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Abstract— We present new algorithms to perform fast prob-
abilistic collision queries between convex as well as non-convex
objects. Our approach is applicable to general shapes, where
one or more objects are represented using Gaussian probability
distributions. We present a fast new algorithm for a pair
of convex objects, and extend the approach to non-convex
models using hierarchical representations. We highlight the
performance of our algorithms with various convex and non-
convex shapes on complex synthetic benchmarks and trajectory
planning benchmarks for a 7-DOF Fetch robot arm.

I. INTRODUCTION

Collision detection is an important problem in many ap-
plications, including physics-based simulation and robotics.
In robot motion planning, collision detection is regarded
as one of the major bottlenecks. There is extensive work
on faster collision checking for convex shapes, hierarchical
algorithms, and methods for deformable models [1], [2],
[3]. These prior collision detection techniques assume an
exact representation of the geometric objects. They perform
exact interference tests between the primitives and return the
overlapping features.

In many applications, including robotics, virtual environ-
ments, and dynamic simulation, exact representations of
the primitives are not easily available. Rather, the object
representations are described using probability distribution
functions. This may occur because the environment data
is captured using sensors and only partial observations are
therefore available. Furthermore, the primitives captured or
extracted using sensors tend to be noisy. In this case, the goal
is to compute the collision probability of two or more objects
when one or more object representations (e.g. positions,
orientations, etc.) are represented in terms of probability
distributions [4], [5], [6]. In many robotics applications,
such probabilistic collision queries are performed on the
imperfect representations due to the uncertainties. For ex-
ample, the planning of robot motions in dynamic real-world
environments has to compute safe robot trajectories that
avoid collisions with moving obstacles. In this case, the
future obstacle positions are not known exactly and typically
predicted using probability distributions. In other cases, the
environment is typically represented using point clouds with
some error distribution.

Typically, these probability distributions are approximated
using Gaussian distributions and the collision computations
are performed using probability distribution functions (PDF).
The resulting probabilistic collision detection for objects with
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(a)

Fig. 1: Trajectory planning for robot avoiding human arm
using our probabilistic collision algorithm: The moving
human arm is tracked using a point cloud sensor and the
positional error is represented as a Gaussian probability
distribution. The 95% boundary of Gaussian distribution is
represented by the red circle. We use our novel probabilistic
algorithm to guarantee that the collision probability is less
than 5% at any state during the given trajectory. In order to
handle such non-convex objects and compute tight bounds
for probabilistic collision detection, we found that a hierar-
chy of OBBs (oriented bounding boxes) provides the best
results in terms of running time and probabilistic bounds.

Gaussian distributions is defined using a confidence level,
and probability can be evaluated using numerical integration
or stochastic techniques. However, accurate techniques based
on Monte Carlo integration are too slow for realtime applica-
tions. Current algorithms for probabilistic computations are
based on circular or spherical approximations [7], [8], [9],
but they tend to be rather conservative (in terms of bounds)
for general non-convex shapes.
Main Results: In this paper, we present a fast probabilistic
collision detection algorithm for general non-convex models.
Our approach is applicable to any models represented in
terms of inexact polygons or noisy point cloud data in which
we are given two general shapes and the error is represented
using Gaussian probability distributions. We compute hier-
archical representations of non-convex models using simpler
bounding volumes and present a novel hierarchical proba-
bilistic collision detection algorithm. Moreover, we present
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fast and reliable algorithms to perform probabilistic collision
detection on simple shapes such as AABBs (axis-aligned
bounding boxes), OBBs (oriented-bounding boxes), k-DOPs
(k discretely oriented polytopes), and convex polytopes. We
have evaluated the performance of our probabilistic collision
detection on many synthetic and real-world benchmarks
(captured using the Kinect). Moreover, we have integrated
them with trajectory planning, and highlight the performance
for real-time motion prediction and planning for a 7-DOF
Fetch robot. We also evaluate them on complex synthetic
benchmarks and observe that the hierarchies of OBBs or
k-DPS provide the best balance between tight bounds and
running times.

