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Abstract— In practice, the parameters of control policies are
often tuned manually. This is time-consuming and frustrating.
Reinforcement learning is a promising alternative that aims to
automate this process, yet often requires too many experiments
to be practical. In this paper, we propose a solution to this
problem by exploiting prior knowledge from simulations, which
are readily available for most robotic platforms. Specifically,
we extend Entropy Search, a Bayesian optimization algorithm
that maximizes information gain from each experiment, to
the case of multiple information sources. The result is a
principled way to automatically combine cheap, but inaccurate
information from simulations with expensive and accurate
physical experiments in a cost-effective manner. We apply the
resulting method to a cart-pole system, which confirms that the
algorithm can find good control policies with fewer experiments
than standard Bayesian optimization on the physical system
only.

I. INTRODUCTION

Typically, the control policies that are used in robotics
depend on a small set of tuning parameters. To achieve
the best performance on the real system, these parameters
are usually tuned manually in experiments on the physical
platform. Policy search methods in reinforcement learning
aim to automate this process [1]. However, without prior
knowledge, these methods can require significant amounts of
experimental time before determining optimal, or even only
reasonable parameters. In robotics, simulation models of the
robotic system are usually available, e.g., as a by-product
of the design process. While exploiting knowledge from
simulation models has been considered before, no principled
way to trade off between the relative costs and accuracies
of simulations and experiments exists [2]. As a result,
state-of-the-art reinforcement learning methods require more
experimental time on the real system than necessary.

In this paper, we propose a new reinforcement learning
method that can automatically optimize the parameters of
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Fig. 1. The proposed algorithm optimizes the parameters θ of a control
policy based on data of a cheap, but inaccurate simulation and expensive
data from the real system. By actively trading off between the information
that can be gained from each system relative to their costs, the algorithm
requires significantly fewer evaluations on the physical system.

control policies based on data from different information
sources, such as simulations and experiments. Specifically,
we use an extension of Entropy Search [3], [4], a Bayesian
optimization framework for information-efficient global opti-
mization. The resulting method automatically trades off the
amount of information gained from different sources with
their respective costs and requires fewer physical experi-
ments to determine optimal parameters (see Fig. 1).

Related work: Improving the performance of reinforce-
ment learning with prior model information from a simulator
has been considered before. A typical approach is two-
stage learning, where algorithms are trained for a certain
amount of time in simulation in order to warm-start the
learning on the real robot [2]. For example, [5] reports
performance improvements when using model information
from simulation as a prior for real experiments. Transfer
learning is a similar approach that aims to generalize between
different tasks, rather than from a simulated model to the
real system [6]. The work in [7] learns an optimal policy
and value function of a finite Markov decision process
based on models with different accuracies. They rely on
hierarchical models and switch to higher accuracy models
once a threshold accuracy has been reached at a lower level.
A commonly used reinforcement learning method is policy
gradients [8], where policy parameters are improved locally
along the gradient. In this setting, simulation knowledge can
be used to estimate the gradient of real experiments [9].
However, policy gradient methods only converge to locally
optimal parameters. None of the above methods explicitly
considers the cost of experiments on a robot. In this paper,
we actively trade off the different costs and information gains
associated with simulation and real experiments and obtain
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globally optimal parameter estimates.
A method that has been particularly successful for para-

meter optimization in robotics is Bayesian optimization [10].
In particular, methods based on Gaussian process (GP, [11])
models are widely used because of their ability to deter-
mine globally optimal parameters within few evaluations.
Examples include gait optimization in legged robots [12]
and controller optimization for a snake-like robot [13].
In [14], the controller parameters of a linear state-feedback
controller were optimized using the LQR framework as a
low-dimensional representation of controller policies, while
in [15] the control policy itself was defined by Bayesian opti-
mization with a specifically chosen kernel. Safety constraints
on the robot during the optimization process were consid-
ered in [16]. A comparison of different Bayesian and non-
Bayesian global optimization methods can be found in [17].
All the previous methods use Bayesian optimization directly
on the real system. In contrast, we consider an extension of
Bayesian optimization that can extract additional information
from a simulator and speed up the optimization process.

