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Abstract— For robots to be a part of our daily life, they need
to be able to navigate among crowds not only safely but also
in a socially compliant fashion. This is a challenging problem
because humans tend to navigate by implicitly cooperating with
one another to avoid collisions, while heading toward their
respective destinations. Previous approaches have used hand-
crafted functions based on proximity to model human-human
and human-robot interactions. However, these approaches can
only model simple interactions and fail to generalize for com-
plex crowded settings. In this paper, we develop an approach
that models the joint distribution over future trajectories of
all interacting agents in the crowd, through a local interaction
model that we train using real human trajectory data. The
interaction model infers the velocity of each agent based on
the spatial orientation of other agents in his vicinity. During
prediction, our approach infers the goal of the agent from its
past trajectory and uses the learned model to predict its future
trajectory. We demonstrate the performance of our method
against a state-of-the-art approach on a public dataset and show
that our model outperforms when predicting future trajectories
for longer horizons.

I. INTRODUCTION

There is an increasing need for robots to operate in the
midst of human crowds. This requires the robot to be able
to navigate through a crowd in a socially compliant way,
i.e., the robot needs to collaboratively avoid collisions with
humans and adapt its trajectories in a human predictable
manner. To date, the majority of existing works in the
area of social navigation has focused on the prediction of
individual motion patterns in the crowd to improve the
navigation performance [7], [8], [4]. However, even in the
case of perfect prediction, these approaches can lead to
severely suboptimal paths [1]. The primary reason for such
underperformance is that these approaches do not capture the
complex and often subtle interactions that take place among
humans in a crowd; that is, these approaches model each
agent independently of the others. This observation leads to
the insight that agents in crowds engage in joint collision
avoidance.

Humans navigate through dense crowds by adapting their
trajectories to those of other people in the vicinity. Fig-
ure 1 shows three examples of such behavior where people
pass through, slow down, or go around when they are
near other pedestrians. In order to learn to navigate in a
socially compliant way, it is key to capture such human-
human interactions observed in a crowd. Pioneering works
by [9], [16] propose hand-crafted functions to model such
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Fig. 1: Examples of pedestrians exhibiting cooperative behavior. In
each image, the velocity of the pedestrian is shown as an arrow
where the length of each arrow represents the speed. (Left) The
pedestrian (with green arrow) anticipates the open space between
the other three (with red arrow) and doesn’t slow down. (Middle)
The pedestrian (with green arrow) slows down to allow the other
pedestrian (with red arrow) to pass through. (Right) The two
pedestrians (with green arrows) make way for the oncoming agents
(with red arrow) by going around them.

interactions based on proximity. Such functions are, however,
limited in the complexity of interactions that they can model
and fail to generalize for crowded settings. Trautman et.
al. [1] proposed an approach that explicitly models human-
human and human-robot interactions to enable a robot to
safely navigate in a dense crowd. The trajectories of the
robot and the humans are jointly predicted with a hand-
crafted potential term to model interactions. Because the
potential term is hand-crafted, it is possible that the robot
trajectories generated may not resemble socially compliant
human behavior. In this paper, we learn the interaction model
from real-world pedestrian trajectories in order to predict
human-like trajectories.

In safety-critical applications like robotics, where robots
are expected to navigate safely among humans, we need to
account for uncertainty in our predictions. Those approaches
that learn interaction models but that do not deal with
uncertainty as in [2] can lead to over-confident predictions
which could result in awkward and disruptive behavior. Our
approach considers the uncertainty regarding intentions (or
goals) of the pedestrians and results in accurate predictions.

The summary of our contributions in this paper are as
follows: We develop a new algorithm for enabling robots to
move naturally through dense crowds. Following the key in-
sight that agents in crowd engage in joint collision avoidance,
we develop an approach that models the distribution over
future trajectories of all interacting agents through a joint
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density model that captures the idea of cooperative planning,
i.e., agents cooperating with each other to achieve their goals
and avoid collisions. To capture collision avoidance behavior,
we learn a local interaction model that encodes how agents
move based on how populated their vicinity is from real hu-
man trajectory data. During prediction, our model infers the
goal of an agent from its past trajectory and uses the learned
model to predict its future trajectory. Finally, we demonstrate
that our model is capable of predicting robot trajectories that
are natural and human-like by reporting the experimental
results on the ETH pedestrian video dataset [11].