The rest of the paper is organized as follows. We survey
prior work on exact and probabilistic collision detection
algorithms in Section II. Section III gives an overview of the
problem of probabilistic collision detection, and we present
our algorithm for convex and non-convex polygonal models
in Section IV. We analyze these algorithms and highlight
their performance on complex benchmarks in Section V.

II. RELATED WORK

In this section, we give a brief overview of prior work on
exact and probabilistic collision detection algorithms.

A. Collision Detection using Bounding Volume Hierarchies

There is extensive work on exact collision detection algo-
rithms for geometric models represented using triangles or
higher order primitives. These include efficient algorithms
for convex polytopes [1], [10] and general algorithms for
non-convex shapes using bounding volume hierarchies [2],
[11]. Many techniques have been proposed to improve the
efficiency of collision detection using Bounding Volume
Hierarchies (BVHs). Some of the commonly-used hierar-
chies are based on bounding volumes such as spheres [12],
[13] or axis-aligned bounding boxes (AABBs) [14]. Other
algorithms that use tighter-fitting bounding volumes include
oriented-bounding boxes (OBBs) [15], discrete oriented
polytopes (k-DOPs) [16], or their hybrid combinations [17].

There is a trade-off between different bounding volume
algorithms. The simple bounding volume algorithms have
lower overhead in terms of overlap test, but can result in a
high number of false positives and exact tests between the
primitives. Tighter-fitting bounding volume algorithms may
involve more complex overlap tests, but the tighter bounds
reduce the number of false positives. The relative perfor-
mance of different BVH-based algorithhms varies based on
the complexity and shape of geometric models and their
relative configurations.

B. Probabilistic Collision Detection

A common approach to checking for collisions between
noisy geometric datasets is to perform exact collision check-
ing using enlarged volumes that enclose the original object
primitives [18], [19]. Many approaches handling point cloud
sensor data convert the data into a set of boxes and check
for collisions between the boxes and a robot [4]. Other

approaches generally enlarge the object bounding volumes
to compute a new bounding volume for a given confidence
level. This may correspond to a sphere [20] or a Sigma
hull [21]. However, the computed volume overestimates the
collision probability.

Other approaches have been proposed to perform prob-
abilistic collision detection on point cloud data. Bae et
al. [5] presented a closed-form expression for the positional
uncertainty of point clouds. Pan et al. [6] reformulated the
probabilistic collision detection problem as a classification
problem and computed per point collision probability. How-
ever, these approaches assume that the environment is mostly
static. For realtime collision detection, probabilistic collision
detection is performed using broad phase data structures that
handle large point clouds [9].

Some approaches approximate the collision probability
using numerical integrations or stochastic techniques [22],
[23], which require a large number of sample evaluations to
compute an accurate probability. Guibas et al. [24] evaluate
collision probability bounds using numerical integrations in
multiple resolutions, which can avoid unnecessary numerical
integrations in the high-resolution. The collision probability
between objects with Gaussian distributions can be approxi-
mated using the probability at a single configuration, which
corresponds to the mean [7] or the maximum [8] of the
probability distribution function (PDF).

III. OVERVIEW

In this section, we define the symbols and notation used
in the rest of the paper and give the problem statement of
probabilistic collision detection.

A. Symbols and Notation

We use upper case symbols, like A and B, to denote 3D
input primitives. We use boldface letters, such as p or x, to
represent vectors. The probability that an event can occur is
denoted as P (event). We represent Gaussian distribution as
N (p,Σ), where p is a mean vector and Σ is a covariance
matrix. The probability density function of the Gaussian
distribution N (p,Σ) is represented as p(x,p,Σ).

