III-B.2, is chosen to be a function of the QoS metrics
mc that a customer experiences, that is gvcij = g(mvij

c )
where the metrics themselves are a function of the customer’s
position in a vehicle’s schedule.
3) QoS Metrics: Customer QoS is quantified using a set
of transportation metrics, similar to those in [2]. First,
customer requests are either accepted by the MOD sys-
tem, in which case the customers will be assigned to a
vehicle and given a ride, or rejected by the system and
the customers will walk. Let 1rej be a rejection indicator
variable which takes value 1 if the customer is rejected
and 0 otherwise. The remaining customer QoS metrics are:
ride time tride, wait time twait, service time tservice, ratio of
ride time to direct time tratio, excess ride time texcess ride,
maximum number of stops while user is onboard N stops,
the notification time tnotify, the total traveled distance while
onboard dtraveled, the time it would have taken the customer
to walk, twalk, and service time in excess of walk time
texcess walk. Let mc ∈ R11 be the QoS metrics for customer
c, that is mc = {1rej

c , tride
c , twait

c , tservice
c , tratio

c , texcess ride
c , N stops

c ,



Algorithm 1: Predictive Positioning

1 Input: customer node arrival rates {λ1, . . . λNn
}

2 Output: vehicle locations k∗

3 enumerate vehicle placement options K
4 enumerate possible arrival locations A
5 for a ∈ A do
6 for k ∈ K do
7 wk,a ← computeTotalWaitTime(k,a)

8 pa ← computeProbability(a)

9 k∗ = argmin
k∈K

∑
a∈A

wk,apa

10 return k∗

tnotify
c , dtraveled

c , twalk, texcess walk
c }. Evaluation of these metrics

is further detailed in Appendix A.

III. APPROACH

This section present two new approaches for utilizing
and solving the ridesharing problem, (1) to (5), in order to
improve customer service under different operating regimes.
The first approach manages vehicles in the absence of ride
requests by using a predictive positioning algorithm, while
the second approach manages vehicles to accommodate ride
requests using a ridesharing algorithm. Additionally, two QoS
focused cost functions are presented, a traditional weighted
cost function, and a customer rating model which learns
customer QoS preference from customer rating feedback.

A. Predictive Positioning

The predictive positioning algorithm uses known customer
arrival rates {λ1, . . . λNn

} to find the key predictive nodes
within the network graph to place unassigned vehicles
such that the expected wait time for arriving customers is
minimized. A special form of the ridesharing problem, (1)
to (5), is solved for a sequence of Na predicted customer
arrivals, where 1) vehicles are only assigned to at most one
predicted customer (Q = 1); 2) the number of considered
customers is set to be the number of vehicles (Na = Nv); and
3) the cost is set to be the customer wait time. Let the vector
k ∈ {0, 1, . . . , Nv}Nn denote the number of vehicles located
at each node and a ∈ {0, 1, . . . , Na}Nn be the number of
customer arrivals on each node. K = {k |

∑Nn

i=1 ki = Nv}
is the set of all possible vehicle placement options, and
A = {a |

∑Nn

i=1 ai = Na} is the set of all combinations of
possible arrivals. The predictive node locations k∗ for which
to place vehicles is determined using Algorithm 1.

The wait time cost wk,a in Line 7 is determined by using a
greedy solution to the ridesharing problem. The wait times are
assumed to be dependent only on the structure of the network
graph, and therefore are computed and stored offline. To
handle the cases where some vehicles are serving customers
while others need to be predictively positioned, wait times
are computed for all numbers of free vehicles from 1 to Nv .