The methodology herein is related to multi-task Bayesian
optimization, where one aims to transfer knowledge about
two related tasks [18], [19]. A GP model with multiple
information sources was first considered in [20]. Since then,
optimization with multiple information sources has been
considered under strict requirements, such as models forming
a hierarchy of increasing accuracy and without considering
different costs [21], [22]. More recently, [23] used a myopic
policy, called the ‘knowledge gradient’ by [24], in order
determine, which parameters to evaluate.

Our contribution: In this paper, we present a Bayesian
optimization algorithm for multiple information sources. We
use entropy [3], [4] to measure the information content of
simulations and experiments. Since this is an appropriate unit
of measure for the utility of both sources, our algorithm
is able to compare physically meaningful quantities in the
same units on either side, and trade off accuracy for cost.
As a result, the algorithm can automatically decide whether
to evaluate cheap, but inaccurate simulations or perform
expensive and precise real experiments. We apply the method
to optimize the policy of a cart-pole system and show that
this approach can speed up the optimization process signifi-
cantly compared to standard Bayesian optimization [14]. The
main contributions of the paper are (i) a novel Bayesian
optimization algorithm that can trade off between costs of
multiple information sources and (ii) the first application of
such a framework to the problem of reinforcement learning
and optimization of controller parameters.

For convenience within the next sections, we rename
the concepts accuracy and cost: We now refer to the lack
of accuracy of a controller as cost. Furthermore, we now
denominate the cost of retrieving an evaluation from a
specific information source as effort.

II. PROBLEM STATEMENT

We consider a reinforcement learning setting, where we
aim to find an optimal policy to complete a certain task

on a dynamic system. While we do not have access to
a perfect model of the system, we assume that a control
policy is available, which is parameterized by parameters θ
within some domain D. The goal is to determine the optimal
parameters θmin that globally minimize the cost of a task,

θmin ∈ argmin
θ∈D

J(θ). (1)

The cost J(θ) measures the performance of the policy on a
certain task on the real system. For example, one evaluation
of the cost function could consist of controlling a robot with
the parameterized policy and measuring an error signal over a
fixed time horizon. To solve the optimization problem in (1),
we can query a parameter vector θn at each iteration n
and observe the resulting performance J(θn). Since these
experiments cause wear in the robot and take time, the goal
is to minimize the number of iterations before the optimal
parameters in (1) are determined.

We assume that a simulation of the system is available,
which we want to exploit to solve (1) more efficiently with
fewer evaluations on the physical system. While simulations
are only an approximation of the real world and cannot be
used to determine the optimal parameters in (1) directly,
they can be used to provide an estimate Jsim(θ) of the true
cost. We use this estimate to obtain information about the
location of the optimal parameters on the real system. As a
result, at each iteration n, we do not only choose the next
parameters θn to evaluate, but also whether to perform a
simulation or an experiment.

Both experiments, in the real world and in simulation,
have physically meaningful evaluation efforts associated to
them. For example, the effort may account for the amount of
time required to complete an experiment/simulation and for
monetary costs such as wear in the system. The overall goal
is to minimize the total effort incurred in the experiments
and simulations until the optimal parameters (1) on the real
system are found.

III. PRELIMINARIES

We start by introducing the necessary background infor-
mation on GPs and Bayesian optimization.

A. Gaussian Processes (GPs)

While the cost J(θ) in (1) can easily be evaluated in an ex-
periment for a given parameter θ, the functional relationship
between parameters and the cost is unknown a priori. We use
GPs as a nonparametric model to approximate the unknown
function. The goal is to find an approximation of the non-
linear map, J(θ) : D 7→ R, from an input vector θ ∈ D to
the function value J(θ). This is accomplished by modeling
function values J(θ), associated with different values of θ, as
random variables so that any finite number of these random
variables have a joint Gaussian distribution [11].

For the nonparametric regression, we define a prior mean
function m(θ), which encodes prior knowledge about the
function J(·), and a covariance function k(θ,θ′), which
defines the covariance of any two function values, J(θ)
and J(θ′), θ,θ′ ∈ D, and is used to model uncertainty about



the mean estimate. The latter is also known as the kernel.
The choice of kernel is problem-dependent and encodes
assumptions about smoothness and rate of change of the
unknown function, J(·).