B. Background

Probabilistic collision detection algorithms are used to per-
form collision checking between two or more objects when
the objects are not represented exactly and some of the input
information such as positions or orientations of polygons
or point clouds are given as probability distributions. The
output could be a binary answer corresponding to whether
or not those objects overlap. In another case, it could be a
probability value that corresponds to the probability that an
overlap occurs for the given input. This probability value
is useful in many applications where a binary value is not
enough to evaluate the given input.

In many applications, probability distributions are approx-
imated using Gaussian distributions, which allow efficient
computation using probability distribution functions (PDF).
However, Gaussian distributions have non-zero probabilities



in the entire problem space, which always result in non-zero
collision probabilities. Therefore, the probabilistic collision
detection for objects with Gaussian distributions is defined
using a confidence level, which is a threshold probability that
determines the binary output of the collision detection (active
collision or not) from the computed collision probability (e.g.
0.99).

In general, the exact collision probability is not com-
putable even for a simple collision scenario between circles
with a Gaussian distribution (see Sec. III-D). The probability
can be approximated using a numerical integration or a
stochastic technique such as the Monte Carlo method [22],
[23], which requires a large number of sample evaluations
to compute an accurate probability.

Therefore, efficient approximation methods have been pro-
posed to compute the collision probability with tight bounds,
without the evaluation of a large number of samples [7], [8],
for a limited type of bounding volumes such as circles or
spheres. In this paper, we show that our novel algorithms
based on OBBs or k-DOPs provide better solution

C. Problem Statement

We assume that the two input primitives, A and B, are
each represented as a polygon or triangle mesh. We also
assume that one Gaussian distribution (PDF) is available for
each object. In this paper, we consider the cases when A and
B are both convex polytopes, or general non-convex shapes.
If the input is given as 3D point cloud data with some error
distribution, we pre-compute a mesh representation and the
appropriate Gaussian distribution from the point cloud data.

A positional displacement vector ε is applied as trans-
lational operator to the volume A, which is denoted as
A+ ε = {a + ε|a ∈ A}. We assume a Gaussian distribution
assumption on ε with zero mean and covariance matrix Σ.
We define the output collision probability as

P ((A+ ε) ∩B 6= ∅) (1)
ε ∼ N (p,Σ).

The collision event is equivalent to

(A+ ε) ∩B 6= ∅
⇐⇒ ∃a ∈ A,b ∈ B s.t. a + ε = b

⇐⇒ ∃a ∈ A,b ∈ B s.t. ε = −a + b

⇐⇒ ∃x ∈ (−A)
⊕

B s.t. ε = x

⇐⇒ ε ∈ (−A)
⊕

B.

Then, the probability is formulated as

P
(
ε ∈ (−A)

⊕
B
)

(2)

=

˚
I
(
x ∈ (−A)

⊕
B
)
p(x,0,Σ)dx (3)

=

˚
V

p(x,0,Σ)dx, (4)

where the function I(x) and the obstacle function p(x,p,Σ)
are defined as,

I(x) =

{
1 if x is true
0 otherwise and (5)

p(x,p,Σ) =
e−0.5(x−p)T Σ−1(x−p)√

(2π)3‖Σ‖
, (6)

respectively.

D. Collision Probability Approximation

For a sphere A of radius r2 with ε ∼ N (p,Σ) and a
sphere B with radius r1, the exact probability of collision
between them is given as the integration of ε in V , where
V is a sphere or radius r1 + r2. It is known that there is no
closed form solution for the integral given in (4), even for
spheres.

Du Toit and Burdick [7] approximate (4) as

P
(
ε ∈ ((−A)

⊕
B)
)
≈
˚

V

1dx · p(x,0,Σ) (7)

=
4π

3
(r1 + r2)3 · p(x,0,Σ). (8)

However, this approximated probability can be either smaller
or larger than the exact probability, and it is hard to give any
guarantees in terms of lower or upper bound on the computed
probability.