In the remainder of this paper, we will give an overview
of relevant existing work in section II. The notation and the
problem is defined in section III. Section IV will describe our
approach in detail and its evaluation on a real world dataset
is presented in section V. The results of the evaluation are
discussed in section VI and the conclusions are presented in
section VII, along with directions for future work.

II. RELATED WORK

A. Navigation in Uncertain Dynamic Environments

Common approaches to robot navigation in uncertain,
populated environments typically compute a path to the goal
without taking into account the collaborative collision avoid-
ance behavior exhibited by humans. Most of the approaches
instead rely on local reactive collision avoidance methods
[5], [6]. Although these methods effectively avoid collisions
with humans, the planned trajectories are usually suboptimal,
compared to the trajectory a human would take for the same
start and goal, and not socially compliant due to evasive
maneuvers.

Naively modeling unpredictability in the trajectories of
humans, using linear models like Kalman filters, leads to in-
creasing uncertainty that makes safe and efficient navigation
difficult [1]. Several works have focused on controlling the
uncertainty in these predictive models by developing accurate
human motion models [7], [8], but these approaches do not
account for interactions between humans and thus cannot
model joint collision avoidance.

B. Modeling human interactions

The social forces model proposed by [9] models motion
of pedestrians in terms of forces that drive humans to reach a
goal and to avoid obstacles. Subsequently, approaches have
been proposed that use learning methods to fit the social
forces model to observed crowd behavior [14], [15]. The
social forces model has been shown to perform well in
predicting trajectories in simulated crowds, but fails when it
comes to predicting movements of pedestrians in real dense
crowds as it uses a hand-crafted potential term based on
distances, and doesn’t learn human-human interactions from
real data. Using a hand-crafted potential term results in a
model that can capture simple interactions, like repulsion
and attractions, but may fail to account for more complex
crowd behavior. [10] models pedestrian motion behavior
using dynamic potential fields that guide people to avoid
collisions and move towards the goal, but this model does not

explicitly account for interactions like cooperation between
agents in the crowd.

Hall [16] introduces a theory on human proximity rela-
tionships which have been used in potential field methods to
model human-human interactions [12], [13]. These models
capture interactions to avoid collisions, but do not model
human-robot cooperation. However, models of cooperation
are necessary for safe and efficient navigation in dense
crowds [1], because in cases where the crowd density is
high, the robot believes there is no feasible path in the
environment unless it accounts for cooperation from the
crowd. Reciprocal Velocity Obstacles (RVO), [26], and Ve-
locity Obstacles (VO), [27], account for interactions between
agents by computing joint collision-free velocities assuming
constant velocities and shared collision avoidance behaviors.
However, these approaches cannot handle stochastic behavior
in pedestrian motions and do not train the model from real
observed data.

Trautman et. al. [1] proposed Interacting Gaussian pro-
cesses (IGP) to explicitly model the human-robot cooper-
ation. Similar to the work presented in this paper, IGP
models the trajectories of all interacting agents jointly which
results in a probabilistic model that can capture joint collision
avoidance behavior. However, the IGP model assumes that
the final destinations of all pedestrians are known, which is
not the case in a realistic prediction task. Another drawback
of IGP is the use of hand-crafted interaction potential term
to model cooperative behavior which may result in robot
trajectories that are not socially compliant. In this paper,
we learn the interaction model from observations of real
pedestrian trajectory data in the hope that we achieve more
human-like and socially compliant trajectories.

The works of [18], [19] are also closely related to our
work. These approaches explicitly model human-robot coop-
eration and jointly predict the trajectories of all agents, using
feature-based representations. Unlike our proposed approach,
they use maximum entropy inverse reinforcement learning
(IRL) to learn an interaction model from human trajectory
database using carefully designed features such as clearance,
velocity, or group membership. However, their approach has
been tested in scripted environments with no more than four
humans. In our work, we deal with crowded scenarios with
an average of six humans in a single scene. Very recently,
[25] have extended the maximum entropy approach to unseen
and unstructured environments by using a receding horizon
motion planning approach.