The GP framework can be used to predict the function
value J(θ∗) at an arbitrary input θ∗ ∈ D, based on a set
of n past observations Dn = {θi, Ĵ(θi)}ni=1. We assume that
observations are noisy measurements of the true function;
that is,

Ĵ(θ) = J(θ) + ω(θ), (2)

where the noise ω(θ) ∼ N (0, η2(θ)) depends on the input.
Conditioned on the previous observations, the mean and
variance of the posterior normal distribution are

µn(θ∗) = m(θ∗) + kn(θ∗)K−1n ŷn, (3)

σ2
n(θ∗) = k(θ∗,θ∗)− kn(θ∗)K−1n kT

n (θ∗), (4)

where ŷn =
[
Ĵ(θ1)−m(θ1), . . . , Ĵ(θn)−m(θn)

]T
is the

vector of observed, noisy deviations from the mean, the
vector kn(a∗) =

[
k(θ∗,θ1), . . . , k(θ∗,θn)

]
contains the co-

variances between the new input θ∗ and the observed data
points in Dn, and the symmetric matrix Kn ∈ Rn×n has
entries [Kn](i,j) = k(θi,θj) + δijη

2(θi), i, j ∈ {1, . . . , n}.

B. Bayesian Optimization

We want to use the GP model of the cost function
for parameter optimization. Using statistical models of an
objective function for optimization is known as Bayesian
optimization [10] in the literature. It comprises a class of
data-efficient optimization methods that aim to determine
the global optimum of cost functions that are expensive
to evaluate. In our case, each evaluation of the cost with
certain controller parameters on the robot cause wear in the
system and may take a long time to perform. In the case
of GP models, the mean, (3), and variance, (4) can be used
to determine new parameters to evaluate that are promising
candidates for the global optimum. For example, [25] uses
upper confidence bounds that allow for provable convergence
guarantees.

In this paper, we build upon the Entropy Search (ES, [3])
algorithm, which selects parameters in order to maximally
reduce the uncertainty about the location of the minimum
of J(θ) in each step. It quantifies this uncertainty through the
entropy of the distribution over the location of the minimum,

pmin(θ) = P
(
θ ∈ argmin

θ∈D
J(θ)

)
. (5)

The approach becomes tractable by approximating pmin on
a non-uniform grid, with higher resolution in areas where it
is more likely to find the minimum. The key idea is that,
upon convergence, we expect pmin to be peaked around the
minima, thus to have low entropy. The rate of change in
the entropy of pmin determines how much information about
the location of the global minimum we obtain with each
evaluation of the cost function. Given this metric, the optimal

parameter at which to evaluate the cost function in the next
iteration, is the one that is most informative:

θn+1 = argmax
θ∈D

E [∆H(θ)] , (6)

where ∆H(θ) is the change in entropy of pmin caused by
retrieving a new cost value at location θ. Intuitively, by
collecting cost values at the most informative locations (6),
we keep decreasing the amount of entropy in pmin until
eventually pmin is peaked around the optima. At iteration n,
we compute the best guess θbg about the optimal parameters
by minimizing the current GP posterior (3):

θbg = argmin
θ∈D

µn(θ). (7)

The computation of ∆H given the GP model of J(·)
requires several approximations. A full derivation is beyond
the scope of the paper, but all details can be found in [3].

IV. REINFORCEMENT LEARNING WITH SIMULATIONS

In this section, we show how the ES algorithm can be
extended to multiple sources of information, such as simu-
lations and physical experiments. The two main challenges
are modeling the errors of the simulator in a principled way
and trading off evaluation effort and information gain. In the
following, we focus on the case where only one simulation is
available for ease of exposition. However, the approach can
easily be extended to an arbitrary number of information
sources.