The probability of a set of arrivals pa in Line 8 is
determined using decomposition of the total network arrival

Algorithm 2: Ridesharing

1 Input: request {pc, ec}, previous customer allocations
{C1, . . . CNv

}, schedules {s1, . . . , sNv
}

2 Output: schedule for assigned vehicle sv∗
3 for v = 1 : Nv do
4 Ĉv ← {c, Cv}
5 Ŝv ← enumerateInsertions(sv, pc, ec)
6 s∗v = argmin

ŝv∈Ŝv

∑
c∈Ĉv

g(h(ŝv, ic, jc))

7 M∗v ← computeNewMetrics(s∗v)
8 Mv ← computeBaselineMetrics(sv)

9 M∗Nv+1 ← computeRejectionMetrics(pc, ec)
10 v∗ ← assignToLowestBid({M,M∗}1:Nv

,M∗Nv+1)
11 sv∗ ← s∗v∗
12 return sv∗

Poisson process. Given that an arrival occurs, the probability
of that arrival occurring at a node ni is given by P (ai = 1 |
Na = 1) =

λni

Λ . The probability of a set of arrivals occurring
according to a follows a multinomial distribution,

P (a) =
Na!

a1! . . . aNn
!

(
λ1

Λ

)a1
· · ·
(
λNn

Λ

)aNn

. (6)

Arrival probabilities are computed online whenever customer
arrival rates change.

B. Ridesharing

1) Ridesharing Algorithm: The ridesharing algorithm uses
an insertion method as a heuristic solution to the ridesharing
problem. Algorithm 2 presents the method for assigning
a new customer request to a vehicle such that the total
QoS cost to the system is minimized. The algorithm is
executed online whenever a new customer ride request is
submitted. Line 4 temporarily assigns the new customer to
each vehicle generating a temporary customer allocation Ĉv .
Line 5 enumerates all feasible ways of inserting the request
into the schedule, where Ŝv is the set of all feasible schedules
ŝv , and where feasibility is met by ensuring that pc is inserted
before ec and that vehicle capacity is not exceeded. Lines 6
and 7 find the best feasible schedule s∗v and corresponding
new customer QoS metrics M∗v for each vehicle, where
M∗v = {mc̄ | c̄ ∈ Ĉv}. For comparison, Line 8 computes the
original customer QoS metrics Mv for each vehicle, where
Mv = {mc̄ | c̄ ∈ Cv}.

Rather than imposing constraints on customer QoS metrics,
the algorithm uses a virtual “rejection vehicle”, v = Nv + 1
to make bids that consider the case where the customer
is not serviced by the MOD system. Line 9 computes the
rejection vehicle customer metricsM∗Nv+1 = mrejected

c . While
seemingly counter-intuitive, rejections are in fact important
for improving customer QoS. For example, if a customer’s
wait time is significantly longer than the time it would take for
them to walk, then they may prefer to be rejected rather than
to wait to use the service. In this work, rejected customers
are prevented from making additional requests, although this



could be adapted to allow customers to resubmit with QoS
relaxations.

Line 10 finds the combination of baseline and new metrics
that includes all customers and has the lowest overall customer
QoS cost, and then returns the vehicle v∗ that contains c.
If v∗ is the rejection vehicle, then the customer is rejected,
otherwise the schedule for v∗ is updated to accommodate the
request.

The primary benefit of the ridesharing algorithm is the
ability to evaluate customer QoS without having to encode the
customer preference structure into the algorithm. For example,
other methods [14]–[16] encode feasibility constraints on
customer metrics such as wait time or ride time, where
customers are rejected if these are not met. Instead, a more
general approach is taken in Algorithm 2 where a competing
bid is made to reject a customer, and the rejection is made
only when the overall QoS of the system would be improved
by doing so. This approach opens the door for a ratings based
cost function where bids are made without constraining the
customer metrics directly.

2) Ridesharing Cost Functions: Two ridesharing cost
functions are presented which evaluate the customer QoS cost
from a set of customer ride metrics. First, a cost function
composed of a linear weighted combination of the customer
metrics is proposed as

g(mc) =

|mc|∑
i=2

wrej
i 1rej

c mc,i + wacpt
i (1− 1rej

c )mc,i, (7)

where wrej
i and wacpt

i are weights for metric i that are used
to allow for differentiating between rejected and serviced
customers. For example, a service time focused cost function
would be g(mc) = 1rej

c twalk
c + (1 − 1rej

c )tservice
c , where the

cost is the service time if the customer receives a ride
and the walk time if they are rejected. This form of cost
function requires that the weights be properly chosen to
reflect customer preference, and can result in poor customer
QoS if the weights are wrongly chosen.