C. Trajectory prediction

A large body of works exist in the domain of computer
vision and video surveillance that deal with predicting mo-
tion of people in videos, that are relevant to our work. [20],
[21] learn motion patterns using Gaussian processes and
cluster human trajectories into these motion patterns. But
these approaches ignore human-human interactions. IRL has
also been used in the domain of activity forecasting to predict
human paths in static scenes, [22] and more recently, [2]
used Long Short-Term Memory networks (LSTM) to jointly



reason across multiple agents to predict their trajectories in
a scene. However, most of these approaches have been used
in the context of prediction and have not been extended to
navigation.

III. PROBLEM DEFINITION

A. Notation

We follow the notation of [1]. Let the index i ∈
{1, 2, · · · , N} specify the agent, where N is the number of
individuals in the crowd and i = R indicates the robot. The
trajectory of agent i ∈ {R, 1, 2, · · · , N} is given by f (i) =

(f
(i)
1 , f

(i)
2 , · · · , f (i)

T ), where T is the length of the trajectory
and f (i)

t = (x
(i)
t , y

(i)
t ) ∈ R2 is the location of agent i at time-

step t. The observed locations of pedestrian i until time-step
t is denoted as z(i)

1:t = (z
(i)
1 , z

(i)
2 , · · · , z(i)

t ). We denote the set
of all pedestrian trajectories by f = {f (i)}i=1:N , the robot
trajectory by f (R), and the set of all pedestrian observations
until time-step t by z1:t = {z(i)

1:t}i=1:N . We assume a fixed
number of goals g in the environment are known and denote
the set of goals by G.

B. Planning using the joint density

Following the assumption that people engage in a joint
collision avoidance when moving through a dense crowd
as in [9], [1], the robot does not only have to respond to
the observed trajectories of the pedestrians, but also has to
account for the adaptive behavior of the humans. To capture
this cooperative behavior, it has been suggested by [1] to use
the joint density of both the robot and the crowd, denoted
by P (f (R), f |z1:t). Planning the path for the robot using this
density corresponds to finding the maximum-a-priori (MAP)
assignment for the following posterior:

(f (R), f)∗ = arg max
f (R),f

P (f (R), f |z1:t). (1)

C. Problem

In this work, we assume that at each time-step t, we
receive the observation zt of the locations of all agents in
the crowd. Given the current and past observations z1:t,
we tackle the problem of estimating the joint posterior
distribution of the future trajectories of all agents. Formally,
we seek to model the density given by,

P (f (R), f |z1:t).

Planning the robot’s trajectory then corresponds to taking
the MAP assignment for f (R) and executing it until the next
observation is received. At time-step t + 1, we receive a
new observation zt+1 and update the above joint posterior
density to P (f (R), f |z1:t+1). This process is repeated until
the robot reaches its destination. In contrast to [1], who
tackle a similar problem, we aim to predict more natural
and human-like robot trajectories by learning the model from
pedestrian trajectory data.

Fig. 2: Occupancy grid construction. (Left) A configuration of other
agents (red) around the current agent (green). (right) 4x4 occupancy
grid is constructed using the number of agents in each grid cell

IV. APPROACH

We exploit the observation that humans navigating in
dense crowds adapt their trajectories based on the presence of
agents in their vicinity [2]. We first explain the construction
of occupancy grids, which account for the presence of other
agents within an agent’s local neighborhood (Section IV-A).
We formulate the problem of learning the social interaction
model as a Gaussian process regression problem, where
we predict the agent’s velocities at each time-step as a
function of their occupancy grids and intended goal. Given
the preprocessed training trajectories (Section IV-B), we train
the GP model by maximizing its marginal likelihood to
learn the hyperparameters of the kernel (Section IV-C). At
prediction time, we use the learned model to infer the goal
of each agent and jointly predict future trajectories of all
interacting agents in the crowd (Section IV-D).