A. GP Model for Multiple Information Sources

To model the choice between simulation and phisical ex-
periment, we use a specific kernel structure that is similar to
the one used in [23]. The key idea is to model the cost on the
real system as being partly explained through the simulator
plus some error term. That is, J(θ) = Jsim(θ) + Jerr(θ),
where the true cost consists of the estimated cost of the
simulation, Jsim(θ), and a systematic error term, Jerr(θ).
To incorporate this in the GP framework of Sec. III-A,
we extend the parameter vector by an additional binary
variable δ, which indicates whether the cost is evaluated in
simulation (δ = 0) or on the physical system (δ = 1). Based
on the extended parameter a = (θ, δ), we can model the cost
by adapting the GP kernel to

k(a,a′) = ksim(θ,θ′) + kδ(δ, δ
′) kerr(θ,θ

′). (8)

The kernels ksim(·, ·) and kerr(·, ·) model the cost function
on the simulator and its difference to the cost on the physical
system, respectively. The kernel kδ(δ, δ′) = δδ′ is equal to
one if both parameters indicate a physical experiment and
zero otherwise.

From Sec. III-A, we know that the kernel (8) models
the covariances for different parameters. Intuitively, the ker-
nel (8) encodes that two experiments on the physical system
covary strongly. However, if one of the δ-variables is zero
(i.e., a simulation), then the only covariances between the two
values is captured by ksim. Effectively, the error covariance is
switched off in simulations in order to model that simulations
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Fig. 2. Synthetic example of how simulations and physical experiments
can be combined by trading off information and evaluation effort. In (a),
top, it is shown the GP posterior conditioned on one simulation (blue dot)
and one physical experiment (red dot). The GP model from Sec. IV-A
encodes that a portion of the uncertainty in the cost of the real system
(red shaded) can be explained through the simulator (blue shaded). The
red dashed line represents the cost function of the physical system. The
cost function of the simulator is omitted for simplicity. In (a), bottom, it
is shown the expected information gain per unit of effort of the simulator
(blue line), and of the physical system (red line). The most informative point
(blue dot) is selected among the two sources by the proposed method as
next evaluation (in this case, a simulation). In (b), top, it is shown the GP
posterior after nine iterations. The global minimum (orange dot) is found
close to the true minimum.

cannot provide all the information about J . By choosing the
kernels ksim and kerr, we can model to what extend J can
be explained by the simulator and thereby its quality. This
is illustrated with a synthetic example in Fig. 2. The total
variance of the cost on the physical system is shown in red.
Before any data is observed, it is equal to the uncertainty
about the simulation plus the uncertainty about the error.
As shown in Fig. 2a, the blue shaded region highlights the
variance of the simulator. Evaluations in simulation (blue
dots) reduce the uncertainty of this blue shaded region, but
reduce only partially the uncertainty about the true cost
(red). In contrast, an evaluation on the real system (red dot)
allows one to learn the true cost J directly, thus reducing
the total uncertainty (red), while some uncertainty about the
variance of Jsim remains (blue). Having uncertainty about
the simulation is by itself irrelevant for the proposed method,
because we solely aim to minimize the performance on the
physical system.

Next to the kernel, we account for different amounts of
noise in simulation (typically noise-free) and on the real
system. That is, the noise variance of measurements, η2(a)
in (2), takes different values, η2exp and η2sim, depending on
whether an experiment or a simulation is chosen. With this
kernel and noise structure, the two information sources can
be modeled by a single GP, and predictions can be made

according to (3) and (4).

B. Optimization

With the GP model defined, we now consider how it can
be used to trade off accuracy for evaluation effort. As a first
step, we quantify the goal. As before, we want to minimize
the cost (1) on the real system. This means, the distribution
over the minimum is defined in terms of the same cost (5)
as in standard ES. In order to approximate pmin, we need to
use the GP kernel with the additional δ factor fixed to one,

pmin(θ) = P
(
θ ∈ argmin

θ∈D, δ=1
J(θ, δ)

)
. (9)

As in ES, the goal is to arrive at a distribution pmin that
has low entropy (i.e., very peaked on a certain location).
The expected change in entropy is an appropriate measure
for this. However, this quantity additionally depends on the
variable δ, so that the algorithm has an additional degree of
freedom in the parameters to optimize. If one were to use
the same optimization problem as in (6), the algorithm would
always choose to evaluate parameters with δ = 1. This is be-
cause the experiments with δ = 1 provide information about
the cost function J directly, while an evaluation with δ = 0
only provides information about part of the cost, Jsim.