To overcome the need to choose weights, a second ratings
based cost function is presented which learns and uses
customer preference through feedback from 5-star ratings. The
rating model utilizes a random forest of classification decision
trees, based on the work of [18]. Random forest algorithms
tend to prevent overfitting and have been demonstrated to
perform well empirically [19]. To train the random forest
model, a dataset D from ND customers is collected in the
form of 5-star ratings Ytrain = {y1, . . . , yND

} and a ride
metrics feature vector Xtrain = {m1, . . . ,mND

} such that
Ytrain = RF (Xtrain) where RF (X) is the trained random
forest. The trained random forest then serves as the ridesharing
cost function such that g(mc) = −RF (mc) where the minus
sign is included to maximize customer rating. It is assumed
that a customer’s 5-star rating is given purely to reflect their
ride metrics and not factors such as driver interactions which
are not necessary for autonomous MOD systems.

Fig. 2: Pedestrian traffic network on MIT campus with overlaid
pedestrian trajectories. The network graph is composed of 27 nodes,
106 directed links, and 1056 precomputed routes.

IV. EXPERIMENTS

The predictive positioning and ridesharing methods are
tested using simulation of the MIT MOD system. Specially,
there are two motivating test cases: 1) evaluating how
service times for customers are affected under different
fleet management strategies as customer arrival rates grow;
and 2) evaluating how customer QoS is affected by various
ridesharing strategies operating under a range of unknown
customer preference models. The MIT MOD system is used to
provide simulation parameters that reflect a realistic operating
environment for vehicles and customers.

A. Simulation Setup

Pedestrians and vehicles operate within a network graph
for the MIT campus. The network graph, shown in Figure 2,
is generated using pedestrian trajectory data collected from
sensors onboard the MOD vehicles following the method
presented in [20]. A two hour time period is simulated;
during which time a subset of 10 randomly chosen nodes are
assigned non-zero pedestrian arrival rates in order to reflect
that not every campus location experiences arrivals at all
times. Customer arrival rates are static for the time period
and take values between 0 and 0.45 ped/min at each node.
There are 3 vehicles in the MIT MOD system each with a
maximum capacity of 3 passengers. Vehicles travel between
nodes according to the schedule generated by the ridesharing
algorithm. A vehicle picks up its assigned customers upon
reaching a scheduled node. If a vehicle’s schedule is empty,
the vehicle will travel to nodes prescribed by the predictive
positioning algorithm. Vehicle link speeds are either 11m/s for
links corresponding city streets or 4m/s for campus pathways.

Predictive Positioning

The predictive positioning algorithm finds key predictive
node positions to place unallocated MOD vehicles based on
customer arrival rate parameters. Figure 3 shows the predictive
nodes chosen for either 1, 2, or 3 unallocated vehicles for a
particular set of arrival rates. The predictive nodes take into



Fig. 3: Relative customer arrival rates and computed predictive
nodes. The numbered predictive nodes illustrate where unassigned
MOD vehicles should be located to minimize the expected wait
time for customers. The radius of the circles indicates the relative
magnitudes of the node arrival rates. The numbers indicate the
locations to place either 1, 2, or 3 vehicles depending on the current
number of unallocated vehicles.

account both the probability of the arrivals occurring and
the vehicles’ travel time to reach each node. If only a single
vehicle is unallocated, it will tend to be positioned centrally
within the network, but skewed towards large arrival rates.
When more vehicles are unallocated, the predictive nodes are
further spread out for better coverage.