A. Constructing occupancy grids

To capture the local interactions of an agent with its
neighbors, we construct an occupancy grid for each agent
i at each time-step t that is similar to the social pooling
grid used in [2]. The occupancy grid is constructed by
discretizing the neighborhood of the agent’s current location
into a spatial grid of size M×M . We then count the number
of surrounding agents within each grid cell. Formally, we
define occupancy grid as a vector of length M2 given by,

O
(i)
t (a+M(b−1)) =

∑
j∈N (i)

Ia,b[x(j)
t −x

(i)
t , y

(j)
t −y

(i)
t ]. (2)

N (i) denotes the set of all agents j 6= i, who are within the
neighborhood of agent i. The indicator function Ia,b[x, y]
defines if (x, y) is located in the (a, b) cell of the occupancy
grid. In the remainder of the paper, O(i) and O will denote
the set of all occupancy grids at every time-step of an agent
i and that of all agents, respectively.

B. Preparing training data for learning

Before training our model, we preprocess the training
data f , which correspond to the trajectories of all agents.
First, we construct occupancy grids O(i) and O along f ,
as described in Section IV-A. Second, we process all the
trajectories to obtain the velocities of agents at each time-step
(∆x

∆t ,
∆y
∆t ). Third, since we have access to the entire trajectory

at training, we can compute the goals of all the pedestrians.
Note that this information about the true goals is used only
during training and is not assumed in the prediction phase.



After this preprocessing, we have (O, ∆x
∆t ,

∆y
∆t ) for all agents

at every time-step and their corresponding goals {g(i)}.

C. Training the local interaction model

To learn across different pedestrians traversing in dif-
ferent regions of the environment, we model the velocity
of an agent at a specific time-step as a function of their
intended goal and their occupancy grid at that time-step.
Formally, we seek to estimate the distribution P (∆x

∆t |O, g)

and P (∆y
∆t |O, g), for each goal g in G, from the training

data obtained in Section IV-B.
We start by modeling the interactions as a Gaussian

Process (GP) regression problem, where the noisy data to
be interpolated is (O, ∆x

∆t ) and (O, ∆y
∆t ). Note that we use

a separate GP for each goal g to learn the mapping from
occupancy grids to velocities. We use a squared exponential
automatic relevance determination (SE-ARD) kernel (with
additive noise) for these GPs [3]. The SE-ARD kernel learns
a different lengthscale for each input dimension, which in our
problem are the dimensions of the occupancy grid vector, i.e.,
the grid cells. Since, the kernel can learn the relevance of
each input dimension by learning the lengthscale parameter
[3] (dimensions with large lengthscales are less relevant than
those with small lengthscales), the kernel will capture the
relevance of each grid cell for a specific goal and effectively
ignore irrelevant cells.

The SE-ARD kernel with additive noise is given by,

KS(O,O′) = σ2
f exp

−1

2

M2∑
d=1

(O(d)−O′(d))2

`2d


+ σ2

nδ(O,O
′)

(3)

where δ(O,O′) = 1 if O is equal to O′ and zero otherwise,
and O(d) is the value of the dth dimension in the vector O.
The hyperparameters of this kernel are σf (signal variance),
{`d}M

2

d=1 (lengthscales) and σn (noise variance).
This construction results in a total of 2G GPs because

there is a pair of GPs (in x- and y-direction) for each of
the G goals; thus, we have 2G sets of hyperparameters
to be learned. We denote the set of hyperparameters cor-
responding to the GP associated with goal g by Θg

x and
Θg

y . To learn the hyperparameters Θg
x, we isolate the tuples

Bg = {(O(i), ∆x
∆t

(i)
)}i from training data, corresponding to

the set of pedestrians i whose goal is g, and maximize the
log marginal likelihood of the GP [3] given by,

logP

(
∆x

∆t
|O
)

= −1

2

∆x

∆t

T

KS(O,O)−1 ∆x

∆t

− 1

2
log |KS(O,O)| − ng

2
log 2π

(4)

where ∆x
∆t and O are vectors constructed by concatenating

elements of Bg , and ng is the number of elements in ∆x
∆t .

We can learn Θg
y and all the other sets of hyperparameters

for all goals g ∈ G in a similar fashion.