To trade off between the two choices more appropriately,
we associate an effort measure with both kinds of evalua-
tions; tsim for the simulation and texp for physical exper-
iments. While simulations are less informative about pmin,
they are significantly cheaper than experiments on a physical
platform so that tsim < texp. These effort measures can have
physically meaningful units, such as the amount of time
taken by a simulation relative to a physical experiment.
While the effort measures are important to trade off the
relative gains in information, they do not require tuning.
For example, setting the effort of the simulator too high
may lead to more experiments on the physical system than
necessary, but the optimal parameters on the real system are
found regardless.

A key advantage of using entropy to determine progress
towards the goal is that it is a consistent unit of measurement
for both information sources, even in the case of different
noise variances. As a result, we can compare the gain in
information about the location of the minimum (i.e., pmin) in
simulation and physical experiments relative to their efforts.
Thus, we select the next parameters, θn+1, and where to
evaluate them, δ, according to

argmax
θ∈D, i∈{sim,exp}

E [∆Hi(θ)] / ti. (10)

The expected gain in entropy, E [∆Hi], depends on whether
we evaluate in simulation or physical experiment. By se-
lecting the best gain per unit of effort, the algorithm au-
tomatically decides which kind of evaluation decreases the
uncertainty about the location of the minimum the most,
relative to effort. Importantly, since the GP model in (8)
is adaptive to the quality of the simulator, the acquisition
function (10) leads to informed decisions about whether the
simulator is reliable enough to lead to additional information.



We illustrate a typical run of the algorithm in Fig. 2.
The algorithm was initialized with one physical experiment
(red dot in Fig. 2a) for the purpose of illustration. The
evaluation effort of the simulator was set to 40% less of
that of the real system. As a result, it is advantageous to
exploit initially the low effort that takes to do simulations.
The algorithm automatically decides to do so, as can be seen
in Fig. 2a. The simulation (blue dot) decreases the amount
of uncertainty about the simulation model, but provides only
partial information about the true cost of the system. As a
result, the method eventually starts to evaluate parameters
on the real system. Notice that this is not the same as two
stage learning, because the algorithm can decide to switch
back to simulations if this is beneficial. This is especially
important in situations where the quality of the simulation is
not known in advance and the hyperparameters of the kernels
in (8) are optimized. Eventually, the algorithm converges to
a distribution pmin that is peaked around the minima of the
cost function. Since the model can exploit cheap information
from simulation, fewer physical experiments are needed to
determine the minimum than if only physical experiments
were used.

Because the proposed method extends Entropy Search
(ES) to multiple information sources, we refer to it as Multi-
fidelity Entropy Search (MF-ES).

V. EXPERIMENTAL RESULTS

In this section, we evaluate MF-ES for optimizing the
feedback controller of an unstable cart-pole system, as il-
lustrated in Fig. 1.

A. Experimental Setup

As experimental setup, we use the Quanser Linear Inverted
Pendulum, [26]. The dynamics of the system are described
by

xk+1 = f(xk, uk), (11)

where xk = [sk, ψk, ṡk, ψ̇k]T is the state at discrete time
step k, which is comprised of pendulum angle ψ, cart
position s, and their time derivatives; uk is the commanded
motor voltage driving the cart; and f(·) is the transition
function (see [26] for details).

The cart-pole setup is connected through dedicated hard-
ware to a standard Laptop and can be controlled via Mat-
lab/Simulink. A nonlinear Simulink model of the system
dynamics (11) is provided by the manufacturer and used as
the simulator in our setting.

B. Controller Tuning Problem

To stabilize the pendulum about its upright equilibrium,
we use a static state-feedback controller,

uk = Fxk, (12)

with gain matrix F ∈ R1×4. We seek optimal gains F that
minimize the cost function

J =
1

K

K−1∑
k=0

s2k + ψ2
k + ṡ2k + 0.1ψ̇2

k + 10−1.5u2k (13)

over a sufficiently long time horizon K. The cost (13)
penalizes deviations from the equilibrium x = 0 and control
effort (u2k).