Park et al. [8] compute xmax, the position that has the
maximum probability of N (p,Σ) in V , and compute the
upper bound of (4) as

P
(
ε ∈ ((−A)

⊕
B)
)
≈ 4π

3
(r1 + r2)3 · p(xmax,0,Σ),

(9)

where xmax is computed as a solution of

xmax = arg min
x

{
(x− p)TΣ−1(x− p) + λx2

}
(10)

with a Lagrange multiplier λ, using a one-dimensional nu-
merical search. This approach guarantees that the approxi-
mation never underestimates the collision probability, but is
limited to isotropic objects such as circles or spheres.

IV. PROBABILISTIC COLLISION DETECTION

In this section, we present a fast algorithm for probabilistic
collision detection between convex polytopes. Furthermore,
we extend to non-convex models using convex decomposi-
tion and bounding volume hierarchies.

A. Probabilistic Collision Detection for Convex Polyhedrons

We extend the probabilistic collision detection for any two
3D convex polyhedrons A and B. We transform the volume
V in (4) by (Σ)−

1
2 to normalize the Gaussian distribution,

i.e., ˚
V ′
p(x,0, I)dx

=

˚
V ′

1√
8π3

exp

(
−1

2
‖x‖2

)
dx, (11)



(a) (b)

Fig. 2: (a) Contour plots of the bivariate Gaussian distribu-
tion, whose covariance matrix is normalized to an identity
matrix. The minimum displacement vector nd from the
center to the blue polygon is computed using the GJK
algorithm. (b) Contour plots of upperly bounded function
F whose contours are perpendicular to nd This function
behaves like 1D Gaussian distribution.

where V ′ = (Σ)−
1
2V .

Evaluating the integration of Gaussian distribution over
volume V ′ is still difficult, but a tight upper bound of
the integral can be efficiently computed by replacing the
probability distribution function with another one, which
makes the integration computation easier. To define another
function for computing the upper bound, first we compute the
minimum displacement vector d between convex shapes A′

and B′ which are transformed from A and B, respectively, by
(Σ)−

1
2 . d is computed efficiently by the GJK algorithm [1].

Let nd be the unit directional vector. Then, by the Cauchy-
Schwarz inequality,

(x · nd)2 ≤ ‖x‖2.

Thus, ˚
V ′

1√
8π3

exp

(
−1

2
‖x‖2

)
dx

≤
˚

V ′

1√
8π3

exp

(
−1

2
(x · nd)2

)
dx. (12)

The benefit of replacing ‖x‖2 with (x ·nd)2 is that the latter
term, the projection of x to the direction of nd, behaves like
a 1D parameter instead of 3D, as shown in Fig. 2.

The divergence theorem is used to compute the upper
bound on collision probability (12).˚

V ′
div(F)dV =

‹
S′

(F · nS)dS,

where F is a vector field, S′ is the surface of V ′, dS is
an infinitesimal area for integration, and nS is the normal
vector of dS. We want the divergence of F to be equal to
the function inside the integral in (12). Let’s define F as

F(x) =
1

2π

(
1 + erf

(
x · nd√

2

))
nd,

where erf() is the Gaussian error function. The directional
derivative of F(x) along any directional vector orthogonal to
nd is zero because F varies only along nd. The divergence of

F thus becomes (∂F/∂nd), and this is equal to the function
in (12).

The right-hand side of the divergence theorem makes
the integration efficient for a convex polyhedron S′. It is
formulated as ∑

i

‹
4Si1Si2Si3

(F · ni)dS,

where ni is the normal vector of the i-th triangle
4Si1Si2Si3. Because the error function integral over a
triangle domain is another hard problem, the upper bound
on the integral is evaluated instead, that is

‹
4Si1Si2Si3

(F · ni)dS

≤
∑
i

(
max

j=1,2,3
F(Sij) · ni

)
Area(4Si1Si2Si3). (13)

Summing up the values for all triangles gives a tight upper
bound of collision probability, as defined in (1).

This gives higher value than expected collision probability,
as compared to that computed using Monte Carlo methods.
Monte Carlo methods take nMC samples, εi, from position
error N (0,Σ).