The performance of the predictive positioning algorithm is
evaluated through comparison against a baseline unmanaged
MOD strategy, where vehicles respond to pickup requests but
are not repositioned after dropping off customers. The two
methods are first compared without the use of ridesharing
(vehicle capacities are 1), with assignments evaluated using
a minimum service time cost function. Figure 4 shows that
predictive positioning is able to reduce customer service times.
When arrival rates are lower than 0.35 ped/min per vehicle,
there is often time between arrivals for vehicles to reposition
to the predictive nodes and service times can be reduced by
up to 20%. As arrival rates increase, however, the benefits of
predictive positioning are reduced as vehicles are continually
allocated to requests. Under high arrival rates, it would be
desirable to add more vehicles to shift to the lower portion
of the curve. However, with a fixed-sized fleet, that option is
not available so ridesharing is used as an alternative.

B. Ridesharing

The performance of the ridesharing algorithm is evaluated
by comparing the single capacity predictive positioning
and unmanaged MOD methods with ridesharing versions
where the maximum vehicle capacity is increased to 3. The
ridesharing algorithm is applied using a minimum service time
cost function. Figure 4 also shows that ridesharing reduces
customer service times. When arrival rates are lower than
0.35 ped/min per vehicle, the ridesharing methods perform
similarly to their single capacity counterparts since current
customers can be serviced before new customers arrive. But

Fig. 4: Service times for unmanaged and predictive positioning
methods, with and without ridesharing, over a range of customer
arrival rates. The figure shows that predictive positioning reduces
service times when arrival rates are low and ridesharing reduces
service times when arrival rates are high. The service times are
normalized by the direct time so as not to penalize service times for
customers with longer routes. Lower service times are better. The
arrival rates are normalized by the number of vehicles. The mean
and standard deviation from 100 iterations are shown.

at higher arrival rates, the ridesharing algorithm begins to
utilize the excess vehicle capacity and new customers are
inserted into vehicle schedules before previous customers
have finished their ride. Through the use of a combined
predictive positioning and ridesharing approach, the MOD
system is able achieve a better customer QoS across all arrival
rates, resulting in as much as a 29% reduction in service time
compared to the single capacity unmanged MOD strategy.

C. Customer Preference

In the previous analysis, the customer preference was
assumed to be focused on service time. However, this
assumption can be wrong and customers may give poor
ratings if the the true customer preference lies elsewhere
in other QoS metrics. To evaluate the rating performance
of an MOD system, a simulated rating model is used to
assign a 5-star ratings to customers based on a set of
customer preference weights. The details of the simulated
rating model are provided in Appendix B, which also
specifies how customer preference is encoded using weight
concentration parameters. Six customer preference modes
are analyzed, where the weight concentration parameters are
90% skewed towards either wait time, ride time, service
time, the number of stops while onboard, ride distance, or a
combined weight between service time and ride distance. Five
fleet management strategies are considered. First, a minimum
vehicle distance strategy is considered, where assignments
are not made based on customer ratings but rather based
on the traditional minimum vehicle travel distance metric
which would minimize fuel consumption. Next, three focused
strategies based on ride time, service time, and wait time
are included, where each strategy is given access to the
underlying ground truth ratings function but chooses rating
weights according to its focus. Finally, the presented random



TABLE I: MOD fleet management performance as measured by
average customer rating.

Customer Preference
Strategy Wait Ride Service # Stops Distance Combined Average
Distance 4.53 4.70 4.22 3.91 4.10 4.17 4.27

Ride Time 4.42 4.97 4.43 4.50 4.97 4.70 4.66
Service Time 4.67 4.88 4.64 4.30 4.62 4.63 4.62

Wait Time 4.69 4.42 4.09 3.64 3.51 3.82 4.03
Ratings 4.67 4.96 4.63 4.95 4.96 4.60 4.80

forest ratings model strategy is included where the ground
truth ratings function is not available but rather customer
preference is learned from 5-star customer feedback ratings.
The random forest model is implemented using [21], which
is trained separately under each customer preference mode
for 10 runs. To further test the ratings model, all ride distance
metrics are removed from the random forest feature vector
in order to see if performance can be learned using only
non-corresponding, but correlated metrics. The arrival rate is
fixed at 0.35 ped/min per vehicle so that the MOD fleet is
operating under the ridesharing regime.