Instead of tuning the controllers gains F directly (i.e.
setting θ = F), we follow the approach from [14], [27], and
pre-structure suitable controllers gains by means of a Linear
Quadratic Regulator (LQR, [28]) design using a nominal,
linearized version, (A,B), of the dynamics in (11), around
the aforementioned equilibrium, which can be obtained from
the simulator, for example. That is, the controller gain is
computed from a discrete-time LQR design,

F = dlqr(A,B,Wx(θ),Wu(θ)), (14)

where Wx(θ) and Wu(θ) are suitable parameterizations of
LQR weights (see [14], [27] for details). Here, we selected

Wx(θ) = diag(10θ1 , 1, 1, 0.1), θ1 ∈ [−3, 2], (15)

Wu(θ) = 10−θ2 , θ2 ∈ [1, 5]. (16)

Hence, we are left with tuning two parameters, θ ∈ R2.
Advantages of the LQR parameterization in (14) are

the possibility of dimensionality reduction, exploitation of
prior knowledge in form of a linear dynamics model, and
guarantees of stability and certain robustness properties with
respect to the nominal system (see [14] for a discussion).
However, we emphasize that LQR-weights are only one pos-
sible way to parameterize feedback controllers; alternative
parameterizations [29] or direct tuning of the gains F [16]
is also possible. The method proposed herein is independent
of the specific parameterization used.

With the above definitions, the cost function J(θ), which
we seek to minimize (1), is defined by equations (13)–(16).
An evaluation of the cost Jexp(θ∗) is obtained by computing
the controller gain (14) based on the weight matrices (15),
(16), performing a 30 s balancing experiment on the physical
system, and computing the cost according to (13) from the
experimental data {xk, uk}k=0,...,K−1. A simulation sample
Jsim(θ∗) is obtained in the same manner by running a 30 s
simulation instead.

If a candidate controller violates safety limits on the states
and inputs, it is determined as unstable, and we assign a
fixed penalty of Jexp = 0.06 and Jsim = 0.04 for physical
experiment and simulation, respectively. These numbers are
chosen conservatively larger than the cost of the worse
stabilizing controller observed after some a priori initial
evaluations. Thus, evaluations during the learning procedure
shall not result in higher costs than these.

The controller is automatically tuned over roll-outs with-
out human intervention. To this end, a nominal1 controller
θnom = [0, 1.5] is balancing the pole when no tuning
experiment is being performed. The optimizer triggers new
experiments, when an evaluation on the real system is re-
quired. As soon as the experiment is finished, or instability is

1The nominal controller is the optimal controller if the true dynamics
was linear according to the nominal model (A,B). Then, choosing Wx(θ)
and Wu(θ) corresponding to the cost (13) yields the optimal controller F,
see [14]. This is a typical choice when neglecting the nonlinear dynamics.
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The evaluations on the simulator (light blue) are systematically below the
evaluations on the real system (dark blue). This bias is captured by the GP
model assuming a lower prior mean for the simulator data, as mentioned
in Sec. V-C. The posterior mean (green surface) and ±2 std (grey surface)
predict the underlying cost function of the real system, conditioned on the
observed data from both simulator and experiments. The best guess location
for the global minimum, θbg, is represented by the orange dot.

detected, the system switches back to the nominal controller.
The nominal controller shows very poor performance, which
shall be improved with the proposed RL method.

C. Bayesian Optimization Settings
We apply the method of Sec. IV, MF-ES, to optimize the

experimental cost (13) by querying simulations and exper-
iments. The efforts in (10) correspond to the approximate
times we need to wait until a simulation is computed and a
physical experiment is performed, tsim = 1 s and texp = 30 s,
i.e., simulations require 30 times less effort than physical
experiments.

For the GP model, we choose the rational quadratic kernel
with α = 1/4 (see [11]) for both ksim and kerr in (8).
Hyperparameters, such as length scales and output variances,
were chosen from some initial experiments and then held
fixed during optimization. As prior mean functions, we use
msim(θ) ≡ 0.04 and merr(θ) ≡ 0.02, respectively, for the
simulation and error GP. These choices correspond to the
penalties Jsim and Jexp given for unstable controllers (adding
msim and merr for the experiment). Hence, the prior mean
is pessimistic in the sense that we believe a controller to
be unstable before seeing any data. The prior variance of
ksim and kerr are chosen as σ2

sim = 1.6 × 10−5 and σ2
err =

3.84× 10−4 respectively.
The noise standard deviation of an evaluation on the

real system, as defined in (2), has been estimated to
ηexp = 2.08× 10−4, while the noise of the simulator has
been set to ηsim = 10−5, roughly twenty times lower.