Theorem 4.1: As the number of Monte Carlo increases to
the infinity, the approximated probability by Monte Carlo
method is upperly bounded by Equation (13).

Proof: The collision probability approximated by
Monte Carlo methods follows a binomial distribution
B(nMC , p

∗) divided by nMC :

1

nMC
I
(
εi ∈ ((−A)

⊕
B)
)
∼ 1

nMC
B(nMC , p

∗),

where B(n, p) is a binomial distribution and p∗ is the exact
collision probability given as (11). The expectation of Monte
Carlo approximation is

E

[
1

nMC
B(nMC , p

∗)

]
=

1

nMC
E [B(nMC , p

∗)]

=
1

nMC
nMCp

∗ = p∗

=

˚
V ′

1√
8π3

exp

(
−1

2
‖x‖2

)
dx

≤
˚

V ′

1√
8π3

exp

(
−1

2
(x · nd)2

)
dx

=
∑
i

‹
4Si1Si2Si3

(F · ni)dS

≤
∑
i

(
max

j=1,2,3
F(Sij) · ni

)
Area(4Si1Si2Si3).

The variance of Monte Carlo approximation converges to



Algorithm 1 pcol = ConvexPCD(A, B, Σ)
: Compute the upper bound on collision probability between
convex polytopes A and B, given a covariance matrix Σ.

Input: two convex shapes A and B,
Output: Upper bound on collision probability pcol

1: A′ = (Σ)−
1
2A

2: B′ = (Σ)−
1
2B

3: nd = GJK(A′, B′) to define F
4: V ′ = MinkowskiSum(A′, B′)
5: pcol = 0
6: for all i of V ′ do
7: Add Equation (13) to pcol
8: end for
9: return pcol

zero:

Var

[
1

nMC
B(nMC , p

∗)

]
=

1

n2MC

Var [B(nMC , p
∗)]

=
1

n2MC

nMCp
∗(1− p∗)

=
1

nMC
p∗(1− p∗) nMC→∞−−−−−−→ 0.

Thus, the Monte Carlo approximation converges to the exact
collision probability as the number of samples increases, and
the approximation value is bounded by Equation (13).

Algorithm 1 describes how the upper bound on collision
probability for two convex shapes is computed. The two
input shapes are transformed so that the variance of Gaussian
distribution becomes isotropic. Then, GJK algorithm is used
for finding the minimum displacement vector Σ between A′

and B′. The Minkowski sum V ′ is computed and then the
upper bound on collision probability is directly computed
from its all triangles. Computing the Minkowski sum (line 4)
has a time complexity linearly proportional the number
of output vertices. The loop (line 6-8) also has a time
complexity linearly proportional to the number of output
vertices. In the worst case, the time complexity can be O(n2),
where the number of vertex in A′ and B′ is O(n). However,
special types of convex shapes can be used for efficient
computation. k-DOPs have k planes surrounding the objects,
and the Minkowski sum computation takes O(k) instead of
O(k2), because the triangles are parallel to corresponding
ones. AABB is special case of k-DOPs with k = 3. OBB
has 3 pairs of parallel rectangular faces, so their Minkowski
sum can be efficiently computed. As a result, we have
much simpler and faster algorithms to compute the collision
probability for these widely used bounding volumes.

B. Probabilistic Collision Detection for General Shapes

In order to handle non-convex objects efficiently, we
decompose them into many convex shapes and build bound-
ing volume hierarchies (BVHs) to reduce the number of
operations for every convex-convex shape pair.

(a)

(b) (c)

(d) (e)

Fig. 3: A 2D example of BVHs and their traversal during
probabilistic collision detection. The non-convex shapes are
shown as red and blue polygons, and they are bounded by
OBB trees in (a). The probability distribution of displacement
of the red object is drawn at the center of the bounding box
in (b) and (d). BVH traversal (b-c) stops or (d-e) continues,
which is determined by comparing the upper bound on
collision probability and the confidence level δCD.