D. Prediction

During prediction we are given an unseen crowd with Np

pedestrians, a robot, and their observations z1:t until time
t. Our task is to predict their trajectories f and f (R) for
H time-steps into the future, using the learned model. We
cannot directly use the GP predictive distribution because we
do not know the goals of the pedestrians during prediction.
Note that we know the goal of the robot g(R) since it is
user-defined.

1) Infer goal of a pedestrian: Given observations z
(i)
1:t of

pedestrian i until time t and the set of goals G, we seek
to infer the goal g(i) ∈ G of the pedestrian. We assume a
uniform prior P (g(i)) over all goals, in the absence of any
observations for agent i (A more informative prior over the
goals can be found by analyzing the environment). Hence,
we have:

P (g(i)|z(i)
1:t) =

P (z
(i)
1:t|g(i))P (g(i))

P (z
(i)
1:t)

∝ P (z
(i)
1:t|g(i)). (5)

That is, we evaluate the likelihood that the observation
sequence z

(i)
1:t is true conditioned on the fact that g(i) is the

goal of agent i. Similar approaches have been explored in
[22] and [24], for inferring destination of an agent given its
previous path.

To compute the likelihood, we first compute, from the
observations z1:t, the velocities {(∆x

∆t ,
∆y
∆t )}1:t−1 and the

occupancy grids O1:t−1 of all pedestrians at each time-step
until t − 1. For each possible goal g ∈ G, we take the
corresponding set of trained hyperparameters Θg

x and Θg
y ,

and evaluate the log marginal likelihood of the GP for each
agent i (using equation 4). Hence, for each agent i and each
goal g(i) ∈ G, we obtain the likelihood that its observed
data z

(i)
1:t is generated from the GP conditioned on the goal

g(i). Normalizing the likelihoods across all goals, we get the
likelihood P (z

(i)
1:t|g(i)) for every goal g(i) ∈ G.

2) Predicting future trajectories: Now that we have a
distribution over the goals g(i) for all agents i in the crowd,
we can use the trained model to predict future locations. The
joint posterior density can be decomposed as

P (f (R), f |z1:t) =
∑
g

P (f (R), f |g, z1:t)P (g|z1:t) (6)

where g = {g(i)}i=R,1:N are the goals of all agents including
the robot. We can assume that the goals of the pedestrians
are independent of each other (and that we know the goal of
the robot with certainty) given their respective observations.
Then, we can write the distribution of a goal given a history
of observations as:

P (g|z1:t) =

N∏
i=1

P (g(i)|z(i)
1:t) (7)

where P (g(i)|z(i)
1:t) is given by equation 5. We approximate

the joint distribution P (f (R), f |g, z1:t) by using the velocities
and occupancy grids obtained from observations z1:t (as done



in Section IV-D.1),

P (f (R), f |g, z1:t) ≈ P (f (R), f |{∆x

∆t
,

∆y

∆t
}1:t−1,O1:t,g)

(8)
The predictions for different agents are coupled through the
occupancy grid which contains the configuration of other
agents around each agent locally. This enables our model to
capture local interactions, like joint collision avoidance and
cooperation.

Since the task is to predict the future locations of all agents
for the next H time-steps, f (i) suffices to represent the next
H locations of agent i after time t, in addition to previous
locations.

3) Multi-step prediction: Future locations can be pre-
dicted using the learned model from Section IV-C. For
each agent i, we fit a separate pair of GPs (with the
learned hyperparameters Θg

x, Θg
y for goal g ) to the observed

tuples (O
(i)
1:t, {∆x

∆t }
(i)
1:t−1) and (O

(i)
1:t, {

∆y
∆t }

(i)
1:t−1). Using their

corresponding GPs, each agent can predict their velocities
and compute the location for the next time-step by adding it
to the current location.

This can be done exactly for time t + 1, i.e., we can
predict (∆x

∆t )
(i)
t+1 and (∆y

∆t )
(i)
t+1 for each agent i, since we

know the value of the occupancy grid at time t, O(i)
t . But

for future time-steps, we need to estimate the occupancy grid
at the previous time step using previous predictions. Instead
of computing the distribution over future locations in an
exact form (which can be extremely difficult), we use Monte
Carlo sampling to approximate the distribution as shown in
Algorithm 1.