We stop the exploration when the GP posterior mean at
the best guess θbg (i.e., the current estimate of the global
minimum) has not changed significantly (within a range of
σerr/4 over the last 3 iterations), and we are sufficiently
certain about its value (posterior standard deviation at θbg
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Fig. 4. (Top) Cost obtained at each iteration with the proposed approach
during one exploration run. When the exploration terminates, the best guess
is evaluated on the physical system (violet dot). (Bottom) Evolution of the
GP posterior mean at the best guess µn(θbg) and std ±σn(θbg).

less than σerr/2). Once the exploration has terminated,
we evaluate the final best guess controller on a physical
experiment and take its cost as the outcome of the learning
procedure.

D. Results

We run MF-ES on the LQR problem described in Sec. V-
B. Fig. 3 shows the final GP cost function landscape after
the learning procedure, highlighting simulations (in light
blue) and experiments (in dark blue). For the same learning
run, Fig. 4 (top) illustrates how MF-ES alternates between
simulations and physical experiments over iterations. As can
be seen, the algorithm first performs multiple cheap simula-
tions, which allow to identify regions of unstable controllers
(i.e., regions of high predicted cost in Fig. 3) without any real
experiment. At iterations 10 and 14, the algorithm demands
two expensive physical experiments. The reason is that a time
unit spent in simulation is expected to be less informative
than on a physical experiment. Thereby, experiment time
should be better spent on the physical system. Fig. 4 (bottom)
shows the GP posterior mean and standard deviation of the
best guess at each iteration. The stopping criterion terminates
the exploration after 14 iterations because the GP posterior
mean of the last three best guesses were steady enough.
Finally, the algorithm selects the last global minimum, θbg =
[0.212, 2.42] (orange dot in Fig. 3), as the final controller,
which was evaluated on the physical system retrieving a low
cost J(θbg) = 0.0194.

As a remark, we observe that the algorithm alternates
between simulations and experiments in a non-trivial way,
which cannot be reproduced with a simple two-stage learning
process, where simulations are used to seed experimental
reinforcement learning. Furthermore, in Fig. 3, we can see
that the posterior mean around θ = [−2, 4] falls back to
the prior in the absence of evaluations. As pointed out in
Sec. V-C, the prior mean is pessimistic in the sense that
predicts instability in unforeseen areas, which is a reasonable
assumption in controller tuning of real systems.

In order to illustrate the benefit of trading off data from
experiments and simulations, we compare MF-ES to ES [3],
which uses only physical experiments. The latter corresponds
to the automatic controller tuning setting in [14]. We run each
of these methods ten times on the controller tuning problem.
The results are discussed in Fig. 5 and Fig. 6.
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Fig. 6. Number of physical experiments at each run for MF-ES (dark blue)
and standard ES (dark red), as well as simulations for MF-ES (light blue).

In Fig. 5, we show the cost of the final controller at each
run, for both methods. The cost of the nominal controller
(green) is shown as a reference. MF-ES finds controllers that
are 33.23% better, on average. Moreover, it consistently finds
stabilizing controllers, while ES fails to find a stabilizing
solution in 4 out of 10 cases (cost of 0.06).

Fig. 6 compares the number of physical experiments
performed with MF-ES (dark blue) and with ES (dark red).
While ES needs on average 3.5 physical experiments, MF-
ES needs 2.7 (22.86% less) plus 11.9 simulations. These
results demonstrate that MF-ES can find, on average, better
controllers with a lower number of real experiments by also
leveraging information from simulations.

VI. CONCLUSION

We have shown a generic Bayesian optimization that
can adaptively select between multiple information sources
with different accuracies and evaluation efforts, such as
experiments on a real robot and simulations. We applied
this method to a policy optimization task on a cart-pole
system. The experimental results confirm that using prior
model information from a simulator can reduce the amount
of data required to globally find good control policies.
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