We define a confidence level δCD < 1 (usually higher than
0.90), an indication of when the traversal in BVHs stops.
The confidence level means that we can confidently say that
there will likely be no collision if the collision probability is
less than 1− δCD. To be more specific, the upper bound on
the collision probability of two bounding volumes of current
traversing nodes is computed as described in Section IV-A,
and is compared to 1 − δCD. If the collision probability is
less than 1−δCD, it means that the probability of collision at
this level of bounding volume is sufficiently low. Otherwise,
traversing further to the child nodes is needed to compute a
tighter bound on collision probability.

Fig. 3 shows two cases in BVH traversal: stop and
continue. In Fig. 3(b), the two bounding volumes are so
far away that the upper bound on collision probability is
already sufficiently below the threshold 1− δCD. Therefore,
traversal stops in the BVHs in Fig. 3(c), resulting in the
reduction in traversing. On the other hand, in Fig. 3(d), the



Algorithm 2 pcol =GeneralPCD(TA, TB , Σ, δCD)
: Compute the upper bound on collision probability between
non-convex polytopes A and B, given BVHs TA and TB , a
covariance matrix Σ and a confidence level δCD.
Input: two BVHs TA and TB , confidence level δCD,
Output: Upper bound on collision probability pcol

1: vA = TA.root
2: vB = TB .root
3: proot = ConvexPCD(vA, vB , Σ)
4: if proot < 1 − δCD or both vA and vB are leaf nodes

then
5: return pcol = proot
6: end if
7: if vA has children and V ol(vA) ≥ V ol(vB) then
8: return pcol =

∑
cA:child

GeneralPCD(cA, TB , Σ, δCD)

9: else
10: return pcol =

∑
cB :child

GeneralPCD(TA, cB , Σ, δCD)

11: end if

two bounding volumes are so close that they are likely to
collide with each other, though the actual shapes are not so
close. In this case, the traversal continues to the children for
tighter bound computation.

Algorithm 2 describes how the BVHs are traversed and
when the traversal stops to reduce the number of computa-
tions. Two BVHs TA and TB , corresponding to any type of
bounding volumes (e.g., spheres, AABBs, OBBs, k-DOPs,
or convex hulls), are traversed simultaneously from roots
to leaf nodes. The upper bound on collision probability is
computed for the convex volume of current nodes at line 3
as described in Section IV-A. The traversal stops when the
collision probability is sufficiently low compared to 1−δCD

or it has reached the leaf nodes (line 4). Otherwise, traversal
continues to the child nodes of TA or TB , depending on the
size of two bounding volumes, in lines 7-11.

V. RESULTS

(a) Benchmark #1
(5,110 triangles)

(b) Benchmark #2
(10,000 triangles)

(c) Benchmark #3
(10,000 triangles)

Fig. 4: Geometry Models and Obstacle Position Distribu-
tions. We evaluate the performance of different algorithms
with different non-convex shapes: (a) Benchmark #1: bunny,
(b) Benchmark #2: dragon, and (c) Benchmark #3: buddha.
The red objects have Gaussian distribution errors in position.

In this section, we describe our implementation and high-
light the performance of our probabilistic collision detection
algorithms on synthetic and real-world benchmarks. Further-
more, we compare the performance of different bounding

volumes (i.e. spheres, AABBs, OBBs, k-DOPs, convex hull)
in terms of the probability bounds and the query time. We
use the following performane measurements to evaluate the
performance:
• Bounding volume approximation error (BVE):. It is

measured as the ratio of the volume of bounding shapes
to that of the original or underlying shapes, which is
always greater than or equal to 1. The closer this ratio
is to 1, the better the bounding volume approximates
the original shape. This ratio is low for tight fitting
bounding volumes such as convex hull and high for
spheres.