At time t+ 1, we compute the GP predictive distribution
[3] for each (∆x

∆t )
(i)
t+1 and (∆y

∆t )
(i)
t+1 (line 2). We then proceed

to sample S points from each of these distributions (line 6),
and estimate S samples for the location f

(i)
t+1 for all agents i

(line 7). These sets of samples approximate the distribution
P (f

(R)
t+1, ft+1|{∆x

∆t ,
∆y
∆t }1:t−1,O1:t,g).

Since, for each sample, we have locations of all agents at
time t+ 1, we can compute occupancy grids O

(i)
t+1 for each

agent (line 9). Thus, we get S samples for Ot+1. Now, to
estimate location at time t+ 2, we compute the mean of the
S samples to get the set of occupancy grids, Ot+1 (line 10).
Using the mean, we predict the velocities at time t+ 2 (line
12), and repeat the above process until H time-steps into the
future. At every time-step t′ (t′ ≥ t+ 1, t′ ≤ t+H), we get
a set of S samples corresponding to the locations ft′ that
approximate the distribution

{f (R)
t′ , ft′}j=1:S ≈ P (f

(R)
t′ , ft′ |{

∆x

∆t
,

∆y

∆t
}1:t−1,O1:t,g)

As we let the value of S grow, we get a better approximation.

V. EVALUATION

A. Setup

We evaluate our model on a publicly available human-
trajectory dataset released by ETH, [11]. The dataset contains
a video recorded from above a busy doorway of a university

Algorithm 1 Multi-step prediction through Sampling
1: for each agent i do
2: Compute distributions of (∆x

∆t )
(i)
t+1, (∆y

∆t )
(i)
t+1 given O

(i)
t

3: end for
4: for t′ = t+ 2→ t+H do
5: for each agent i do
6: Sample S points from distributions of (∆x

∆t )
(i)
t′−1,

(∆y
∆t )

(i)
t′−1

7: Compute S estimates for f (i)
t′ from sampled velocities

8: end for
9: Compute S samples for Ot′ from estimates of ft′

10: Set Ot′ to be the mean of the S samples from above
11: for each agent i do
12: Compute distributions of (∆x

∆t )
(i)
t′ , (∆y

∆t )
(i)
t′ given O

(i)
t′

13: end for
14: end for
15: return {{f (R)

t′ , ft′}j=1:S}t′=t+1:t+H

Fig. 3: Example snapshot of the dataset with goals indicated by red
dots

building with the pedestrian trajectories tracked and anno-
tated. This video contains scenes with real world crowded
settings, hundreds of trajectories and high crowd density.
An example snapshot from the video (with goals marked) is
shown in figure 3. Each time-step in the video is six frames
long and amounts to 0.4 seconds. The average trajectory
length of a pedestrian is 25 time-steps. The total number
of pedestrians in the video is 360 and there are four goals in
the environment. The resolution of the video is 640 × 480.
Each pixel in the video frame corresponds to 0.042 metres
(slightly varies across the frame, as the camera is angled and
not exactly top-down).

We evaluate our model by choosing a pedestrian in the
crowd randomly as our robot and use his start and goal
state to plan a path through the crowd. The resulting path
is compared to the true path that the pedestrian has taken in
the video. Comparing the true path and the predicted path
gives us a evaluation of how closely our prediction resembles
human-like behavior. A similar evaluation was done in [1].

We compare our approach against IGP [1], as it deals with
the same problem of jointly modeling trajectories of robot
and pedestrians, and has shown good results in real robot
navigation scenario among dense crowds [17], [23]. We will



use both our approach and IGP to predict the path until
H time-steps into the future and compare it with the true
trajectory.

Note that the original IGP needs to know the true final
destination of each pedestrian at prediction time, which
would give it an unfair advantage over our algorithm. Hence,
we use a variant of IGP which doesn’t need the true final
destinations and use that in our comparison. At prediction
time, we compute the average heading of the pedestrian
for the last 5 time-steps and estimate the goal location in
the computed heading direction. The estimated goal is used
in the original IGP algorithm in place of the true final
destination of the pedestrian.