Figure 5 shows how the performance, in terms of average
received rating, for each strategy depends on the underly-
ing customer preferences. Table I summarizes the average
customer rating over all 20 iterations. The results show that
wait time, ride time, and service time each perform best
when the customer preference mode matches. Additionally,
the ride time metric performs best under the excess ride
distance and combined customer preference modes because
ride distance and ride time are correlated. However, each of
the focused fleet management strategies performs relatively
poorly under at least one customer preference mode, and the
minimum distance strategy always performs poorly because
customer preference is not considered. In contrast, the ratings
model demonstrates robust performance across all customer
preference modes. The ratings model is within 0.5% of the
focused strategies under their respective modes, demonstrating
that it was able to learn which customer metrics were
important under each mode. The excess ride distance mode
illustrates how the ratings model is able to learn customer
preference using elements in its feature vector that are
only correlated with the customer preference metric and
not included directly. Finally, when considering the average
performance over all customer preference modes, the ratings
model performed best.

V. CONCLUSION

This work demonstrated that predictive positioning and
ridesharing can be utilized in an MOD system in order to
improve customer QoS. A predictive positioning algorithm
was presented which uses customer arrival rate information
to position vehicles at key nodes in the MOD network
graph which minimize the expected customer wait time. In a
simulated campus setting, the predictive positioning method
was shown to reduce customer service times by as much
as 20% when customer arrival rates are low. To improve
QoS as arrival rates increase, a ridesharing approach was
presented which utilizes a customer QoS based cost function.
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Fig. 5: Average customer rating for several fleet management
strategies under customer preferences that are skewed towards either
(a) wait time, (b) ride time, (c) service time, (d) the number of stops
while onboard, (e) the excess ride distance between the received
ride and a direct ride, or (f) a combined skew between service time
and excess ride distance. The figures show that the performance of
each strategy is dependent on the underlying customer preference,
with the exception of the ratings strategy which performs well in
all cases. Each figure shows the results of 20 runs. Performance is
measured by the average customer rating where higher ratings are
better.

A combined predictive positioning and ridesharing approach
was shown to reduce customer service times by as much as
29%. A customer ratings model was introduced as a means
for learning customer preference through feedback in the form
of a 5-star rating. The customer ratings model is shown to
provide the best overall MOD fleet management performance
over a range of customer preferences.

The predictive positioning and ridesharing methods which
were evaluated for the campus setting could also be applied
to larger networks. To improve the scalability of Algorithm 1,
predictive node locations could represent larger regions within
an MOD service area, where customer wait times include
both the travel time between regions and the expected travel
time within a region. The ridesharing method can be applied
to larger fleets by parallelizing the scheduling computations



for each vehicle across multiple machines which bid to a
centralized machine for the customer allocations.

Future work will apply these methods to the physical MIT
MOD system. Methods for learning and predicting customer
arrival rate trends will be studied so that vehicles can be pre-
dictively positioned to match real time demand. Additionally,
ratings and service metrics from actual customers will be
used to improve and evaluate rating models based on random
forest and other machine learning techniques.
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APPENDIX

A. Computing Customer Ride Metrics
This section provides details on how customer metrics are

evaluated using vehicle schedule information. Customer c
makes a request at the point in time t̂ request

c and is assigned
to v currently located at node nv. The pickup pc and drop
off ec nodes for c occur at respective nodes si and sj in the
vehicle schedule sv . The vehicle travels between any adjacent
nodes sk and sk+1 in its schedule using route r(sk, sk+1).
The travel distance and travel time between the nodes are

d(sk, sk+1) =
∑

l∈Lr(sk,sk+1)

dl, (8)

t(sk, sk+1) =
∑

l∈Lr(sk,sk+1)

dl
ul
, (9)

where dl and ul are the length and average travel speed of
link l, respectively.