• Collision probability upper bound (CP):. We compute
the upper bound on collision probability between two
nearby shapes based on Gaussian probability distribu-
tion. The actual collision probability cannot be com-
puted analytically, so it is approximated by the Monte
Carlo method. In practice, Monte Carlo methods can
take a long time, but we assume that they provide the
most accurate solutions. The upper bounds computed by
our algorithms are expected to be higher than the Monte
Carlo approximation. Our goal is to efficiently compute
the tightest upper bound on collision probability with
different bounding volumes for non-convex shapes.

• Computation time (Time):. Each algorithm has a
different time complexity, so it is important to evaluate
the trade-off between the tightness of a collision proba-
bility upper bound and time complexity. All the timings
reported in this paper are measured in milliseconds
(ms) and generated on a single CPU core of Intel I7
processor.

The Monte Carlo method provides an approximated value
of the actual collision probability by sampling 10, 000 points
from the obstacle’s position distribution in our benchmarks.
We expect that is the most accurate available answer for col-
lision probability computations. As a result, all the collision
probability computations computed using our approaches
compute a higher value than Monte Carlo approximation,
but takes significantly less time than Monte Carlo integration.
For AABBs, different global coordinate systems can result in
different AABB shapes. As a result, we randomly generate
10, 000 global coordinate systems from the SO(3) group
to generate the axes and compute the averages over these
coordinates.

A. Complex Non-convex Models

We measure these values for different non-convex shapes
shown in Fig. 4. These are very complex synthetic bench-
marks in close proximity that are used to evaluate different
collision detection algorithms. These models are scales so
that the length of the longest bounding AABB is 1m. The po-
sitions are determined so that the minimum distance between
two shapes is 1 cm or 5 cm, and we compute the collision
probabilities for such configurations. The covariance matrix
of position error, Σ, is set with a random orientation as
its main axes and use 1cm, 3cm, and 5cm as the standard
deviation along the axes.
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Fig. 5: Performance graph showing the computation time
(x-axis) vs. the upper bound on collision probability (y-axis)
between the two bunny models away from (a) 1 cm and (b)
5 cm.

Table I and Fig. 5 show the upper bound on collision prob-
ability and the query time using different bounding volumes
with different approximation errors. We notice that the OBBs
seem to provide the best balance between probability bound
and the running time. In case of spheres [7], [8]), the running
time is higher than AABBs or OBBs, because the culling
efficiency of sphere is low because the collision probability
bounds are not tight. As a result, the algorithm traverses more
nodes in the hierarchy. As compared to OBBs, 26-DOPs
provide tighter bounds on the collision probability. However,
the query time on 26-DOPs is higher than AABBs and OBBs,
because the overhead of computing the Minkowski sum.The
performance of OBB is comparable to AABB, but OBBs
provide a tighter bound on the probability computation.

B. Robot Trajectory Planning with Sensor Errors

We have integrated our probabilistic collision algorithms
with trajectory planning algorithm and evaluated their per-
formance on a 7-DOF Fetch arm. In our experiments, we
compute different bounding volumes for the robot and the
obstacles in the scene. Furthermore, the scene consists of a
dynamic human obstacles (see Fig. 1) and we assume that the
robot is operating in a close proximity to the human. In this
case, the robot predicts the trajectory of the human, repre-
sents that with a Gaussian distribution and uses probabilistic
collision checking to compute a collision-free trajectory. The
robot uses a Kinect as the depth sensor, which can represent
the human using with 512×424 points. We also compute the
state of human obstacle model, which is represented using
60 DOFs. It is assumed that the obstacle shape is known in
our implementation. The goal of robot trajectory planning is
to generate a path where the collision probability is less than
a user-specified safety level. In our benchmarks, the safety
level is set to 5%, meaning that the collision probability
between an obstacle and a robot state at any time along the
trajectory should be less than 5%. A tighter bound computed
using probabilistic collision detection algorithm increases the
search space of the trajectory planning algorithm.