To compare the path predicted by the two algorithms and
the true path of the pedestrian, we consider two metrics:

1) Average displacement error: Introduced in [11], this
metric computes the mean squared error over all
estimated points at each time-step in the predicted
trajectory and the true trajectory.

2) Final displacement error: Introduced in [2], this metric
computes the mean distance between the final pre-
dicted location after H time-steps and the true location
after H time-steps, where H is our prediction horizon.

B. Model Parameters

We construct occupancy grids around each agent of size
4× 4 (i.e. M = 4) covering a space of 80× 80 pixels in the
video. In each video, we train the model on the trajectories
of the first 50 pedestrians. At prediction time, we chose a
scenario with 11 pedestrians (from the remaining part of the
video, not used in training), one of whom is used as a robot
in our model. We predict the future locations for a range of
prediction horizons H = 1, 2, 5, 10, 20 time-steps. If the path
of the pedestrian (or robot) ends in less than H time-steps,
we will predict only until the end of his path. For multi-
step prediction, we use S = 100 samples to approximate
the distribution over future locations. We implement the
Gaussian process regression model using the GPML toolbox,
[3].

C. Results

To test the prediction accuracy of both approaches, we
have chosen scenarios with 11 pedestrians in the crowd
where crowd density is high and some pedestrians head
into and through the crowd. To get an unbiased estimate,
we chose 5 such scenarios in the video. In each scenario,
we assume each pedestrian to be the robot, one at a time,
and compute their average displacement error and final
displacement error, averaged over all time-steps. This results
in 11 sets of error values and we compute the average over all
sets to give the mean errors over all pedestrians. We repeat
the experiment for different H values to get both short-range
and long-range prediction accuracies of both approaches. The
results are averaged over all 5 scenarios and are presented
in Table I. Note that the errors are listed in pixels.

In Figure 4, we show an example scene where our ap-
proach predicts cooperative behavior. The set of pedestrians

Fig. 4: Example prediction by our model. For each pedestrian, we
predict his future locations (which are plotted) for the next 5 time-
steps. The bottom set of pedestrians are progressing towards a goal
at the top centre of the image, but they go around the other set of
pedestrians making way for them cooperatively

TABLE I: Prediction errors (in pixels) on the dataset for IGP and
our approach

Metric Prediction horizon (H) IGP Our Approach

Avg. Disp. Error

1 3.42 4.42
2 5.66 6.14
5 15.75 12.09
10 21.59 21.52
20 41.51 34.63

Final Disp. Error

1 3.42 4.42
2 7.12 7.78
5 23.18 19.77
10 38.75 36.25
20 67.41 54.2

going up give way to the set of pedestrians going down.
To visualize what our local interaction model (from section
IV-C) learned, we give it some example occupancy grids
and goals, and observe the predicted velocities. Figure 5
shows that the model learns collision avoidance as it predicts
velocities away from grid cells which are occupied and
towards unoccupied grid cells. When an agent’s vicinity is
heavily populated in the direction of its goal, the magnitude
of predicted velocity is very low, i.e., the agent moves slowly.
If instead, its vicinity is populated in the opposite direction
of its goal, the velocity of the agent doesn’t get affected by
the surrounding agents (as they are not obstructing its path).

To verify this observation, we have examined the values
of the learned hyperparameters of the SE-ARD kernel. The
lengthscales for grid cells that are not in the direction
of the pedestrian’s intended goal, are given high values,
thus reducing their relevance in the velocity prediction. For
example, in Figure 5 the lengthscales for the bottom grid
cells in the left bottom occupancy grid, are set to values
higher than 7 whereas the lengthscales for the top grid cells
in the same grid are set to values lower than 1. This shows
that our model learns how neighbors affect a pedestrian’s
path based on their relative spatial orientation.



Fig. 5: Velocities predicted by our trained model for example
occupancy grids. In each case, the goal of the pedestrian is right
above in the Y-direction. Predicted mean y-velocity is shown in
blue and predicted mean x-velocity is shown in red.