The metrics mvij
c are computed as follows:

t̂ pickup
c = t(nv, s1) +

i−1∑
k=1

t(sk, sk+1), (10)

t̂ dropoff
c = t(nv, s1) +

j−1∑
k=1

t(kk, sk+1), (11)

tdirect
c = t(pc, ec), (12)

ddirect
c = d(pc, ec), (13)

twalk
c = t̄(pc, ec), (14)

tride
c = t̂ dropoff

c − t̂ pickup
c , (15)

twait
c = t̂ pickup

c − t̂ request
c , (16)

tservice
c = twait

c + tride
c , (17)

tratio
c = tride

c /tdirect
c ,

texcess ride
c = tride

c − tdirect
c , (18)

N stops
c = k − j, (19)

tnotify
c = t̂ assigned

c − t̂ request
c , (20)

dtraveled
c =

j−1∑
k=i

d(sk, sk+1), (21)

texcess walk
c = tservice

c − twalk
c , (22)

where t̂ pickup
c is the point in time c is picked up, t̂ dropoff

c is the
point in time c is dropped off, tdirect

c is the time it would take to
drive directly from pc to ec, ddirect

c is the direct route distance
between pc and ec, twalk

c is the time it would take to walk
from pc to ec, t̄(ni, nj) is (9) evaluated with r(ni, nj) and vl,
as the respective route and speed of the pedestrian instead of a
vehicle, and t̂ assigned

c is the point in time when the ridesharing
algorithm assigns the customer to the vehicle. Note, if a
customer is rejected (1rej

c = 1), then many of the metrics do

not apply and the customer metrics are set to be mrejected
c =

{1rej
c , t

notify
c , twalk

c }. If the customer is given a ride, then the met-
rics are mc = {1rej

c , tride
c , twait

c , tservice
c , tratio

c , texcess ride
c , N stops

c ,
tnotify
c , dtraveled

c , twalk, texcess walk
c }.

B. Simulated Rating Model

This section presents a simulated rating model, which is
used as ground truth in simulation to assign 5-star ratings
to MOD customers. The values and functional forms are
chosen based on an assumed customer preference and are
kept hidden from the 5-star rating model.

If a customer is rejected, then they give one of the two
lowest ratings based on how long they waited to be notified
of their rejection. A rejected customer’s rating is

rrejected =

{
2, if tnotify

c

twalk
c
≤ 0.1

1, otherwise.
(23)

If a customer is given a ride, then the rating will be a
weighted sum of 5 aggregate ratings based on wait time,
ride time, service time, number of stops, and ride distance
computed as

raccepted
c = w1r

wait
c +w2r

ride
c +w3r

service
c +w4r

stops
c +w5r

distance
c ,

(24)
with

rwait
c = Range

(
twait
c

twalk
c − tdirect

c

, 0, 1

)
rride
c = Range

(
tride
c − tdirect

c

twalk
c − tdirect

c

, 0, 1

)
rservice
c = Range

(
tservice
c − tdirect

c

twalk
c − tdirect

c

, 0, 1

)
rstops
c = max(1, 6−N stops

c )

rdistance
c = Range

(
dtraveled
c − ddirect

c

ddirect
c

, 0, 0.5

)
,

where Range(α, β, γ) maps α to the i-th interval of 5
exponentially spaced values between β and γ and assigns the
value 6-i as the rating. Range values were chosen to reflect
a set of possible expected customer satisfaction levels for
each metric. For example, setting the γ value for rdistance

c to
0.5 reflects that customers would give the lowest rating once
their journey distance exceeded the nominal distance by a
factor of 0.5. Exponential spacing is used to cause ratings to
drop off more quickly as metrics worsen for customers.

The majority of customers follow the same set of weights
w, but some customers do not. To accommodate this, the
weights are drawn from a Dirichlet distribution such that
w ∼ Dir(ŵ), where the concentration parameters ŵ represent
the nominal weights for the population.
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