VI. CONCLUSIONS, LIMITATIONS AND FUTURE WORK

In this paper, we present fast and reliable probabilistic
collision detection algorithms for general convex and non-
convex shape models. This includes an efficient algorithm for

(a) (b) (c)

Fig. 6: Trajectory Planning with a 7-DOF robot: The robot
is used to move the coke cans on a table while avoiding a
human user, i.e. the human arm is close to the robot. The
robot trajectory is computed using a planner that uses our
probabilistic collision detection. At any time along the robot
trajectory, the collision probability is less than 5%.

convex polytopes that is based on computing the Minkowski
sums pf two polytopes. We show that the probability bound
computed by our approach is always an upper bound. We also
simplify the computations and present optimized algorithms
for simpler convex shapes such as AABBs, OBBs and convex
hulls. Based on these bounding volumes, we present a hier-
archical algorithm for non-convex shapes. We have evaluated
their performance on complex synthetic benchmarks and
also integrated them with a real-time trajectory planning
algorithm. In practice, we observe that OBBs seem to present
the best balance between the tightness of bounds and the
query times.

Our approach has some limitation. Current formulation
is designed for rigid model and the error is represented
using a Gaussian probability distribution. The performance
of different bounding volumes can vary based on the shape
of the objects and their relative configurations. Furthermore,
we only take into account only the position error in our
benchmarks, and not the orientation error. There are many
avenues for future work. Besides overcoming these limita-
tions, we will like to design efficient algorithms with tight
bounds for articulated models. It would also be useful to
derive similar algorithms for other distributions and evaluate
their performance in real-world scenarios.
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BVH type BVE distance between shapes : 1 cm distance between shapes : 5 cm
CP (%) Computation Time (ms) CP (%) Computation Time (ms)

#1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3
Monte Carlo
integration 1.00 1.00 1.00 13.2 15.7 6.82 54,300 213,000 108,000 2.38 3.72 0.89 32,800 176,000 92,000

Spheres 4.80 6.28 6.50 45.7 52.8 34.9 847 2,480 2,070 10.3 18.1 10.3 261 1,580 1,030
AABBs 3.28 5.20 4.96 32.6 38.1 31.7 190 578 420 6.21 11.9 7.06 67 213 126
OBBs 1.63 3.16 2.94 20.3 31.7 28.8 179 580 441 4.20 6.23 2.00 86 278 158

26-DOPs 1.26 1.68 1.88 16.7 22.3 12.7 897 3,320 2,637 3.57 2.90 1.27 326 1,010 868
Convex 1.00 1.00 1.00 14.2 18.9 8.09 3,721 10,800 8,780 2.70 4.18 1.12 1,082 2,520 2,330

TABLE I: Performance of different algorithms for complex Benchmarks #1-3 shown in Fig. 4. We measure the bounding
volume approximation error (BVE), collision probability upper bound (CP), and query computation time for different
bounding volumes. The Monte Carlo integration schemes provides the most accurate result, but is very expensive. On
the other hand, spheres (used in prior methods [7], [8]) do not provide tight bounds, as observed with CP values. In practice,
OBBs seem to provide the best balance between collision probability bounds and query times.

BVH type Moving coke cans Waving an arm
CP (%) Time (ms) CP (%) Time (ms)

Monte Carlo 1.00 20,800 1.00 15,200
Sphere 3.81 3,260 4.72 1,730
AABB 3.72 637 3.26 425
OBB 2.50 819 2.80 433

26-DOPs 2.11 1,280 2.71 823
Convex 1.59 8,440 1.39 4,630

TABLE II: Robot motion planning scenarios using collision probability computation as a constraint in terms of trajectory
planning. The upper bound on collision probability between an obstacle and the robot trajectory, computed using different
bounding volume types, should be less than 5%. The Sphere BVH computes the most conservative bound. We evaluated
the exact collision probability and computation time for each trajectory for different bounding volume hierarchies in this
real-world scenario. In these scenarios, OBBs provide the best balance between collision bounds and the query time.
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