VI. DISCUSSION

From the results presented in Table I, we can observe
that our approach performs better than IGP at predicting
human trajectories for longer prediction horizons and worse
for shorter horizons. This is mainly because IGP models
trajectories directly by predicting future locations based on
previously observed locations. This results in very accurate
predictions in situations where there are no surrounding
agents (and hence, no interactions) and for shorter prediction
horizons, as it extrapolates the trajectory to future time-steps
smoothly. Our model, on the other hand, models velocities at
each time-step and needs to estimate the future location based
on velocity predictions for the previous time-step. Thus, for
shorter prediction horizons, our model has a higher variance
associated with predicted locations. But for longer horizons,
our model has higher accuracy in prediction as it reasons
about the intended goal of the agent and captures local
interactions at each time-step. IGP fails at longer horizons
as the smooth extrapolation, coupled with the handcrafted
interaction potential term, is unable to account for all the
interactions and cooperative behavior among dense crowds.
More importantly, our approach has a higher performance
than IGP because it learns the local interaction model from
real human trajectory data whereas the interaction model in
IGP is hand-crafted.

Accurate predictions for longer horizons is important in
social navigation as it results in a more globally optimal
behavior. In cases where the prediction is accurate in a short
horizon but poor for longer horizons, the resulting paths are
locally optimal and can potentially lead to a non-socially
compliant and reactive behavior.

Upon careful examination of predictions of our approach
in crowded scenarios, we observed that it learns the behavior
of slowing down (see bottom right of Figure 5) when its
vicinity is heavily populated, which is a common behavior
among humans. Also, as observed from the values of the

learned lengthscales for the SE-ARD kernel, our model
learns how humans decide their velocity based on the relative
spatial configuration of other agents in their neighborhood.
As shown in Figure 5, our trained local interaction model
captures collision avoidance based on an agent’s occupancy
grid by learning from human trajectory data without any
hand-crafted potential term.

Although we present results for predicting trajectories of
every agent in the crowd, this approach can be extended to
robot navigation by treating the robot as an agent in the
crowd. Planning the path of the robot in this model reduces
to inference in the joint density as shown in Section III-B.
The resulting path taken by the robot is the most likely path
predicted according to the learned model. Recent work by
[25] has shown that as long as pedestrians interact with the
robot naturally (as one of them), such an interaction-aware
modeling approach is significantly better than a reactive
approach.

VII. CONCLUSION AND FUTURE WORK

In this work, we present a new approach to modeling
cooperative behavior among humans in dense crowds. While
most existing approaches use hand-crafted models to capture
interactions among humans in the crowd, we take a data-
driven approach and learn an interaction model from real
human trajectory data. We propose a nonparametric statistical
model that uses Gaussian processes to model velocities
of agents in the crowd as a function of how populated
their vicinity is. We show how our model can be used to
predict future trajectories of pedestrians and compute the
path of a robot through a dense crowd. The future trajectories
are computed using a Monte Carlo sampling approach to
multi-step prediction. Lastly, the efficacy of our approach is
demonstrated by predicting trajectories of agents in a real
world pedestrian dataset. Our results show that the model
captures important aspects of human crowd behavior such
as cooperative navigation and collision avoidance.

Currently, the model doesn’t account for static obstacles
which play a very important role in modeling navigation
behavior. An interesting future direction would be to explore
ways to account for both the dynamic pedestrians and
static obstacles in the environment, while predicting future
trajectories. Another important drawback of our approach is
the assumption of known goals in the environment. This
restricts the generalizability of the approach to previously
seen environments and a separate model needs to be trained
for a new environment.

As a part of future work, we plan to validate and verify
our approach on a real robot placed in a dense human crowd.
The task would be, given a start and goal location, the robot
should be able to navigate safely and efficiently through the
crowd. In addition to validating our approach, we intend to
tackle the drawbacks of the approach as stated before. We
are also looking to extend the model by coming up with
latent representations of trajectories that encode time-varying
information such as pedestrian’s intention, planned future



path and velocities, that can be used instead of an occupancy
grid in our approach.
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